Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком. Оно помогало развиваться нашей цивилизации с самого начала своего появления....

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком . Оно помогало развиваться нашей цивилизации с самого начала своего появления. Это самый экологический вид энергии на планете, и вероятно, что именно электричество сможет заменить все сырьевые ресурсы, если оных более не останется на Земле.

Термин пошел от греч. «электрон», и означает «янтарь». Ещё в VII веке до нашей эры древнегреческий философ Фалес заметил, что янтарь имеет свойство притягивать к себе волосы и легкие материалы, например, пробковую стружку. Таким образом, он стал первооткрывателем электричества . Но только лишь к средине XVII века наблюдения Фалеса были подробно изучены Отто фон Герике. Этот немецкий физик создал первый в мире электроприбор. Это был вращающийся шар из серы, зафиксированный на металлическом штифте и был похож на янтарь имеющий силу притяжения и отталкивания.

Фалес — первооткрыватель электричества

За пару столетий «электрическую машину» Герике заметно усовершенствовали такие немецкие ученые, как Бозе, Винклер, а также англичанин Хоксби. Эксперименты с электрической машиной дали толчок к новым открытиям в XVIII столетии : в 1707 году физик дю Фей родом из Франции, выявил разницу между электричеством, которое мы получаем от трения стеклянного круга, и которое мы получаем от трения круга из древесной смолы. В 1729 году английские ученые Грей и Уилер выявили, что некоторые тела могут пропускать через себя электричество, и они были первыми, кто сделал акцент на том, что тела можно разделять на два типа: проводники и непроводники электричества.

Очень значительное открытие было изложено в 1729 году голландским физиком Мушенбруком, который родился в Лейдене. Этот профессор философии и математики был первым, кто выявил, что стеклянная банка, залепленная с двух сторон листками станиоля, может скапливать электричество. Так как опыты проводились в городе Лейдене, прибор так и назвали – лейденская банка .

Ученый и общественный деятель Бенджамин Франклин привел одну теорию в которой он говорил, что существует как положительное, так и отрицательное электричество. Ученый смог объяснить сам процесс заряда и разряда стеклянной банки и привел доказательства того, что обкладки лейденской банки можно непринужденно электризовать разными зарядами электричества.

Бенджамин Франклин, более чем достаточно уделил внимания познанию атмосферного электричества, как и русские ученые Г. Рихман, а также М.В. Ломоносов. Ученый изобрел громоотвод , с помощью которого обосновал, что сама молния возникает от разности электрических потенциалов.

В 1785 году был выведен закон Кулона, который описывал между точечными зарядами электрическое взаимодействие. Закон был открыт Ш. Кулоном ученым из Франции, который создал его на основе многократных экспериментов со стальными шариками.

Одним из великих открытий, которое обнаружил итальянский ученый Луиджи Гальвани в 1791 году, было то, что электричество могло появляться при соприкосновении двух неоднородных металлов с телом препарированной лягушки.

В 1800 году итальянский ученый Алессандро Вольта изобрел химическую батарею. Это открытие было важным в изучении электричества . Этот гальванический элемент состоял из серебряных пластинок круглой формы, между пластинками были смоченные предварительно в соленой воде куски бумаги. Благодаря химическим реакциям химическая батарея регулярно получала электрический ток.

В 1831 году известный ученый Майкл Фарадей обнаружил электромагнитную индукцию и на этом базисе изобрел первый в мире электрогенератор. Открыл такие понятия, как магнитное и электрическое поле и изобрел элементарный электродвигатель .

Человек, который вложил огромный вклад в изучение магнетизма и электричества, и применял свои исследования на практике, был изобретатель Никола Тесла. Бытовые и электроприборы, которые создал ученый – незаменимы. Этого человека можно назвать одним из великих изобретателей XX ст.

Кто первым открыл электричество?

Отыскать людей, которые не знали бы, что такое электроэнергия, сложно. А вот кто открыл электричество? Об этом имеет представление далеко не каждый. Нужно разобраться, что же это за явление, кто первым его открыл и в каком году все произошло.

Пара слов об электричестве и его открытии

История открытия электричества довольно обширна. Впервые это произошло в далеком 700 году до н.э. Пытливый философ из Греции по имени Фалес обратил внимание, что янтарь способен притягивать маленькие предметы, когда происходит трение с шерстью. Правда, после этого все наблюдения на долгое время закончились. Но именно он считается первооткрывателем статического электричества.

Дальнейшее развитие произошло значительно позднее — через несколько веков. Врач Уильям Гильберт, которому были интересны основы физики, стал основоположником науки об электричестве. Он изобрел нечто похожее на электроскоп, назвав его версор. Благодаря ему Гильберт понял, что множество минералов притягивают маленькие предметы. Среди них алмазы, стекло, опалы, аметисты и сапфиры.

При помощи версора Гильберт сделал пару любопытных наблюдений:

  • пламя влияет на электрические свойства тел, возникающие при трении;
  • молния с громом — это явления электрической природы.

Слово «электричество» появилось в 16 столетии. В 60-х годах XVII века бургомистр Отто фон Герике создал специальную машину для опытов. Благодаря ей он наблюдал за эффектами притяжения и отталкивания.

После этого исследования продолжились. Использовали даже электростатические машины. В начале 30-х годов XVIII века Стивен Грей преобразовал конструкцию Герике. Он поменял серный шарик на стеклянный. Стивен продолжил эксперименты и обнаружил такое явление, как электропроводность. Несколько позднее Шарль Дюфе обнаружил два вида зарядов — от смол и стекла.

В 40-м году XVIII века Клейст и Мушенбрук придумали «лейденскую банку», ставшую первым конденсатором на Земле. Бенджамин Франклин говорил, что заряд накапливает стекло. Благодаря ему появились обозначения «плюс» и «минус» для электрических зарядов, а также «проводник», «заряд» и «конденсатор».

Бенджамин Франклин вел насыщенную событиями жизнь. Удивительно то, что у него вообще хватало времени на изучение электричества. Однако именно Бенджамин Франклин изобрел первый громоотвод.

В конце XVIII столетия Гальвани выпустил «Трактат о силе электричества при движении мышц». В начале XIX века изобретатель из Италии Вольта придумал новейший источник тока, назвав его Гальванический элемент. Эта конструкция выглядит как столб из серебряных и цинковых колец. Они разделены бумагами, которые смочили в соленой воде. Так и произошло открытие гальванического электричества. Через 2 года изобретатель из России Василий Петров открыл Вольтову дугу.

Примерно в тот же временной период Жан Антуан Нолле сконструировал электроскоп. Он зарегистрировал быстрое «стекание» электричества с тел острой формы. На основе этого появилась теория о том, что ток влияет на живые существа. Благодаря обнаруженному эффекту появился медицинский электрокардиограф.

С 1809 году в сфере электричества случилась революция. Изобретатель из Англии Деларю придумал лампочку накаливания. Спустя век были созданы приборы с вольфрамовой спиралью, которые заполняли инертным газом. Ирвинг Ленгмюр стал их основоположником.

Прочие открытия

В XVIII столетии знаменитый в дальнейшем Майкл Фарадей придумал учение об электромагнитных полях.

Электромагнитное взаимодействие обнаружил во время своих экспериментов ученый из Дании по имени Эрстед в 1820 году. В 1821 году физик Ампер в собственном трактате связал электричество и магнетизм. Благодаря этим исследованиям зародилась электротехника.

В 1826 году Георг Симон Ом провел опыты и обозначил главный закон электрической цепи. После этого возникли специализированные термины:

  • электродвижущая сила;
  • проводимость;
  • падение напряжения в сети.

Андре-Мари Ампер позднее придумал правило, как определять направление тока на магнитную стрелку. У него было множество названий, но больше всего прижилось «правило правой руки». Именно Ампер сконструировал усилитель электромагнитного поля — катушки с множеством витков. Они сделаны из медных проводов, в которых с установлены железные сердечники. В 30-х годах XIX века был изобретен электромагнитный телеграф на основании вышеописанного правила.

В 20-х годах XX века в Советском Союзе правительство начало глобальную электрификацию. В этот период возник термин «лампочка Ильича».

Волшебное электричество

Дети должны знать, что такое электричество. Но обучать нужно в игровой форме, чтобы полученные знания не наскучили в первые же минуты. Для этого можно посетить открытое занятие «Волшебное электричество». В него входят следующие образовательные задачи:

  • обобщение у детей информации про электричество;
  • расширить знания о том, где обитает электричество и чем оно может помочь людям;
  • познакомить ребенка с причинами возникновения статического электричества;
  • объяснить правила безопасности в обращении с бытовыми электроприборами.

Также ставятся и иные задачи:

  • у ребенка формируется желание открывать что-то новое;
  • дети учатся взаимодействовать с окружающим миром и его объектами;
  • развивается мышление, наблюдение, способности к анализу и умение делать правильные выводы;
  • осуществляется активная подготовка к школе.

Занятие необходимо и в воспитательных целях. Во время его проведения:

  • подкрепляется интерес к изучению окружающего мира;
  • появляется удовлетворение от открытий, которые получились в результате проведенных экспериментов;
  • воспитывается умение работать в коллективе.

В качестве материала предоставляются:

  • игрушки с батарейками;
  • пластмассовые палочки по числу присутствующих;
  • шерстяная и шелковая ткани;
  • обучающая игрушка «Собери предмет»;
  • карточки «Правила по использованию бытовых электроприборов»;
  • цветные шарики.

Для ребенка это будет отличным занятием на лето.

Заключение

Мы не можем точно утверждать, кто на самом деле первым открыл электричество. Есть все основания полагать, что о нем знали еще до Фалеса. Но большинство ученых (Уильям Гилберт, Отто фон Герике, Вольт Ом, Ампер) в полной мере внесли собственный вклад в развитие электричества.

Альтернативная версия истории открытия электричества

Науке не известно, когда произошло открытие электричества. Еще древние люди наблюдали молнии. Позже они заметили, что некоторые тела, если их потереть друг о друга, могут притягиваться или отталкиваться. Свойство притягивать или отталкивать небольшие предметы хорошо проявлялось у янтаря.
В 1600 г. появился первый термин, связанный с электричеством, — электрон. Ввел его Уильям Гилберт, заимствовавший это слово из греческого языка, где оно обозначало янтарь. Позже такие свойства были обнаружены у алмаза, опала, аметиста, сапфира. Эти материалы он назвал электриками, а само явление — электричеством.
Отто фон Герике продолжил исследования Гилберта. Он изобрел электростатическую машину — первый прибор для изучения электрических явлений. Она представляла собой вращающийся металлический стержень с шаром, сделанным из серы. При вращении шар терся о шерсть и приобретал значительный заряд статического электричества.

В 1729 г. англичанин Стивен Грей усовершенствовал машину Герике, заменив в ней серный шар на стеклянный.

В 1745 г. Юрген Клейст и Питер Мушенбрук изобрели лейденскую банку, представляющую собой стеклянную емкость с водой, способную накопить значительный заряд. Она стала прототипом современных конденсаторов. Ученые ошибочно полагали, что накопителем заряда является вода, а не стекло. Позже вместо воды стали использовать ртуть.
Бенджамин Франклин расширил набор терминов для описания электрических явлений. Он ввел понятия: заряд, два рода зарядов, плюс и минус для их обозначения. Ему принадлежат термины конденсатор, проводник.
Множество проведенных в 17 веке экспериментов носило описательный характер. Практического применения они не получили, но послужили фундаментом для развития теоретических и практических основ электричества.

Первые научные эксперименты с электричеством

Научные исследования электричества начались в 18 веке.

В 1791 г. итальянский врач Луиджи Гальвани обнаружил, что ток, протекающий по мышцам препарированных лягушек, вызывает их сокращение. Свое открытие он назвал животным электричеством. Но Луиджи Гальвани не смог полностью объяснить полученные результаты.

Открытие животного электричества заинтересовало итальянца Александро Вольта. Известный ученый повторил опыты Гальвани. Он повторно доказал, что живые клетки вырабатывают электрический потенциал, но причина его появления химическая, а не животная. Так произошло открытие гальванического электричества.
Продолжая свои опыты, Александро Вольта сконструировал устройство, вырабатывающее напряжение без электростатической машины. Это была стопка чередующихся медных и цинковых пластин, разделенных смоченными в растворе соли кусочками бумаги. Устройство получило название вольтового столба. Оно стало прототипом современных гальванических элементов, служащих для выработки электроэнергии.
Важно отметить, что Наполеон Бонапарт очень заинтересовался изобретением Вольта, и в 1801 г. пожаловал ему титул графа. А позже знаменитые физики решили в его честь назвать единицу измерения напряжения 1 В (вольт).

Луиджи Гальвани и Александро Вольта — великие экспериментаторы в области электричества. Но в 18 в. объяснить суть явлений они не могли. Построение теории электричества и магнетизма началось в 19 в.

Научные исследования электричества в 19 веке

Русский изобретатель Василий Петров, продолжая эксперименты Вольта, в 1802 г. открыл вольтову дугу. В его опытах использовались угольные электроды, которые вначале сдвигались, за счет протекания тока раскалялись, а затем раздвигались. Между ними возникала устойчивая дуга, способная гореть при напряжении всего в 40-50 вольт. При этом выделялось значительное количество тепла. Опыты Петрова впервые показали возможности практического применения электричества, способствовали изобретению лампы накаливания и электросварки. Для своих опытов В. Петров сконструировал батарею длиною 12 м. Она была способна создать напряжение 1700 вольт.

Недостатками вольтовой дуги были быстрое сгорание углей, выделение углекислого газа и копоти. За усовершенствование источника света взялись несколько величайших изобретателей того времени, каждый из которых внес свой вклад в развитие электрического освещения. Все они считали, что источник тепла и света должен находиться в стеклянной колбе, из которой выкачан воздух.
Идею использования металлической нити накаливания еще в 1809 г. предложил английский физик Деларю. Но в течение многих лет продолжались эксперименты с угольными стержнями и нитями.
В американских учебниках по электричеству утверждается, что отцом лампы накаливания является их соотечественник Томас Эдисон. Он внес огромный вклад в историю открытия электричества. Но опыты Эдисона по усовершенствованию ламп накаливания закончились в конце 1870-х гг., когда он отказался от металлической нити накала и вернулся к угольным стержням. Его лампы могли бесперебойно гореть около 40 часов.

Спустя 20 лет русский изобретатель Александр Николаевич Лодыгин изобрел лампу, в которой использовалась проволочная нить накала из тугоплавкого металла, скрученная в спираль. Из колбы был выкачан воздух, из-за которого происходило окисление нити и ее перегорание.
Крупнейшая компания мира по производству электротехнической продукции General Electric выкупила у Лодыгина патент на производство ламп с вольфрамовой нитью. Это позволяет считать, что отцом лампы накаливания является наш соотечественник.
Над усовершенствованием лампы накаливания работали химики и физики, и их открытия, изобретения и усовершенствования позволили создать лампу накаливания, которой люди пользуются сегодня.

В 19 в. электричество стало применяться не только для освещения.
В 1807 г. английскому химику Хэмфри Дэви электролитическим способом удалось выделить из раствора щелочные металлы натрий и калий. Других способов получения этих металлов в то время не было.
Его соотечественник Уильям Стэрджен в 1825 г. изобрел электромагнит. Продолжая исследования, он создал первую модель электродвигателя, работу которого продемонстрировал в 1832 г.

Становление теоретических основ электричества

Кроме изобретений, получивших практическое применение, в 19 в. началось построение теоретических основ электричества, открытие и формулировка основных законов.

В 1826 г. немецкий физик, математик, философ Георг Ом экспериментально установил и теоретически обосновал свой знаменитый закон, описывающий зависимость тока в проводнике от его сопротивления и напряжения. Ом расширил набор терминов, используемых в электричестве. Он ввел понятия электродвижущей силы, проводимости, падения напряжения.
Благодаря нашумевшим в научном мире публикациям Г. Ома, теория электричества стала бурно развиваться, но сам автор подвергся гонениям со стороны начальства и был уволен с должности школьного учителя математики.

Огромный вклад в развитие теории электричества внес французский философ, биолог, математик, химик Андре-Мари Ампер. По причине бедности родителей он вынужден был заниматься самообразованием. В возрасте 13 лет он уже овладел интегральным и дифференциальным исчислением. Это позволило ему получить математические уравнения, описывающие взаимодействия круговых токов. Благодаря трудам Ампера в электричестве появились 2 смежные области: электродинамика и электростатика. По неизвестным причинам Ампер в зрелом возрасте перестал заниматься электричеством и увлекся биологией.

Над развитием теории электричества трудились многие физики разных национальностей. Изучив их труды, выдающийся английский физик Джеймс-Клерк Максвелл построил единую теорию электрических и магнитных взаимодействий. Электродинамика Максвелла предусматривает наличие особой формы материи — электромагнитного поля. Свой труд, посвященной этой проблеме, он опубликовал в 1862 г. Теория Максвелла позволила описать уже известные электромагнитные явления и предсказать неизвестные.

История развития электрических средств связи

Как только у древних людей возникла потребность в общении, появилась необходимость в организации обмена сообщениями. История развития средств связи до открытия электричества многогранна и у каждого народа своя.

Когда люди оценили возможности электричества, встал вопрос о передаче информации с его помощью.
Первые попытки передачи электрических сигналов были предприняты сразу после опытов Гальвани. Источником энергии служил вольтов столб, приемником — лягушечьи лапки. Так появился первый телеграф, который долгое время усовершенствовался и модернизировался.

Для передачи информации ее сначала нужно было кодировать, а после приема раскодировать. Для кодирования информации американский художник Самюэл Морзе в 1838 г. придумал специальную азбуку, состоящую из комбинаций точек и тире, разделенных промежутками. Известна точная дата первой телеграфной передачи — 27 мая 1844 г. Связь была установлена между Балтимором и Вашингтоном, расположенных на расстоянии 64 км.

Средства связи такого рода умели передавать сообщения на большие расстояния, сохранять их на бумажной ленте, но имели и ряд недостатков. На кодирование и декодирование сообщений тратилось много времени, приемник и передатчик должны были обязательно соединяться проводами.

В 1895 г. русскому изобретателю Александру Попову удалось продемонстрировать работу первого беспроводного передатчика и приемника. В качестве приемного элемента использовалась антенна (или вибратор Герца), а в качестве регистрирующего элемента — когерер. Для питания прибора использовалась батарея постоянного тока с напряжением в несколько вольт.
В изобретении когерера велика заслуга французского физика Эдварта Бранли, открывшего возможность изменять сопротивление металлического порошка за счет воздействия на него электромагнитных волн.
Средства связи, построенные на основе передатчика и приемника Попова, служат и в настоящее время.

Сенсационное сообщение о своих открытиях в области передачи электромагнитных волн в 1891 г. сделал сербский ученый Никола Тесла. Но человечество не было готово принять его идеи и понять, как на практике применить изобретения Тесла. Через много десятилетий они легли в основу сегодняшних средств электронных коммуникаций: радио, телевидения, сотовой и космической связи.

В наше время жизнь без электричества просто остановится. Однако, так было не всегда – раньше люди и слова такого не слышали. На протяжении веков, благодаря усилиям поколений талантливых ученых и исследователей, человечество продвигалось к открытию и использованию этого чудесного природного явления. Освоение электрического тока можно смело считать одним из главных достижений человечества.

Открытие электричества: первые шаги

Точного ответа на вопрос, когда появилось электричество, не существует. Как природная сила оно существовало всегда, а вот долгий путь к изобретению и использованию электричества был начат еще в 8 веке до н.э. История даже сохранила имя человека, давшего название этому явлению. Философ Фалес Миллетский, проживавший в Древней Греции обратил внимание на то, что натертый шерстью янтарь может притянуть к себе небольшие предметы за счет какой-то силы. «Янтарь» по-гречески означает «электрон», отсюда и пошло «электричество».

Настоящее зарождение исследований в этой области история электричества относит к середине 17 века, и связано оно с именем бургомистра из немецкого Магдебурга Отто ф.Герике (по совместительству ученый-физик и изобретатель). Он в 1663 году, после изучения трудов Фалеса, создал особую машину для исследования эффектов электрического притяжения и отталкивания, это и был первый в мире электрический механизм. Аппарат состоял из серного шарика, который крутился на металлическом стержне и, подобно янтарю, притягивал и отталкивал различные предметы.

Среди первопроходцев, способствовавших появлению в нашей жизни электричества, можно назвать англичанина У. Гилберта, который служил физиком и медиком при дворе. Он считается основоположником электротехники (науки о свойствах и применении электричества), изобрел электроскоп и сделал несколько замечательных открытий в этой области.

Новые открытия

В 1729 году англичане Стивен Грей и Грэнвилл Уилер впервые обнаружили, что электрический ток свободно проходит через некоторые тела (названные проводниками) и не проходит через другие (непроводники), это было первым шагом к использованию электроэнергии в промышленных целях.

В Англии же впервые в мире пытаются передать электричество на какое-то расстояние, занимался этим ученый С. Грей, в процессе опытов он также столкнулся с разной степенью проводимости тел.

Профессора математики Голландца П.ван Мушенбрука называют тем, кто изобрел первый конденсатор для электричества – это знаменитая «лейденская банка» (названа по имени родного города изобретателя). Прибор представлял собой обычную стеклянную банку, с обоих концов запаянную тонкими листами сплава олова со свинцом. Таким образом, появляется возможность накапливать электричество.

Известный американский политический деятель Бенджамин Франклин также был среди тех, кто открыл электричество для широкого применения в жизни. Он опытным путем определил, что электрические заряды делятся на положительные и отрицательные, а также изучил электрическую природу молний.

На основе открытий Франклина в России ученые Рихман и великий Михайло Васильевич Ломоносов изобрели громоотвод, доказав на практике, что молнии получаются из разности потенциалов атмосферного электричества. Ломоносов вообще оказал огромное влияние на изучение электрических явлений (особенно атмосферных).

Молодая наука об электричестве продолжает стремительно развиваться – на протяжении 18-19 веков появлялись все новые открытия и изобретения, писались новые научные трактаты, главным предметом которых был электрический ток.

Так, в 1791 году выпущена в свет книга об электричестве в мышцах человека и животных, возникающая при их сокращении, автором был итальянский физик Гальвани. Другой итальянец – Алессандро Вольта, был тем, кто создал в 1800 году доселе неизвестный источник тока, названный «гальванический элемент» (в честь того самого Гальвани), который через несколько сотен лет предстает в виде всем известной батарейки.

«Вольтов столб» был выполнен в виде собственно столба, отлитого из цинка и серебра, между слоями которых была проложена просоленная бумага.

Через несколько лет в России профессор физики из Санкт-Петербурга В. Петров представляет научному миру мощную электрическую дугу, назвав ее «Вольтова дуга». Он тот, кто придумал использовать свет от электричества для освещения внутри помещений. Были продемонстрированы возможности для использования электрических явлений в хозяйственной жизни. Собранная ученым батарея была действительно гигантской (длина – 12, а высота – около 3 метров), напряжение ее было постоянным и составляло 1700 вольт. Это изобретение положило начало опытам по созданию ламп накаливания и методов электрической сварки металлов.

Великие открытия в области электричества

Опыты Петрова в России способствовали тому, что в 1809 году ученый Деларю в Англии сконструировал первую в мире лампу накаливания. А сто лет спустя американский химик и Нобелевский лауреат И. Ленгмюр выпустил первую лампочку, у которой была светящаяся спираль из вольфрама, помещенная в запаянную колбу с инертным газом. Это дало старт новой эпохе. Многие ученые и в Европе, и в США, и в России проводили многочисленные опыты и исследования, чтобы лучше понять природу электричества и поставить его на службу человеку.

Так, в 1820 году датчанин Эрстред выявил взаимодействие электрических частиц, а в 1821 знаменитый Ампер выдвинул и доказал теорию о связи магнетизма и электрических явлений. Свойства электромагнитного поля углубленно исследовал англичанин М. Фарадей, он же открыл закон электромагнитной индукции, гласящий, что в замкнутом проводящем контуре при временном изменении магнитного потока возникают электрические импульсы, а также сконструировал первый электрогенератор. Работы этих ученых и десятков других менее известных привели к появлению новой науки, которой немецкий инженер Вернер фон Сименс дал название «электротехника».

В 1826 году Г.С.Ом после многочисленных опытов выдвинул закон электроцепи (известный также, как «закон Ома»), а также новые термины: «проводимость», «электрическая движущая сила», «напряжение электротока». Его последователь, А-М. Ампер, вывел знаменитое правило «правой руки», т.е. определение направлений течения электротока с помощью магнитной стрелки. Он же изобрел прибор для усиления электрополя – катушки медных проводов вокруг железных сердечников. Эти наработки стали предвестниками одного из главных изобретений в области электротехники (электромагнитного телеграфа) немецким учёным Самуилом Томасом Земмерингом.

В России изобретатель Александр Лодыгин придумал лампочку, максимально напоминающую современные аналоги: вакуумная колба, внутри которой помещена спиралевидная нить накаливания, сделанная из тугоплавкого вольфрама. Ученый продал права на это изобретение американской корпорации «Дженерал Электрик», которая запустила их в массовое производство. Поэтому справедливо было бы считать первооткрывателем лампочек именно россиянина, хотя во всех американских учебниках физики «отцом лампочки» значится их ученый Т.Эдисон, который тоже внес немалый вклад в изобретение электричества.

Современный виток исследований

Недавние грандиозные открытия в области электричества связаны с именем великого Николы Теслы, значение и масштабы которых до сих пор не оценены по достоинству. Этот гениальный человек изобрел такие вещи, которые еще только предстоит использовать:

  • синхронный генератор и асинхронный электродвигатель, совершившие промышленную революцию в современном мире;
  • флюоресцентные лампы для освещения больших пространств;
  • концепция радио была представлена Теслой на несколько лет раньше «официального отца» радио – Маркони;
  • дистанционно управляемые приборы (первой была лодка на больших батареях, управляемая с помощью радио);
  • двигатель с вращающимися магнито-полями (на этой основе сейчас производят новейшие автомобили, не нуждающиеся в бензине);
  • промышленные лазеры;
  • «Лазер Башня» – первый в мире прибор для беспроводного коммуникацирования, прообраз всемирной сети Интернет;
  • множество бытовых и промышленных электроприборов.

Оцените статью:

Электричество – это чрезвычайно полезная форма энергии. Оно легко превращается в другие формы, например в свет или тепло. Его можно без труда передавать по проводам. Слово «электричество» происходит от греческого слова «электрон» — «янтарь». При трении янтарь приобретает электрический заряд и начинает притягивать кусочки бумаги. Статическое электричество известно с древнейших времен, но лишь 200 лет назад люди научились создавать электрический ток. Электричество приносит нам тепло и свет, на нем работают разнообразные машины, в том числе ЭВМ и калькуляторы.

Что такое электричество

Электричество существует благодаря частицам, имеющим электрические заряды. Заряды есть во всяком веществе - ведь атомные ядра имеют положительный заряд, а вокруг них обращаются отрицательно заряженные электроны (см. статью « «). Обычно атом электрически нейтрален, но когда он отдает свои электроны другим атомам, он обретает положительный заряд, а атом, получивший дополнительные электроны, заряжен отрицательно. можно сообщить некоторым предметам электрический заряд, называемый статическим электричеством . Если потереть воздушный шар о шерстяной джемпер, часть электронов перейдет с джемпера на шар, и тот приобретет положительный заряд. Джемпер теперь заряжен положительно, и шарик прилипает к нему, так как противоположные заряды притягиваются друг к другу. Между заряженными телами действуют электрические силы, и тела с противоположными (положительными и отрицательными) зарядами притягивают друг друга. Предметы с одинаковыми зарядами, напротив, отталкиваются. В генераторе Ван-де-Граафа при трении резиновой ленты о валик возникает значительный статический заряд. Если человек дотронется до купола, его волосы встанут дыбом.

В некоторых веществах, например в , электроны могут свободно передвигаться. Когда что-то приводит их в движение, возникает поток электрических зарядов, называемый током . Проводники - это вещества, способные проводить, электрический ток. Если вещество не проводит ток, его называют изолятором . Дерево и пластмасса - изоляторы. В целях изоляции электрический выключатель помещают в пластмассовый корпус. Провода, как правило, делают из меди и покрывают пластиком для изоляции.

Впервые статическое электричество обнаружили древние греки более 2000 лет назад. Сейчас статическое электричество используется для получения фотокопий, факсов, распечаток на лазерных принтерах. Отраженный зеркалом лазерный луч создает на барабане лазерного принтера точечные статические заряды. Тонер притягивается к этим точкам и прижимается к бумаге.

Молния

Молнию вызывает статическое электричество, накапливающееся в грозовой туче в результате трения капелек воды и кристалликов льда, друг о друга. При трении друг о друга и о воздух капли и кристаллики льда приобретают заряд. Положительно заряженные капли собираются в верхней части тучи, а внизу накапливается отрицательный заряд. Большая искра, называемая лидером молнии, устремляется к земле, к точке, имеющей противоположный заряд. Перед возникновением лидера разность потенциалов в верхней и нижней областях тучи может составить до 100 млн. вольт. Лидер вызывает ответный разряд, устремляющийся тем же путем от к туче. внутри этого разряда в пять раз горячее поверхности Солнца - он нагревается до 33 000 °С. Разогретый разрядами молнии воздух быстро расширяется, создавая воздушную волну. Мы воспринимаем ее как гром.

Электрический ток

Электрический ток - это поток заряженных частиц, перемещающихся из области высокого электрического потенциала в область низкого потенциала. Частицы приводит в разность потенциалов, которая измеряется в вольтах . Для протекания тока между двумя точками необходима непрерывная «дорога» - цепь. Между двумя полюсами батарейки существует разность потенциалов. Если соединить их в цепь, возникнет ток. Сила тока зависит от разности потенциалов и сопротивления элементов цепи. Все вещества, даже проводники, оказывают току некоторое сопротивление и ослабляют его. Единица силы тока названа ампером (А) в честь французского ученого Андре-Мари Ампера (1775 - 1836).

Для разных устройств нужен ток разной . Электроприборы, например лампочки, превращают электрическую тока в другие формы энергии, в тепло и свет. Эти устройства могут быть включены в цепь двумя способами: последовательно и параллельно. В последовательной цепи ток проходит по всем компонентам по очереди. Если один из компонентов перегорает, цепь размыкается и ток пропадает. В параллельной цепи ток идет по нескольким путям. Если один компонент цепи выходит из строя, по другой ветви ток идет по-прежнему.

Батареи

Батарея - это хранилище химической энергии, которую можно превратить в электричество. Наиболее типичная батарея, используемая в обиходе, называется сухим элементом . В ней находится электролит (вещество, содержащее способные двигаться заряженные частицы). В результате противоположные заряды разделяются и двигаются к противоположным полюсам батарейки. Ученые обнаружили, что жидкость в теле мертвой лягушки действует как электролит и проводит электрический ток.

Алессандро Вольта (1745-1827) создал первую в мире батарею из стопки картонных дисков, пропитанных кислотой, и пропитанных кислотой, и проложенных между ними цинковых и медных дисков. В его честь единица напряжение названа вольтом . Батарейка в 1,5 В называется элементом. Большие батареи состоят из нескольких элементов. Батарея в 9 В содержит 6 элементов. Сухие называют первичными элементами . Когда компоненты электролита израсходуются, срок службы батарейки заканчивается. Вторичные элементы - это батареи, которые можно перезаряжать. Автомобильный аккумулятор - вторичный элемент. Он подзаряжается током, произведенным внутри машины. Солнечная батарея превращает энергию Солнца в электрическую. При освещении солнечным светом слоев кремния электроны в них начинают двигаться, создавая разность потенциалов между слоями.

Электричество у нас дома

Напряжение в электросети в одних странах составляет 240 В, в других 110 В. Это высокое напряжение, и удар током может быть смертельным. Параллельные цепи подводят электричество в различные части дома. Все электронные приборы снабжены предохранителями. Внутри них находятся очень тонкие проволочки, которые плавятся и разрывают цепь, если сила тока чересчур велика. Каждая параллельная цепь обычно имеет три провода: под напряжением и заземляющий. По первым двум идет ток, а заземляющий провод нужен для безопасности. Он отведет электрический ток в землю в случае пробоя изоляции. Когда вилку включают в розетку, разъёмы соединяются с проводом под напряжением и нейтральным проводом, замыкая цепь. В некоторых странах используют вилки с двумя разъёмами, без заземления (см. рис.).

ЭЛЕКТРИЧЕСТВО

ЭЛЕКТРИЧЕСТВО , форма энергии, существующая в виде статических или подвижных ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. Заряды могут быть положительными или отрицательными. Одинаковые заряды отталкиваются, противоположные притягиваются. Силы взаимодействия между зарядами описаны ЗАКОНОМ КУЛОНА. Когда заряды движутся в магнитном поле, они испытывают воздействие магнитной силы и в свою очередь создают противоположно направленное магнитное поле (ЗАКОНЫ ФАРАДЕЯ). Электричество и МАГНЕТИЗМ представляют собою различные аспекты одного и того же явления, ЭЛЕКТРОМАГНЕТИЗМА. Поток зарядов образует ЭЛЕКТРИЧЕСКИЙ ток, который в проводнике представляет собою поток отрицательно заряженных ЭЛЕКТРОНОВ. Для того, чтобы в ПРОВОДНИКЕ возник электрический ток, необходима ЭЛЕКТРОДВИЖУЩАЯ СИЛА или РАЗНОСТЬ ПОТЕНЦИАЛОВ между концами проводника. Ток, который движется только в одном направлении, называется постоянным. Такой ток создается, когда источником разности потенциалов является БАТАРЕЙКА. Ток, меняющий направление дважды за цикл, называется переменным. Источником такого тока являются центральные сети. Единицей измерения тока служит АМПЕР, единицей заряда - КУЛОН, ом - это единица сопротивления, а вольт - единица электродвижущей силы. Основными средствами для вычисления параметров электрической цепи являются ЗАКОН ОМА и ЗАКОНЫ КИРХГОФА (о суммировании величин напряжения и тока в цепи). см. также ЭЛЕКТРИЧЕСКИЙ ТОК , ЭЛЕКТРОНИКА .

Электрическую энергию можно получить при помощи индукции в генераторе; напряжение в первичной обмотке создает переменный ток во внешней цепи. Наличие индуктивности или емкости (либо того и другого вместе) приводит к смещению фазы (А) между напряжением V и током I. На рисунке показано, что емкость вызывала смещение фазы на 90°, в результате чего средняя величина мощности равна 0, хотя кривая мощности no-прежнему имеет вид синусоиды. Понижение мощности Р, вызванное смещением фаз, называют коэффициентом мощности. Если три фазы переменного тока смещены между собою, каждая на 120°, то сумма их величин тока или напряжения всегда будет равна нулю (В). Такие трехфазные токи используют в короткозамк-нугых асинхронных электродвигателях с ротором (С). В этой конструкции имеется три электромагнита, вращающихся в созданном магнитном поле. Переменный ток производится также в замкнутых (D) и открытых (Е) колебательных контурах. Высокочастотные электромаг нитные волны, используемые в некоторых системах коммуникации, ПРОИЗВОДЯТСЯ ТЭКИМ1 цепями.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ЭЛЕКТРИЧЕСТВО" в других словарях:

    - (от греч. elektron янтарь, так как янтарь притягивает легкие тела). Особенное свойство некоторых тел, проявляющееся только при известных условиях, напр. при трении, теплоте, или химических реакциях, и обнаруживающееся притягиванием более легких… … Словарь иностранных слов русского языка

    ЭЛЕКТРИЧЕСТВО, электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т.п.) … Толковый словарь Ушакова

    Совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов. Связь электричества и магнетизма взаимодействие неподвижных электрических зарядов осуществляется… …

    - (от греч. elektron янтарь) совокупность явлений, в которых обнаруживается существование, движение и взаимодействие (посредством электромагнитного поля) заряженных частиц. Учение об электричестве один из основных разделов физики. Часто под… … Большой Энциклопедический словарь

    Лепиздричество, электроток, лепестричество, лепистричество, ток, электроэнергия, освещение Словарь русских синонимов. электричество сущ., кол во синонимов: 13 актиноэлектричество … Словарь синонимов

    ЭЛЕКТРИЧЕСТВО - в самом общем смысле представляет одну из форм движения материи. Обычно же под этим словом понимают или электрический заряд как таковой или самое учение об электрических зарядах, их движении и взаимодействии. Слово Э. происходит от греч. электрон … Большая медицинская энциклопедия

    электричество - (1) EN electricity (1) set of phenomena associated with electric charges and electric currents NOTE 1 - Examples of usage of this concept: static electricity, biological effects of electricity. NOTE 2 - In… … Справочник технического переводчика

    ЭЛЕКТРИЧЕСТВО, а, ср. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Электричество - – 1. Проявление одной из форм энергии, присущая электрическим зарядам как движущимися, так и находящимися в статическом состоянии. 2. Область науки и техники, связанная с электрическими явлениями. [СТ МЭК 50(151) 78] Рубрика термина:… … Энциклопедия терминов, определений и пояснений строительных материалов

    ЭЛЕКТРИЧЕСТВО - совокупность явлений, в которых обнаруживаются существование, движение и взаимодействие (посредством электромагнитного поля) электрических зарядов (см. (4)). Учение об электричестве один из основных разделов физики … Большая политехническая энциклопедия

Кто изобрел электричество?

  1. Первое упоминание из дошедших до нас - у Фалеса Милетского, но он уже пишет об этом, как о явлении общеизвестном....
  2. никто. Электричество - это природное явление, так что об изобретателе говорить не приходится.
    Изобретали электрические машины. И электрические устройства. Начиная ещ с электрического телеграфа (Ленц) и генераторов Фарадея.
  3. Некорректный вопрос. Электричество было, есть и будет. Лучше бы спросили, кто его открыл
  4. Что касается электричества, то любопытно, что оно изучается в течение многих тысяч лет, а мы до сих пор не знаем точно, что это такое! Сегодня считают, что оно состоит из крошечных заряженных частиц. Электричество, согласно этой теории, движущийся поток электронов или других заряженных частиц.

    Слово электричество произошло от греческого слова электрон. А знаешь ли ты, что значит это слово? Оно означает янтарь. Понимаешь, еще в 600 году до н. э. греки знали, что если потереть янтарь, то он способен притягивать к себе маленькие кусочки пробки и бумаги.

    Следующий важный шаг был сделан в 1733 году, когда француз по имени дю Фэй открыл положительные и отрицательные электрические заряды, хотя он думал, что это были два разных вида электричества. Бенджамин Франклин был первым, кто попытался объяснить, что такое электричество. По его мнению, все вещества в природе содержат электрическую жидкость. Трение между некоторыми веществами забирает часть этой жидкости с одного вещества, добавляя ее к другому. Сегодня мы бы сказали, что эта жидкость состоит из отрицательно заряженных электронов.

  5. История освоения
    XVII век и ранее смутные представления о существовании электричества. Найдены минералы, притягивающие куски железа. Известно, что если некоторые вещества (янтарь, серу и др.) потереть о шерсть, они притягивают лгкие предметы.
    XVIII век cоздатся первый электрический конденсатор Лейденская банка (1745). Кавендиш (1773) и Кулон (1785) открывают закон взаимодействия электрических зарядов. Гальвани открывает биологические эффекты электричества. Вольта изобретает источник постоянного тока гальванический элемент (1800). Франклин открывает электрическую природу молний (атмосферное электричество) , изобретает молниеотвод.
    XIX век Эрстед и Ампер открывают связь между электричеством и магнетизмом (1820). Работы Джоуля, Ленца, Ома по изучению электрического тока. Гаусс формулирует основную теорему теории электростатического поля (1830). Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Максвелл формулирует свои уравнения (1873). Герц экспериментально регистрирует электромагнитные волны (1889). Электротехническая революция создание электрических батарей, электромагнитов, электрического освещения, телеграфа, телефона, прокладка трансантлантического кабеля, электродвигателей, электрогенераторов и электротранспорта (трамвай, троллейбус, метро) .
    XX век создание теории Квантовой электродинамики. Использование электричества в быту повсеместно, от бытовой электротехники до музыкальных электроинструментов. Появление и бурное развитие электроники, микро/нано/пико-технологий.
    XXI век - электрическая энергия окончательно стала неотъемлемой частью жизни. Отключение электроснабжения в бытовой и производственной сетях - смерти подобно.
  6. Эдисон?
  7. ТЕСЛА ОДНОЗНАЧНО И ИНЕТ И РАДИО И ЛАЗР
  8. Первым ученым, который изучал свойства электричества был придворный врач королевы Елизаветы I Вильям Жильбер. Но несмотря на его интересные открытия, все же нельзя сказать, что он или кто-то другой из ученых действительно открыл электричество, ибо с древнейших времен и до наших дней множество ученых изучают свойства электричества, анализируют новые формы его применения.

    Электричество знали прядильщицы в древней Сирии. Их веретена из янтаря наэлектризовывались, когда их обматывали шерстью. Такого рода явление (магнетизм) происходит и от расчесывания волос пластмассовой расческой.

    Китайцы знали свойства магнита еще до начала нашей эры.

    В Греции Фаллес (только не смейся, его действительно так звали) открыл магнитные свойства янтаря. Затем Аристотель изучал реакцию некоторых угрей, поражающих врагов электрическим зарядом.

    В 70 году нашей эры римский писатель Плиний исследовал электрические свойства смолы. Английский физик Роберт Бойл доказал, что электричество может накапливаться. Немецкий ученый Отто фон Герике, живший в то же время, сделал первую электрическую лампочку. Он натирал серный шарик, и тот светился у него в руках.

    Ньютон открыл закон всемирного тяготения, доказал существование статического электричества.

  9. Майкл Фарадей изобрел электричество
  10. Николо Тесла, по-моему
  11. уже очень-очень давно электричество использовалось в медицине. Так давно что фактов почти не осталось.
  12. Не изобрел, а понял принцип его работы, наверное так будет вопрос правильнее.
  13. Да никто его не изобретал. Ну если только создатель всего сущего! Все уже создано до нас, мы же можем только обнаруживать эти явления и изучать.
    Древние греки баловались с электростатикой (электрон от слова янтарь) Думаю это время можно считать зарождением электростатики
  14. Что касается электричества, то любопытно, что оно изучается в течение многих тысяч лет, а мы до сих пор не знаем точно, что это такое! Сегодня считают, что оно состоит из крошечных заряженных частиц. Электричество, согласно этой теории, движущийся поток электронов или других заряженных частиц.

    Слово электричество произошло от греческого слова электрон. А знаешь ли ты, что значит это слово? Оно означает янтарь. Понимаешь, в 600 году до н. э. греки знали, что если потереть янтарь, то он способен притягивать к себе маленькие кусочки пробки и бумаги.

    Большого прогресса в изучении электричества не было достигнуто до 1672 года. В этом году человек по имени Отто фон Геррик, подержав руку у вращающегося шарика из серы, получил более мощный заряд электричества. В 1729 году Стефан Грей обнаружил, что некоторые вещества, в частности металлы, могут проводить ток. Такие вещества стали называться проводниками. Он обнаружил, что другие вещества, такие, как стекло, сера, янтарь и воск, не проводят ток. Они были названы изоляторами.

    Следующий важный шаг был сделан в 1733 году, когда француз по имени дю Фэй открыл положительные и отрицательные электрические заряды, хотя он думал, что это были два разных вида электричества. Бенджамин Франклин был первым, кто попытался объяснить, что такое электричество. По его мнению, все вещества в природе содержат электрическую жидкость. Трение между некоторыми веществами забирает часть этой жидкости с одного вещества, добавляя е к другому. Сегодня мы бы сказали, что эта жидкость состоит из отрицательно заряженных электронов.

    Пожалуй, наука об электричестве начала бурно развиваться с того момента, как в 1800 году Алессандро Вольта изобрел батарею. Это изобретение дало людям первый постоянный и надежный источник энергии и повлекло за собой все важные открытия в этой области.