Исаак Ньютон сформулировал закон инерции, который гласит, что если физическому телу ничего не мешает (равнодействующая всех сил рав­на нулю), то оно продолжит равномерное движение (инерция движения) или будет оставаться в состоянии покоя (инерция покоя).

Идея, заложенная в этом законе, оказалась настолько содержательной, что неявно получила статус универсальной. Ссылки на инерцию можно най­ти не только в физике, но и в психологии, экономике, во многих других на­уках и даже - в самой человеческой жизни.


С практической точки зрения, всякий раз, когда на основе ожидания продолжения чего-то прежнего прогнозируется будущее течение событий (цепь неприятностей или успехов, тенденция положения к ухудшению или улучшению и т.д.), - это, по существу, в той или иной форме и мере и есть ставка на закон инерции.

Неудивительно, что он давно уже обнаружен и в движении биржевых цен. Здесь любое развитие событий можно представить, как произвольную комбинацию двух состояний:
инерции покоя (результат отсутствия каких-либо заслуживаю­щих внимания информационных вводных);
инерции движения, которое когда-то возникло под воздействи­ем определенного импульса любой природы: макроэкономика, психология, слухи-страшилки, воля случая и т.д., а теперь, выйдя из периода покоя, продолжается.

В фактическом признании существования инерции применительно к поведению рынка преуспели и техники. Это выражается, в частности, в том, насколько высоко на пьедестал почета возведено явление тренда в дви­жении цен. В 60-х годах появился целый ряд научных работ, в которых при­водилось математическое обоснование существования тенденции и ее со­хранности. Идея тренда живет и здравствует по сей день.

Кроме того, надежды технических аналитиков именно на инерцию явно просматриваются в сигналах некоторых систем чтения поведения рынка.

Если рассматривать пространства случайных событий и, в частности, наше дополнительное измерение, то там, надо полагать, тоже действует какая-то своя инерция.

Таким образом, с методической точки зрения различные сценарии (конфи­гурации) развития событий в дополнительном измерении, в том числе и такие наиболее вероятные, как тренды и волны, удобно рассматривать в ка­честве проявления некой разновидности инерции, понимая, однако, су­ществующую здесь известную долю условности.

Как движение графика, так и его зависание (отсутствие вы­раженного направления) в дополнительном измерении - это разные проявления инерции.

В самом общем виде формулировка закона инерции применительно к дополнительному измерению может звучать примерно так:
если нечто (движение или покой) началось, то, скорее всего, оно будет продолжаться еще некоторое время.

Разумеется, в каждой конкретной серии испытаний будет складываться своя неповторимая конфигурация кривой. Но всегда можно обнаружить самые разнообразные следы инерции движения и/или покоя в виде тех или иных тенденций.

Это несложно увидеть на графике случайного блуждания, построенном по первым 1000 случайным числам:

На уровне микроскопического анализа приведенного рисунка мож­но видеть многократные переходы инерции движения в зависание и обратно.

С прикладной точки зрения важность данного закона заключается в том, что он позволяет внести в хаос случайности долю упорядочен­ности.

Иначе говоря, если в движении кривой дополнительного измерения обнаруживаются элементы порядка, то, исходя из закона инерции, можно строить расчет на наиболее вероятном сценарии - сохранение текущего положения в течение какого-то времени. Именно на этой основе можно за­ тем принимать соответствующие практические решения.

О каком порядке может идти речь в условиях неопределенности?

Действи­тельно, всякое упоминание упорядоченности при рассмотрении случайных событий может показаться весьма неуместным.

И все же, своя упорядоченность в случайных событиях существует.

Она вполне зримо проявляется хотя бы в том, что, согласно расчетам, в рам­ках принятой математической модели есть только два наиболее вероятных сценария развития событий (тренд и полуволна).

Можно обозначить по крайней мере три источника упорядоченности, проявляющейся в виде закона инерции:
случайные совпадения (иногда они складываются в удивитель­но осмысленный порядок);
исходное соотношение исходных вероятностей преимуществен­ но в пользу успеха (р) или неудачи (q), что заранее опреде­ляет упорядоченное тяготение исходов к соответствующему сум­марному результату (менее вероятное событие будет происхо­дить реже, чем более вероятный исход) ;
удачливость игрока, которая проявляет себя в конфигурации, со­гласно теоремам арксинуса (в классической теории вероятнос­тей говорится об относительной трудности возвращения точ­ки блуждания в начало координат, поскольку, согласно объяс­нению В. Феллера, если уж точка случайно отклонилась от нулевого уровня, то ей труднее вернуться обратно).

Итак, хотя пуассоновское блуждание беспамятно, оно подчиняется за­кону инерции движения, который проявляется, прежде всего, в том, что всякое состояние (некое направление движения или покой) может продол­жаться еще в течение некоторого времени, так сказать, по инерции.

Коротко говоря, благодаря закону инерции случайные пространства вы­глядят не столь уж хаотично.

Конечно, вероятностный характер этой упорядоченности означает и не­ определенность. В заданной серии испытаний неопределенность возникает по двум основным пунктам:
какая тенденция будет иметь место;
как долго она будет продолжаться.

И на сей счет мы можем делать лишь вероятностные суждения исходя из действующих закономерностей чисто случайных пространств.

Под тенденцией в расширительном понимании мы имеем в виду не только сохранение определенных графических фигур, по которым можно судить о направлении будущего движения или покое.

Проявления инерции можно ожидать также и в тенденции к сохра­нению во времени любых обнаруженных правил или закономерностей блуждания, которые носят не только графический, но и какой-то иной характер.

Время действия инерции.

Это наиболее важный параметр, от которого зависит процесс принятия решений в дополнительном измерении.

Сразу подчеркнем, что продолжительность времени действия инерции как параметра, имеющего конкретную величину, - явление само по себе неопределенное. Мы никогда заранее не знаем не только то, какого вида инерция возникнет в следующий момент, но и сколько она будет длиться. Мож­но быть уверенным только в том, что это, как принято говорить при ана­лизе поведения рынка, будет продолжаться до тех пор, пока не закончится.

Мы рассматриваем время действия инерции как величину чисто случайную, которая, следовательно, сама должна подчиняться закону инер­ции и всем действующим вероятностным закономерностям.

Методические следствия: Рождение и смерть разных тенденций в дополнительном измерении происходит по воле случая, который будет да­вать о себе знать все новыми вариантами. Важно суметь вовремя их обнару­жить и оседлать.

Рассмотренные выше понятия и закономерности, которым подчиняются наиболее вероятные конфигурации кривой в дополнительном измерении, в качестве следствий позволяют сформулировать, по меньшей мере, два вы­вода, имеющих непосредственное методическое приложение.

Первое следствие:
если в ходе наблюдения обнаруживается некоторая тенденция к сохранению определенного направления движения, то, вероят­нее всего, оно будет по инерции продолжаться.

Поэтому второе следствие:
если на каком-то этапе наблюдения обнаруживается неопреде­ленность в направлении (отсутствие тенденции), то она будет по инерции сохраняться в течение некоторого времени.

Кроме того, если понимание инерции применять к более широкому кругу явлений, то сказанное выше можно дополнить еще следующим положением:
если при анализе случайного движения на каком-то участке на­блюдения удается выявить какую-то частную закономерность или неопределенность, то такая ситуация, вероятнее всего, бу­дет сохранять свою инерцию в течение еще некоторого про­странственно-временного периода.

Особо подчеркнем, что для предметной разработки методов необходимо с помощью достаточно понятных и однозначно понимаемых критериев точ­но определить понятия тенденция и неопределенность движения.

При этом придется прояснить содержание параметров наблюдения, ко­торые описывают те пределы, где:
кончается неопределенность и начинается направление движения;
кончается выраженность направления движения и начинается неопределенность.

Если в этих понятиях не будет достигнуто необходимой четкости, то затруднительной станет и разработка соответствующих прикладных методик.

Наконец, затронем еще один методический вопрос, который возникает в связи с практическим приложением закона инерции: имеет ли дополни­тельное измерение преимущества в сравнении с применением закона не­посредственно в традиционных пространствах?

На наш взгляд, ответ положительный.

Причина в том, что в дополнительном измерении, как уже ранее подчер­кивалось, действует только воля чистого случая. В то же время чистота традиционных пространств в этом смысле значительно подпорчена пси­хологией участников рынка.

Выпуск 18

Восемнадцатая серия видеоуроков физики посвящена одному из законов, открытому великим Исааком Ньютоном, а именно — закону инерции Ньютона. Во многом благодаря действию этого закона, наш мир таков, каким мы привыкли его видеть. Также Даниил Эдисонович расскажет юным телезрителям о силе трения, которая также вносит немалый вклад в устройство нашего мироздания.

Закон инерции Ньютона

Инерция — основное свойство материальных тел. А вы знаете, в чём оно заключается? В одной из прошлых передач Даниил Эдисонович рассказывал о таком физическом понятии, как масса. Масса — это мера инертности тела. То есть, инерция напрямую зависит от массы. Закон инерции Ньютона называют ещё Первым законом Ньютона. Свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна инерция, то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Иными словами, существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. Системы отсчёта, в которых выполняется закон инерции Ньютона, называют инерциальными системами отсчёта (ИСО). Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета. Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю), которая гласила, что свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Инерция — это не только стремление тела к сохранению покоя, но и стремление сохранить движение, если уж оно начало двигаться. А что ещё мешает телу двигаться, кроме силы инерции? Может быть, вам уже приходилось слышать о трении? Трение — это сила, которая возникает при взаимодействии поверхности одного тела с поверхностью другого тела. Также трение возникает при движении тела в газообразной или жидкой среде. Сила трения — это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению. Причинами возникновения силы трения являются шероховатость соприкасающихся поверхностей и взаимное притяжение молекул этих поверхностей.

> Первый закон Ньютона: инерция

Первый закон Ньютона и инерция . Изучите основы механики Ньютона, момент инерции движения в физике, формулировка и формула первого закона, инерциальная система.

Первый закон движения Ньютона концентрируется на инерции. Тело в состоянии покоя будет оставаться стабильным, а смещающийся объект продолжит движение.

Задача обучения

  • Разобраться в Первом законе движения.

Основные пункты

  • Три закона физики Ньютона составляют основу механики.
  • Первый закон гласит: тело в состоянии покоя останется стабильным, пока на него не повлияет внешняя сила, также и движущееся тело останется в движении, пока не почувствует внешнее воздействие.
  • Чистая внешняя сила – сумма всех факторов, влияющих на объект.
  • Наличие воздействующих сил не означает присутствие чистой внешней силы. Одинаковые по величине силы, но действующие в противоположных направлениях, могут отменить друг друга.
  • Трение – сила между перемещающимся телом и поверхностью. Это внешняя сила, влияющая на замедление.
  • Инерция – тенденция тела в движении продолжать двигаться. Зависит от массы, поэтому чем тяжелее тело, тем сложнее изменить направление движения.

Термины

  • Инертность – свойство объекта, которое вступает в сопротивление с любой трансформацией текущего положения (эквивалентно массе).
  • Равномерное движение – перемещение с неизменной скоростью.
  • Трение – сила, сопротивляющаяся относительному движению.

История

Исаак Ньютон интересовался перемещением объектов в различных условиях. В 1687 году он описал три знаменитых закона движения, применимых для характеристики физических объектов и систем. Они составляют основу механики и описывают связь сил, воздействующих на тело, и вызванные этим движения. Три закона гласят:

Если объект не испытывает никакого силового влияния, то скорость останется стабильной. Если объект пребывает в покое, то скорость равняется нулю.

Ускорение параллельно и прямо пропорционально чистой силе, влияющей на объект, и находится в направлении чистой силы и обратно пропорционально массе.

Если первый объект влияет силой на второй, то тот одновременно влияет на первый. То есть их силы одинаковы по величине и противоположны по направлению.

Первый закон движения

Итак, тело пребывает в движении или покое, пока на него не воздействует внешняя сила. То есть, движущееся тело сохранит свою скорость, если на него ничего не влияет. Это именуют равномерным движением.

Примеры

Давайте разберем Первый закон Ньютона в конкретной системе отсчета. Представьте, что вы едете на коньках в инерциальной системе. Если оттолкнетесь от одного борта, то по Первому закону Ньютона должны прибыть ко второму. Но этого не случится. Не забывайте, что движение продолжается, если на него не влияет внешняя сила. В нашем мире этой силой чаще всего выступает трение. В данном случае – трение между коньками и льдом.

А как насчет ремней безопасности? В случае автомобильной аварии, они должны защитить нас. Допустим, машина едет со скоростью 60 миль/ч. Если резко затормозить, то машина ощущает внешнюю силу и замедляется. Но на водителя это не действует, поэтому он продолжит перемещаться на прежней скорости. Ремень создает противовес и тормозит человека.

Инертность

Иногда этот закон именуют законом инерции или инерциальной системой отсчета. Она выступает свойством тела фиксироваться в состоянии покоя или смещения (с постоянной скоростью). У некоторых инерция больше, потому что эквивалентна массе. Поэтому сложнее изменить направление валуна, чем шарика для гольфа.

Явление, которому посвящена наша сегодняшняя беседа, встречается в разных жизненных ситуациях. Мы с удовольствием его используем, учитываем и частенько ругаем.

Речь пойдет об инерции. Постараемся разобраться, что скрывается за этим названием.

Что же такое инерция

Наблюдая полёт копья, брошенного рукой атлета, падение всадника через голову споткнувшейся лошади; созерцая камни, веками неподвижно лежащими на одних и тех же местах - греческие мыслители задумывались, что общего в этих явлениях?

Данная им формулировка явления инерции известна как I закон Ньютона.

«Инер­ция - это фи­зи­че­ское яв­ле­ние со­хра­не­ния ско­ро­сти тела по­сто­ян­ной, если на него не дей­ству­ют дру­гие тела или их дей­ствие ском­пен­си­ро­ва­но».

Это означает, что, благодаря инерции, тела, находящиеся в покое, продолжают покоиться, а движущиеся продолжают свое движение, пока на них не окажут воздействие внешние силы.

Например, автомобиль может находиться в покое в двух случаях, если на горизонтальном участке дороги его двигатель выключен, либо его двигатель включен, но силы сопротивления уравновесили силу тяги двигателя, т. е. скомпенсировали её.

Теперь вернемся к нашему всаднику, перелетающему через голову споткнувшейся лошади. Лошадь, споткнувшись, резко теряет скорость, а невезучий всадник… по инерции продолжает движение.

По этой же причине при ДТП водитель, пренебрегающий ремнями безопасности, получает удар о лобовое стекло.

Почему, поскользнувшись при ходьбе, мы падаем назад? Тело по инерции сохраняет прежнюю скорость, а ноги на скользком участке быстренько «убегают» вперед.

Формула силы инерции

Количественной характеристикой явления инерции является сила инерции.

Для расчета этой силы используют формулу:

  • F ин - сила инерции;
  • m - масса тела;
  • a - ускорение.

Знак минус указывает на то, что сила инерции противодействует силе, вызвавшей изменение скорости тела.

Понятие инертности в физике

Итак, инерция - это физическое явление. С ним тесно связано еще одно понятие - инертность. Под инертностью в физике понимают свойства тел противодействовать мгновенному изменению направления или скорости движения.

Любое тело не может мгновенно изменить свою скорость, однако, одни тела это делают быстрее, другие - медленнее. Для остановки гружёного и порожнего самосвалов, движущихся с одинаковой скоростью, требуется разное время.

Это происходит потому, что тело с большей массой более инертно, и ему на изменение скорости требуется больше времени. То есть мерой инертности в физике является масса тела.

Инертные люди, инертные газы

Термин «инертный» широко используется в химии. Он относится к химическим элементам, которые при обычных условиях не вступают в химические реакции. Например, благородные газы аргон, ксенон и др.

Этот термин может быть применен и к поведению человека. Инертные люди отличаются равнодушием к окружающему миру. Они противятся любым переменам, как в их собственной судьбе, так и в работе. Они ленивы и безынициативны.

Инертность вращающихся объектов

Все приведенные ранее примеры относились к поступательно движущимся телам. А как же быть с вращающимися объектами? Скажем, с вентилятором, с маховиком в двигателе внутреннего сгорания или детской игрушке. Ведь после выключения электрического вентилятора его лопасти ещё некоторое время по инерции продолжают крутиться.

Насколько тела инертны во время вращения определяет момент инерции. Он зависит от массы тела, его геометрических размеров и расстояния до оси вращения. Изменение этого расстояния влияет на скорость вращения тела. Это используют спортсмены - фигуристы, поражая зрителей продолжительным вращением с изменением скорости.

Специальные расчёты позволяют определить оптимальные размеры механизма и допустимую скорость вращения, чтобы не допустить разрыва вращающихся частей.

Т.е. момент инерции во вращательном движении играет ту же роль, что и масса при поступательном движении. Но в отличие от массы момент инерции можно изменять, как это делают фигуристы - то широко разводя руки, то прижимают их к груди.

Инерция вокруг нас

Именно это явление используют:

  • для сбрасывания ртутного столбика в медицинском термометре и выбивания пыли из ковров;
  • для продолжения движения после разбега на коньках, лыжах, велосипеде;
  • для экономии горючего при езде на автомобиле;
  • в принципе работы артиллерийских детонаторов и т. д.

Это лишь небольшая часть из всех применений инерции. Но не следует забывать о возможной опасности, которую таит это явление природы. Надпись на заднем борту грузовика «Водитель, сохраняй дистанцию», напоминает, что транспорт мгновенно остановить нельзя.

И при торможении впереди едущего автомобиля, следующая за ним машина, остановиться мгновенно не может. По этой же причине категорически запрещено перебегать дорогу перед движущимся транспортом.

Теперь вы легко ответите на вопрос, почему при торможении автомобилей обязательно включается задний красный свет, почему при повороте водитель обязательно сбрасывает скорость.

В спортзале и на катке, в цирке и в мастерской - инерция сопровождает нас всюду. Присмотритесь.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Идея закона инерции была высказана Галилеем в начале XVII в. Галилей первый ввел в физику представление об «идеальном движении», т. е. о движении, свободном от всяких помех - таких, как трение и сопротивление воздуха. Галилей пришел к правильному выводу, что в идеальном случае тело, освобожденное от влияния тяжести, должно вечно двигаться с неизменной скоростью. Декарт развил этот вывод и указал, что свободное тело стремится продолжать свое движение по прямой линии. Ньютон принял закон инерции в качестве первого закона механики и выразил его следующими словами:

Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние.

Представляется само собой понятным, что тело, пребывающее в покое, будет оставаться в покое, пока оно не выведено из этого состояния действием каких-либо сил. Точно так же представляется понятным, что если на движущееся прямолинейно тело не действуют никакие силы, то нет причин, которые могли бы побудить тело отклониться от прямолинейного пути (здесь можно было бы сослаться на соображения симметрии; в отсутствии сил отклонение тела от прямолинейного пути в любую наперед указанную сторону не более возможно, чем отклонение в сторону прямо противоположную; поэтому нет оснований, чтобы отклонение произошло). Менее очевидным на первый взгляд является утверждение, что при отсутствии сил скорость тела будет оставаться неизменной; в повседневном опыте мы наблюдаем обратное. Всякое движущееся тело, если его движение не поддерживать действием силы, рано или поздно останавливается, но, с другой стороны, тот же повседневный опыт указывает нам, что остановка происходит тем быстрее, чем более велики существующие сопротивления движению. Мы совершенно правильно привыкли рассматривать силы сопротивления как причину замедления Движения; поэтому, если мы вообразим, что некоторое тело движется, не испытывая никаких сопротивлений своему движению, то

естественно ожидать, что в этих условиях скорость тела будет оставаться неизменной.

Вследствие сказанного иногда рассматривают закон инерции как истину априорную (т. е. как истину, установленную умозрительно и не нуждающуюся в обосновании посредством опыта). Это, однако, неверно. Все три ньютоновых закона механики (закон инерции и два других закона, которые мы рассмотрим в последующих параграфах) представляют собой истины, добытые опытным путем. В этом их значение. Что закон инерции действительно почерпнут из опыта, а не получен чисто умозрительным путем, в этом легче всего убедиться, глубже вникнув в смысл закона инерции и сопоставив его (что будет сделано ниже) с теми представлениями, которые существовали ранее по поводу законов движения электрических зарядов.

Следуя Ньютону, под «инерцией» надлежит понимать не просто факт покоя или факт равномерного движения при отсутствии сил, но некое присущее всякой массе упорное стремление к сохранению состояния покоя и такое же упорное стремление к сохранению равномерного прямолинейного движения. Пока тело предоставлено самому себе, пока на него не действуют никакие силы, «упорство инерции», понятно, не может проявиться ни в чем ином, как в том, что тело продолжает пребывать в покое или продолжает двигаться равномерно и прямолинейно. Но когда мы выводим тело из состояния покоя или заставляем его двигаться быстрее, или затормаживаем его, или отклоняем его от прямолинейного пути, то упорство инерции проявляется в виде оказываемого телом сопротивления, направленного против приложенных к телу сил.

Чтобы оттенить эту мысль, которую мы здесь за отсутствием более подходящих слов стремились выразить словами «упорство инерции», Ньютон говорит, что всякому телу присуща пропорциональная массе этого тела «врожденная сила сопротивления», или, что то же, сила инерции. Этот эпитет «врожденная сила» производит впечатление метафизической идеи, однако из всего сказанного Ньютоном о силах инерции ясно, что этим несколько неудачным выражением Ньютон хотел только подчеркнуть, что 1) инерция составляет неотъемлемое свойство всех тел, присущее им независимо от их физического состояния и химической природы и проявляющееся при всех изменениях характера движения тела, 2) инерция существует объективно, а не определяется произвольным выбором системы ориентировки, по отношению к которой исследуется движение тел. Ньютон пишет: «Сила инерции проявляется телом единственно лишь, когда другая сила, к нему приложенная, производит изменение в его состоянии движения. Проявление этой силы инерции может быть рассматриваемо двояко: и как собственно сопротивление и как напор. Как собственно сопротивление, поскольку тело противится действующей на него силе, стремясь сохранить свое состояние

движения; как напор, поскольку то же тело, с трудом уступая силе сопротивляющегося ему препятствия, стремится изменить состояние этого препятствия».

Когда какое-либо тело вследствие каких-либо причин начинает двигаться быстрее или медленнее, то это тело развивает (проявляет) силу инерции, но приложена эта сила инерции к другим телам и именно к тем, которые изменяют состояние движения первого тела. Так, например, когда мы бросаем камень, то развиваемая камнем сила инерции приложена к нашей руке: камень давит на руку. Когда, стоя на гибкой доске, мы подпрыгиваем, то развиваемая нами сила инерции прогибает доску. Когда велосипедист с большой скоростью врезывается в толпу людей, он, не нажимая педалей, продолжает некоторое время двигаться по инерции, опрокидывая людей, но развиваемая велосипедистом вследствие потери скорости сила инерции приложена, понятно, не к велосипедисту, но именно к тем людям, которых он опрокидывает.

Можно ли сказать, что это представление об инерции, которое и составляет сущность первого закона механики, является продуктом чисто умозрительного творчества, а не обобщением наблюдаемых фактов? Конечно, нет! Мы могли бы вообразить, что какое-либо тело лишено инерции, что действие приложенной к нему силы вызывает и поддерживает его движение, а когда действие приложенной силы прекращается, то тело мгновенно останавливается. Именно эту точку зрения применительно к электрическим зарядам развил Ампер в своих классических трудах по электродинамике; Ампер исходил из принципа, что электричество лишено инерции. Впоследствии было обнаружено, что этот принцип ложен; элементарные электрически заряженные частицы - электроны - имеют массу, и им свойственна инертность. Даже свет имеет инертную массу. На современной ступени развития физики мы не знаем ни одного проявления материи, которое было бы лишено инерции.