для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 12 являются ±1, ±2, ±3, ±4, ±6, ±12. Начнем их подставлять по-очереди:

1: 2 + 5 - 11 - 20 + 12 = -12 ⇒ число 1

-1: 2 - 5 - 11 + 20 + 12 = 18 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 16 + 5 ∙ 8 - 11 ∙ 4 - 20 ∙ 2 + 12 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 5 -11 -20 12
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 5 -11 -20 12
2 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 5 -11 -20 12
2 2 9
2 ∙ 2 + 5 = 9
2 5 -11 -20 12
2 2 9 7
2 ∙ 9 - 11 = 7
2 5 -11 -20 12
2 2 9 7 -6
2 ∙ 7 - 20 = -6
2 5 -11 -20 12
2 2 9 7 -6 0
2 ∙ (-6) + 12 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(2x 3 + 9x 2 + 7x - 6)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 9x 2 + 7x - 6.

Опять ищем корень среди делителей свободного члена. Делителями числа -6 являются ±1, ±2, ±3, ±6.

1: 2 + 9 + 7 - 6 = 12 ⇒ число 1 не является корнем многочлена

-1: -2 + 9 - 7 - 6 = -6 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 9 ∙ 4 + 7 ∙ 2 - 6 = 60 ⇒ число 2 не является корнем многочлена

-2: 2 ∙ (-8) + 9 ∙ 4 + 7 ∙ (-2) - 6 = 0 ⇒ число -2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5
-2 ∙ 2 + 9 = 5
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3
-2 ∙ 5 + 7 = -3
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-2 ∙ (-3) - 6 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(2x 2 + 5x - 3)

Многочлен 2x 2 + 5x - 3 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа -3. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -3

2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1
-3 ∙ 2 + 5 = -1
2 5 -11 -20 12
2 2 9 7 -6 0
-2 2 5 -3 0
-3 2 -1 0
-3 ∙ (-1) - 3 = 0

Таким образом мы исходный многочлен разложили на линейные множители:

2x 4 + 5x 3 - 11x 2 - 20x + 12 = (x - 2)(x + 2)(x + 3)(2x - 1)

А корнями уравнения являются.

«Решение неравенств 1» - Схематичное построение графика параболы. Квадратные неравенства. Решение неравенства. Разложение квадратного трехчлена на множители. Дополнительные вопросы. Множество частных решений называют общим решением. Какие методы решения квадратных неравенств применяются? Подготовка к итоговой аттестации по теме «Неравенства».

«Числовые неравенства» - Решение линейных неравенств. Каждое такое значение переменной называют обычно решением неравенства с переменной. Свойство 2. Решение неравенства с переменной. Свойство 5. Свойства числовых неравенств. Для чего нужно? Так как a>b, то, согласно свойству 2, a+c>b+c. Если а и Ь - неотрицательные числа и а>b, то а в степени n > b в степени n, где n - любое натуральное число.

«Свойства неравенств» - Решите неравенство. Устная работа. Какими свойствами вы пользовались при решении неравенства? Что называется неравенством? Определение неравенства. Решение неравенств. Какие свойства неравенств вам известны? Свойства неравенств. Неравенства. Докажите неравенство. Сложение и умножение числовых неравенств.

«Уравнения и неравенства с модулем» - Определение модуля. На каждом промежутке решить уравнение (неравенство). Решение уравнений и неравенств, содержащих модуль, методом интервалов. Общий алгоритм. Определить знаки подмодульных выражений на полученных промежутках. Объединить полученные решения.

«Тригонометрические неравенства» - Тригонометрическое неравенство cos(t) t1, и, как легко понять, t2=?-arcsin(-1/2)=7*?/6. Неравенства: sin x > a, sin x a, sin x < a, sin x a. Множество точек единичной окружности, абсциссы которых меньше 1/2 левее прямой x=1/2. Если t является решением неравенства, то ордината точки T - луч AT (см. рисунок ниже).

«Решение квадратных неравенств» - Решение квадратных неравенств. Как знак дискриминанта влияет на решение квадратного неравенства? Как найти нули функции? Решить неравенство. Что такое нули функции? Цель урока: Что зависит от знака первого коэффициента квадратичной функции?

I. ax 2 =0 неполное квадратное уравнение (b=0, c=0 ). Решение: х=0. Ответ: 0.

Решить уравнения.

2x·(x+3)=6x-x 2 .

Решение. Раскроем скобки, умножив на каждое слагаемое в скобках:

2x 2 +6x=6x-x 2 ; переносим слагаемые из правой части в левую:

2x 2 +6x-6x+x 2 =0; приводим подобные слагаемые:

3x 2 =0, отсюда x=0.

Ответ: 0.

II. ax 2 +bx=0 неполное квадратное уравнение (с=0 ). Решение: x (ax+b)=0 → x 1 =0 или ax+b=0 → x 2 =-b/a. Ответ: 0; -b/a.

5x 2 -26x=0.

Решение. Вынесем общий множитель х за скобки:

х(5х-26)=0; каждый множитель может быть равным нулю:

х=0 или 5х-26=0 → 5х=26, делим обе части равенства на 5 и получаем: х=5,2.

Ответ: 0; 5,2.

Пример 3. 64x+4x 2 =0.

Решение. Вынесем общий множитель за скобки:

4х(16+х)=0. У нас три множителя, 4≠0, следовательно, или х=0 или 16+х =0. Из последнего равенства получим х=-16.

Ответ: -16; 0.

Пример 4. (x-3) 2 +5x=9.

Решение. Применив формулу квадрата разности двух выражений раскроем скобки:

x 2 -6x+9+5x=9; преобразуем к виду: x 2 -6x+9+5x-9=0; приведем подобные слагаемые:

x 2 -x=0; вынесем х за скобки, получаем: x (x-1)=0. Отсюда или х=0 или х-1=0 → х=1.

Ответ: 0; 1.

III. ax 2 +c=0 неполное квадратное уравнение (b=0 ); Решение: ax 2 =-c → x 2 =-c/a.

Если (-c/a)<0 , то действительных корней нет. Если (-с/а)>0

Пример 5. x 2 -49=0.

Решение.

x 2 =49, отсюда x=±7. Ответ: -7; 7.

Пример 6. 9x 2 -4=0.

Решение.

Часто требуется найти сумму квадратов (x 1 2 +x 2 2) или сумму кубов (x 1 3 +x 2 3) корней квадратного уравнения, реже — сумму обратных значений квадратов корней или сумму арифметических квадратных корней из корней квадратного уравнения:

Помочь в этом может теорема Виета:

x 2 +px+q=0

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Выразим через p и q :

1) сумму квадратов корней уравнения x 2 +px+q=0;

2) сумму кубов корней уравнения x 2 +px+q=0.

Решение.

1) Выражение x 1 2 +x 2 2 получится, если взвести в квадрат обе части равенства x 1 +x 2 =-p;

(x 1 +x 2) 2 =(-p) 2 ; раскрываем скобки: x 1 2 +2x 1 x 2 + x 2 2 =p 2 ; выражаем искомую сумму: x 1 2 +x 2 2 =p 2 -2x 1 x 2 =p 2 -2q. Мы получили полезное равенство: x 1 2 +x 2 2 =p 2 -2q.

2) Выражение x 1 3 +x 2 3 представим по формуле суммы кубов в виде:

(x 1 3 +x 2 3)=(x 1 +x 2)(x 1 2 -x 1 x 2 +x 2 2)=-p·(p 2 -2q-q)=-p·(p 2 -3q).

Еще одно полезное равенство: x 1 3 +x 2 3 =-p·(p 2 -3q).

Примеры.

3) x 2 -3x-4=0. Не решая уравнение, вычислите значение выражения x 1 2 +x 2 2 .

Решение.

x 1 +x 2 =-p=3, а произведение x 1 ∙x 2 =q= в примере 1 ) равенство:

x 1 2 +x 2 2 =p 2 -2q. У нас -p =x 1 +x 2 =3 → p 2 =3 2 =9; q= x 1 x 2 =-4. Тогда x 1 2 +x 2 2 =9-2·(-4)=9+8=17.

Ответ: x 1 2 +x 2 2 =17.

4) x 2 -2x-4=0. Вычислить: x 1 3 +x 2 3 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x 1 +x 2 =-p=2, а произведение x 1 ∙x 2 =q= -4. Применим полученное нами (в примере 2 ) равенство: x 1 3 +x 2 3 =-p·(p 2 -3q)= 2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Ответ: x 1 3 +x 2 3 =32.

Вопрос: а если нам дано не приведенное квадратное уравнение? Ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x 2 -5x-7=0. Не решая, вычислить: x 1 2 +x 2 2 .

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x 2 -2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5 ; произведение корней равно -3,5 .

Решаем так же, как пример 3) , используя равенство: x 1 2 +x 2 2 =p 2 -2q.

x 1 2 +x 2 2 =p 2 -2q= 2,5 2 -2∙(-3,5)=6,25+7=13,25.

Ответ: x 1 2 +x 2 2 =13,25.

6) x 2 -5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p , а произведение корней через q , получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x 1 2 +x 2 2 =p 2 -2q.

В нашем примере x 1 +x 2 =-p=5; x 1 ∙x 2 =q= -2. Подставляем эти значения в полученную формулу:

7) x 2 -13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас x 1 +x 2 =-p=13; x 1 ∙x 2 =q=36 . Подставляем эти значения в выведенную формулу:

Совет : всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему способу, ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13 , а произведение корней 36 . Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

I. Теорема Виета для приведенного квадратного уравнения.

Сумма корней приведенного квадратного уравнения x 2 +px+q=0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

x 1 +x 2 =-p; x 1 ∙x 2 =q.

Найти корни приведенного квадратного уравнения, используя теорему Виета.

Пример 1) x 2 -x-30=0. Это приведенное квадратное уравнение ( x 2 +px+q=0) , второй коэффициент p=-1 , а свободный член q=-30. Сначала убедимся, что данное уравнение имеет корни, и что корни (если они есть) будут выражаться целыми числами. Для этого достаточно, чтобы дискриминант был полным квадратом целого числа.

Находим дискриминант D =b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121=11 2 .

Теперь по теореме Виета сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, т.е. (-p ), а произведение равно свободному члену, т.е. (q ). Тогда:

x 1 +x 2 =1; x 1 ∙x 2 =-30. Нам надо подобрать такие два числа, чтобы их произведение было равно -30 , а сумма – единице . Это числа -5 и 6 . Ответ: -5; 6.

Пример 2) x 2 +6x+8=0. Имеем приведенное квадратное уравнение со вторым коэффициентом р=6 и свободным членом q=8 . Убедимся, что есть целочисленные корни. Найдем дискриминант D 1 D 1 =3 2 -1∙8=9-8=1=1 2 . Дискриминант D 1 является полным квадратом числа 1 , значит, корни данного уравнения являются целыми числами. Подберем корни по теореме Виета: сумма корней равна –р=-6 , а произведение корней равно q=8 . Это числа -4 и -2 .

На самом деле: -4-2=-6=-р; -4∙(-2)=8=q. Ответ: -4; -2.

Пример 3) x 2 +2x-4=0 . В этом приведенном квадратном уравнении второй коэффициент р=2 , а свободный член q=-4 . Найдем дискриминант D 1 , так как второй коэффициент – четное число. D 1 =1 2 -1∙(-4)=1+4=5. Дискриминант не является полным квадратом числа, поэтому, делаем вывод : корни данного уравнения не являются целыми числами и найти их по теореме Виета нельзя. Значит, решим данное уравнение, как обычно, по формулам (в данном случае по формулам ). Получаем:

Пример 4). Составьте квадратное уравнение по его корням, если x 1 =-7, x 2 =4.

Решение. Искомое уравнение запишется в виде: x 2 +px+q=0 , причем, на основании теоремы Виета –p=x 1 +x 2 =-7+4=-3 → p=3; q=x 1 ∙x 2 =-7∙4=-28 . Тогда уравнение примет вид: x 2 +3x-28=0.

Пример 5). Составьте квадратное уравнение по его корням, если:

II. Теорема Виета для полного квадратного уравнения ax 2 +bx+c=0.

Сумма корней равна минус b , деленному на а , произведение корней равно с , деленному на а:

x 1 +x 2 =-b/a; x 1 ∙x 2 =c/a.

Пример 6). Найти сумму корней квадратного уравнения 2x 2 -7x-11=0 .

Решение.

Убеждаемся, что данное уравнение будет иметь корни. Для этого достаточно составить выражение для дискриминанта, и, не вычисляя его, просто убедиться, что дискриминант больше нуля. D =7 2 -4∙2∙(-11)>0 . А теперь воспользуемся теоремой Виета для полных квадратных уравнений.

x 1 +x 2 =-b:a =- (-7):2=3,5.

Пример 7) . Найдите произведение корней квадратного уравнения 3x 2 +8x-21=0.

Решение.

Найдем дискриминант D 1 , так как второй коэффициент (8 ) является четным числом. D 1 =4 2 -3∙(-21)=16+63=79>0 . Квадратное уравнение имеет 2 корня, по теореме Виета произведение корней x 1 ∙x 2 =c:a =-21:3=-7.

I. ax 2 +bx+c=0 – квадратное уравнение общего вида

Дискриминант D=b 2 - 4ac.

Если D>0 , то имеем два действительных корня:

Если D=0 , то имеем единственный корень (или два равных корня) х=-b/(2a) .

Если D<0, то действительных корней нет.

Пример 1) 2x 2 +5x-3=0.

Решение. a =2; b =5; c =-3.

D=b 2 — 4ac =5 2 -4∙2∙(-3)=25+24=49=7 2 >0; 2 действительных корня.

4x 2 +21x+5=0.

Решение. a =4; b =21; c =5.

D=b 2 — 4ac =21 2 — 4∙4∙5=441-80=361=19 2 >0; 2 действительных корня.

II. ax 2 +bx+c=0 квадратное уравнение частного вида при четном втором

коэффициенте b


Пример 3) 3x 2 -10x+3=0.

Решение. a =3; b =-10 (четное число ); c =3.

Пример 4) 5x 2 -14x-3=0.

Решение. a =5; b = -14 (четное число ); c =-3.

Пример 5) 71x 2 +144x+4=0.

Решение. a =71; b =144 (четное число ); c =4.

Пример 6) 9x 2 -30x+25=0.

Решение. a =9; b =-30 (четное число ); c =25.

III. ax 2 +bx+c=0 квадратное уравнение частного вида при условии : a-b+c=0.

Первый корень всегда равен минус единице, а второй корень равен минус с , деленному на а :

x 1 =-1, x 2 =-c/a.

Пример 7) 2x 2 +9x+7=0.

Решение. a =2; b =9; c =7. Проверим равенство: a-b+c=0. Получаем: 2-9+7=0 .

Тогда x 1 =-1, x 2 =-c/a=-7/2=-3,5. Ответ: -1; -3,5.

IV. ax 2 +bx+c=0 квадратное уравнение частного вида при условии: a+b+c=0.

Первый корень всегда равен единице, а второй корень равен с , деленному на а :

x 1 =1, x 2 =c/a .

Пример 8) 2x 2 -9x+7=0.

Решение. a =2; b =-9; c =7. Проверим равенство: a+b+c=0. Получаем: 2-9+7=0 .

Тогда x 1 =1, x 2 =c/a=7/2=3,5. Ответ: 1; 3,5.

Страница 1 из 1 1

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + ... + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 - 2 х 3 - 23х 2 - 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 - х 3 - 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 - 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 - 7х 3 - 13х 2 + 43 x - 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x - 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх - 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х - 15 = 0; -1+3+13-15=0

По условию х 1 = - 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 - 3х 2 + ах - 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.