Тригонометрия. Гельфанд И.М., Львовский С.М., Тоом А.Л.

М.: 2003. - 200 с.

Допущено Министерством образования Российской Федерации в качестве учебного пособия по тригонометрии для учащихся 10 классов общеобразовательных учреждений.

Эта книга, написанная группой авторов под руководством одного из крупнейших математиков 20 века академика И. М. Гельфанда, призвана опровергнуть расхожее мнение о тригонометрии как скучном и непонятном разделе школьного курса математики. Читателю предлагается взглянуть на знакомый предмет по-новому. Изложение, сопровождающееся большим количеством задач, начинается «с нуля» и доходит до материала, выходящего довольно далеко за рамки школьной программы; тригонометрические формулы иллюстрируются примерами из физики и геометрии.

Отдельная глава посвящена типичным приемам решения тригонометрических задач, предлагаемых на вступительных экзаменах в высшие учебные заведения.

Книга будет незаменимым помощником для школьников старших классов, преподавателей, родителей и всех, интересующихся математикой.

Формат: pdf / zip

Размер: 9 30 Кб

/ Download файл

Оглавление
1. Первое знакомство с тригонометрией 7
§ 1. Как измерить крутизну 7
1.1. Синус 7
1.2. Измерение углов 9
§ 2. Тангенс 11
§ 3. Косинус 13
§ 4. Малые углы 16
2. Начальные свойства тригонометрических функций 21
§ 5. Часы, или современный взгляд на тригонометрию. 21
5.1. Часы и процессы 21
5.2. Скорость 24
§ 6. Определение тригонометрических функций 26
6.1. Ось тангенсов 31
6.2. Знаки тригонометрических функций 32
§ 7. Простейшие формулы 34
§ 8. Периоды тригонометрических функций 36
§ 9. Формулы приведения 40
§ 10. Простейшие тригонометрические уравнения.... 45
§ 11. Графики синуса и косинуса 55
§ 12. Графики тангенса и котангенса 62
§ 13. Чему равно sin x + cos x 65
3. Решение треугольников 67
§ 14. Теорема косинусов 67
§ 15. Вокруг площади треугольника 71
§ 16. Теорема синусов 76
4. Формулы сложения и их следствия 81
§ 17. Векторы 81
17.1. Направленные отрезки и векторы 81
17.2. Сложение векторов 87
17.3. Вычитание и умножение на число 90
17.4. О векторах в физике 94
§ 18. Скалярное произведение 95
§ 19. Тригонометрические формулы сложения 99
§ 20. Формула вспомогательного угла, или сложение колебаний равной частоты 105
§ 21. Двойные, тройные и половинные углы 111
§ 22. Преобразование произведения в сумму и суммы в произведение 118
§ 23. Производные тригонометрических функций.... 126
5. Тригонометрия для абитуриентов 137
§ 24. Как решать тригонометрические уравнения.... 137
§ 25. Отбор чисел на тригонометрическом круге 151
§ 26. Как решать тригонометрические неравенства. . . 159
§ 27. Задачи на повторение 165
6. Комплексные числа 168
§ 28. Что такое комплексные числа 168
§ 29. Модуль и аргумент комплексного числа 173
§ 30. Показательная функция и формула Эйлера 182
Ответы и указания к некоторым задачам 189
Предметный указатель 196


Эта книга, написанная группой авторов под руководством одного из крупнейших математиков 20 века академика И.М.Гельфанда, призвана опровергнуть расхожее мнение о тригонометрии как скучном и непонятном разделе школьного курса математики. Читателю предлагается взглянуть на знакомый предмет по-новому. Изложение, сопровождающееся большим количеством задач, начинается?с нуля? и доходит до материала, выходящего довольно далеко за рамки школьной программы; тригонометрические формулы иллюстрируются примерами из физики и геометрии.

Отдельная глава посвящена типичным приемам решения тригонометрических задач, предлагаемых на вступительных экзаменах в высшие учебные заведения.

Книга будет незаменимым помощником для школьников старших классов, преподавателей, родителей и всех, интересующихся математикой.

1. Первое знакомство с тригонометрией
  ? 1. Как измерить крутизну
    1.1. Синус
    1.2. Измерение углов
  ? 2. Тангенс
  ? 3. Косинус
  ? 4. Малые углы

2. Начальные свойства тригонометрических функций
  ? 5. Часы, или современный взгляд на тригонометрию
    5.1. Часы и процессы
    5.2. Скорость
  ? 6. Определение тригонометрических функций
    6.1. Ось тангенсов
    6.2. Знаки тригонометрических функций
  ? 7. Простейшие формулы
  ? 8. Периоды тригонометрических функций
  ? 9. Формулы приведения
  ? 10. Простейшие тригонометрические уравнения
  ? 11. Графики синуса и косинуса
  ? 12. Графики тангенса и котангенса
  ? 13. Чему равно sin x + cos x?

3. Решение треугольников
  ? 14. Теорема косинусов
  ? 15. Вокруг площади треугольника
  ? 16. Теорема синусов

4. Формулы сложения и их следствия
  ? 17. Векторы
    17.1. Направленные отрезки и векторы
    17.2. Сложение векторов
    17.3. Вычитание и умножение на число
    17.4. О векторах в физике
  ? 18. Скалярное произведение
  ? 19. Тригонометрические формулы сложения
  ? 20. Формула вспомогательного угла, или сложение колебаний равной частоты
  ? 21. Двойные, тройные и половинные углы
  ? 22. Преобразование произведения в сумму и суммы в произведение
  ? 23. Производные тригонометрических функций

5. Тригонометрия для абитуриентов
  ? 24. Как решать тригонометрические уравнения
  ? 25. Отбор чисел на тригонометрическом круге
  ? 26. Как решать тригонометрические неравенства
  ? 27. Задачи на повторение

6. Комплексные числа
  ? 28. Что такое комплексные числа
  ? 29. Модуль и аргумент комплексного числа
  ? 30. Показательная функция и формула Эйлера

Ответы и указания к некоторым задачам

Предметный указатель

Загрузить (Mb)
djvu (-) pdf (1.74) ps (-) html (-) tex (-)

Данное учебное пособие соответствует главе V «Тригонометрические выражения и их преобразования» из учебника «Алгебра, 9» тех же авторов предыдущих годов издания.

ОПРЕДЕЛЕНИЕ СИНУСА, КОСИНУСА, ТАНГЕНСА И КОТАНГЕНСА.

Отметим на оси х справа от начала координат точку А и проведем через нее окружность с центром в точке О (рис. 1). Радиус ОА будем называть начальным радиусом.

Повернем начальный радиус около точки О на 70° против часовой стрелки. При этом он перейдет в радиус ОВ. Говорят, что угол поворота равен 70°. Если повернуть начальный радиус около точки О на 70° по часовой стрелке, то он перейдет в радиус ОС. В этом случае говорят, что угол поворота равен -70°. Углы поворота в 70° и -70° показаны стрелками на рисунке 64.
Вообще при повороте против часовой стрелки угол поворота считают положительным, а при повороте по часовой стрелке - отрицательным.

Из курса геометрии известно, что мера угла в градусах выражается числом от 0 до 180. Что касается угла поворота, то он может выражаться в градусах каким угодно действительным числом от -∞ до +∞. Так, если начальный радиус повернуть против часовой стрелки на 180°, а потом еще на 30°, то угол поворота будет равен 210°. Если начальный радиус сделает полный оборот против часовой стрелки, то угол поворота будет равен 360°; если он сделает полтора оборота в том же направлении, то угол поворота будет равен 540° и т. д. На рисунке 2 стрелками показаны углы поворота в 405° и -200°.

§1. Тригонометрические функции любого угла
1. Определение синуса, косинуса, тангенса и котангенса
2. Свойства синуса, косинуса, тангенса и котангенса
3. Радианная мера угла. Вычисление значений тригонометрических функций с помощью микрокалькулятора
§2. Основные тригонометрические формулы
4. Соотношения между тригонометрическими функциями одного и того же угла
5. Применение основных тригонометрических формул к преобразованию выражений
6. Формулы приведения
§3. Формулы сложения и их следствия
7. Формулы сложения
8. Формулы двойного угла
9. Формулы суммы и разности тригонометрических функций
Дополнительные упражнения
Ответы.

Название: Тригонометрия. 2003.

Эта книга, написанная группой авторов под руководством одного из крупнейших математиков 20 века академика И. М. Гельфанда, призвана опровергнуть расхожее мнение о тригонометрии как скучном и непонятном разделе школьного курса математики. Читателю предлагается взглянуть на знакомый предмет по-новому. Изложение, сопровождающееся большим количеством задач, начинается «с нуля» и доходит до материала, выходящего довольно далеко за рамки школьной программы; тригонометрические формулы иллюстрируются примерами из физики и геометрии.
Отдельная глава посвящена типичным приемам решения тригонометрических задач, предлагаемых на вступительных экзаменах в высшие учебные заведения.
Книга будет незаменимым помощником для школьников старших классов, преподавателей, родителей и всех, интересующихся математикой.

Что такое тригонометрия? Скучные и никому не нужные формулы скажут почти все старшеклассники. Тем не менее, мы хотим вас в этом разубедить.
Чтобы взглянуть на тригонометрию по-новому, мы рассказываем о ней «с нуля». Поэтому читать пособие лучше с самого начала и подряд, хотя кое-что вы. скорее всего, уже знаете.
Наши определения равносильны определениям из школьных учебников, но не всегда дословно с ними совпадают.
Не надо стремиться перерешать все задачи из книги (мы сознательно поместили их с запасом), но сколько-то задач после каждого параграфа порешать стоит. Если задачи к параграфу совсем не выходят, значит, что-то вы не усвоили, и есть смысл перечитать этот параграф.
Более трудные задачи отмечены звездочкой, более трудный текст напечатан мелким шрифтом. При первом чтении все это можно пропустить.

Оглавление
1. Первое знакомство с тригонометрией 7
§ 1. Как измерить крутизну 7
1.1. Синус 7
1.2. Измерение углов 9
§ 2. Тангенс 11
§ 3. Косинус 13
§ 4. Малые углы 16
2. Начальные свойства тригонометрических функций 21
§ 5. Часы, или современный взгляд на тригонометрию 21
5.1. Часы и процессы 21
5.2. Скорость 24
§ 6. Определение тригонометрических функций 26
6.1. Ось тангенсов 31
6.2. Знаки тригонометрических функций 32
§ 7. Простейшие формулы 34
§ 8. Периоды тригонометрических функций 36
§ 9. Формулы приведения 40
§ 10. Простейшие тригонометрические уравнения 45
§ 11. Графики синуса и косинуса 55
§ 12. Графики тангенса и котангенса 62
§ 13. Чему равно sin x + cos x 65
3. Решение треугольников 67
§ 14. Теорема косинусов 67
§ 15. Вокруг площади треугольника 71
§ 16. Теорема синусов 76
4. Формулы сложения и их следствия 81
§ 17. Векторы 81
17.1. Направленные отрезки и векторы 81
17.2. Сложение векторов 87
17.3. Вычитание и умножение на число 90
17.4. О векторах в физике 94
§ 18. Скалярное произведение 95
§ 19. Тригонометрические формулы сложения 99
§ 20. Формула вспомогательного угла, или сложение колебаний равной частоты 105
§ 21. Двойные, тройные и половинные углы 111
§ 22. Преобразование произведения в сумму и суммы в произведение 118
§ 23. Производные тригонометрических функций 126
5. Тригонометрия для абитуриентов 137
§ 24. Как решать тригонометрические уравнения 137
§ 25. Отбор чисел на тригонометрическом круге 151
§ 26. Как решать тригонометрические неравенства 159
§ 27. Задачи на повторение 165
6. Комплексные числа 168
§ 28. Что такое комплексные числа 168
§ 29. Модуль и аргумент комплексного числа 173
§ 30. Показательная функция и формула Эйлера 182
Ответы и указания к некоторым задачам 189
Предметный указатель 196

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Тригонометрия - Гельфанд И.М., Львовский С.М., Тоом А.Л. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Формулы приведения — это соотношения, которые позволяют перейти от синус, косинус, тангенс и котангенс с углами `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha` к этим же функциям угла `\alpha`, который находится в первой четверти единичной окружности. Таким образом, формулы приведения «приводят» нас к работе с углами в пределе от 0 до 90 градусов, что очень удобно.

Всех вместе формул приведения есть 32 штуки. Они несомненно пригодятся на ЕГЭ, экзаменах, зачетах. Но сразу предупредим, что заучивать наизусть их нет необходимости! Нужно потратить немного времени и понять алгоритм их применения, тогда для вас не составит труда в нужный момент вывести необходимое равенство.

Сначала запишем все формулы приведения:

Для угла (`\frac {\pi}2 \pm \alpha`) или (`90^\circ \pm \alpha`):

`sin(\frac {\pi}2 — \alpha)=cos \ \alpha;` ` sin(\frac {\pi}2 + \alpha)=cos \ \alpha`
`cos(\frac {\pi}2 — \alpha)=sin \ \alpha;` ` cos(\frac {\pi}2 + \alpha)=-sin \ \alpha`
`tg(\frac {\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {\pi}2 + \alpha)=-ctg \ \alpha`
`ctg(\frac {\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {\pi}2 + \alpha)=-tg \ \alpha`

Для угла (`\pi \pm \alpha`) или (`180^\circ \pm \alpha`):

`sin(\pi — \alpha)=sin \ \alpha;` ` sin(\pi + \alpha)=-sin \ \alpha`
`cos(\pi — \alpha)=-cos \ \alpha;` ` cos(\pi + \alpha)=-cos \ \alpha`
`tg(\pi — \alpha)=-tg \ \alpha;` ` tg(\pi + \alpha)=tg \ \alpha`
`ctg(\pi — \alpha)=-ctg \ \alpha;` ` ctg(\pi + \alpha)=ctg \ \alpha`

Для угла (`\frac {3\pi}2 \pm \alpha`) или (`270^\circ \pm \alpha`):

`sin(\frac {3\pi}2 — \alpha)=-cos \ \alpha;` ` sin(\frac {3\pi}2 + \alpha)=-cos \ \alpha`
`cos(\frac {3\pi}2 — \alpha)=-sin \ \alpha;` ` cos(\frac {3\pi}2 + \alpha)=sin \ \alpha`
`tg(\frac {3\pi}2 — \alpha)=ctg \ \alpha;` ` tg(\frac {3\pi}2 + \alpha)=-ctg \ \alpha`
`ctg(\frac {3\pi}2 — \alpha)=tg \ \alpha;` ` ctg(\frac {3\pi}2 + \alpha)=-tg \ \alpha`

Для угла (`2\pi \pm \alpha`) или (`360^\circ \pm \alpha`):

`sin(2\pi — \alpha)=-sin \ \alpha;` ` sin(2\pi + \alpha)=sin \ \alpha`
`cos(2\pi — \alpha)=cos \ \alpha;` ` cos(2\pi + \alpha)=cos \ \alpha`
`tg(2\pi — \alpha)=-tg \ \alpha;` ` tg(2\pi + \alpha)=tg \ \alpha`
`ctg(2\pi — \alpha)=-ctg \ \alpha;` ` ctg(2\pi + \alpha)=ctg \ \alpha`

Часто можно встретить формулы приведения в виде таблицы, где углы записаны в радианах:

Чтобы воспользоваться ею, нужно выбрать строку с нужной нам функцией, и столбец с нужным аргументом. Например, чтобы узнать с помощью таблицы, чему будет равно ` sin(\pi + \alpha)`, достаточно найти ответ на пересечении строки ` sin \beta` и столбца ` \pi + \alpha`. Получим ` sin(\pi + \alpha)=-sin \ \alpha`.

И вторая, аналогичная таблица, где углы записаны в градусах:

Мнемоническое правило формул приведения или как их запомнить

Как мы уже упоминали, заучивать все вышеприведенные соотношения не нужно. Если вы внимательно на них посмотрели, то наверняка заметили некоторые закономерности. Они позволяют нам сформулировать мнемоническое правило (мнемоника — запоминать), с помощью которого легко можно получить любую с формул приведения.

Сразу отметим, что для применения этого правила нужно хорошо уметь определять (или запомнить) знаки тригонометрических функций в разных четвертях единичной окружности.
Само привило содержит 3 этапа:

    1. Аргумент функции должен быть представлен в виде `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha`, причем `\alpha` — обязательно острый угол (от 0 до 90 градусов).
    2. Для аргументов `\frac {\pi}2 \pm \alpha`, `\frac {3\pi}2 \pm \alpha` тригонометрическая функция преобразуемого выражения меняется на кофункцию, то есть противоположную (синус на косинус, тангенс на котангенс и наоборот). Для аргументов `\pi \pm \alpha`, `2\pi \pm \alpha` функция не меняется.
    3. Определяется знак исходной функции. Полученная функция в правой части будет иметь такой же знак.

Чтобы посмотреть, как на практике можно применить это правило, преобразим несколько выражений:

1. ` cos(\pi + \alpha)`.

Функция на противоположную не меняется. Угол ` \pi + \alpha` находится в III четверти, косинус в этой четверти имеет знак «-» , поэтому преобразованная функция будет также со знаком «-» .

Ответ: ` cos(\pi + \alpha)= — cos \alpha`

2. `sin(\frac {3\pi}2 — \alpha)`.

Согласно мнемоническому правилу функция изменится на противоположную. Угол `\frac {3\pi}2 — \alpha` находится в III четверти, синус здесь имеет знак «-» , поэтому результат также будет со знаком «-» .

Ответ: `sin(\frac {3\pi}2 — \alpha)= — cos \alpha`

3. `cos(\frac {7\pi}2 — \alpha)`.

`cos(\frac {7\pi}2 — \alpha)=cos(\frac {6\pi}2+\frac {\pi}2-\alpha)=cos (3\pi+(\frac{\pi}2-\alpha))`. Представим `3\pi` как `2\pi+\pi`. `2\pi` — период функции.

Важно: Функции `cos \alpha` и `sin \alpha` имеют период `2\pi` или `360^\circ`, их значения не изменятся, если на эти величины увеличить или уменьшить аргумент.

Исходя из этого, наше выражение можно записать следующим образом: `cos (\pi+(\frac{\pi}2-\alpha)`. Применив два раза мнемоническое правило, получим: `cos (\pi+(\frac{\pi}2-\alpha)= — cos (\frac{\pi}2-\alpha)= — sin \alpha`.

Ответ: `cos(\frac {7\pi}2 — \alpha)=- sin \alpha`.

Лошадиное правило

Второй пункт вышеописанного мнемонического правила еще называют лошадиным правилом формул приведения. Интересно, почему лошадиным?

Итак, мы имеем функции с аргументами `\frac {\pi}2 \pm \alpha`, `\pi \pm \alpha`, `\frac {3\pi}2 \pm \alpha`, `2\pi \pm \alpha`, точки `\frac {\pi}2`, `\pi`, `\frac {3\pi}2`, `2\pi` — ключевые, они располагаются на осях координат. `\pi` и `2\pi` на горизонтальной оси абсцисс, а `\frac {\pi}2` и `\frac {3\pi}2` на вертикальной оси ординат.

Задаем себе вопрос: «Меняется ли функция на кофункцию?». Чтобы ответить на этот вопрос, нужно подвигать головой вдоль оси, на которой расположена ключевая точка.

То есть для аргументов с ключевыми точками, расположенными на горизонтальной оси, мы отвечаем «нет», мотая головой в стороны. А для углов с ключевыми точками, расположенными на вертикальной оси, мы отвечаем «да», кивая головой сверху вниз, как лошадь 🙂

Рекомендуем посмотреть видеоурок, в котором автор подробно объясняет, как запомнить формулы приведения без заучивания их наизусть.

Практические примеры использования формул приведения

Применение формул приведения начинается еще в 9, 10 классе. Немало задач с их использованием вынесено на ЕГЭ. Вот некоторые из задач, где придется применять эти формулы:

  • задачи на решение прямоугольного треугольника;
  • преобразования числовых и буквенных тригонометрических выражений, вычисление их значений;
  • стереометрические задачи.

Пример 1. Вычислите при помощи формул приведения а) `sin 600^\circ`, б) `tg 480^\circ`, в) `cos 330^\circ`, г) `sin 240^\circ`.

Решение: а) `sin 600^\circ=sin (2 \cdot 270^\circ+60^\circ)=-cos 60^\circ=-\frac 1 2`;

б) `tg 480^\circ=tg (2 \cdot 270^\circ-60^\circ)=ctg 60^\circ=\frac{\sqrt 3}3`;

в) `cos 330^\circ=cos (360^\circ-30^\circ)=cos 30^\circ=\frac{\sqrt 3}2`;

г) `sin 240^\circ=sin (270^\circ-30^\circ)=-cos 30^\circ=-\frac{\sqrt 3}2`.

Пример 2. Выразив косинус через синус по формулам приведения, сравнить числа: 1) `sin \frac {9\pi}8` и `cos \frac {9\pi}8`; 2) `sin \frac {\pi}8` и `cos \frac {3\pi}10`.

Решение: 1)`sin \frac {9\pi}8=sin (\pi+\frac {\pi}8)=-sin \frac {\pi}8`

`cos \frac {9\pi}8=cos (\pi+\frac {\pi}8)=-cos \frac {\pi}8=-sin \frac {3\pi}8`

`-sin \frac {\pi}8> -sin \frac {3\pi}8`

`sin \frac {9\pi}8>cos \frac {9\pi}8`.

2) `cos \frac {3\pi}10=cos (\frac {\pi}2-\frac {\pi}5)=sin \frac {\pi}5`

`sin \frac {\pi}8

`sin \frac {\pi}8

Докажем сначала две формулы для синуса и косинуса аргумента `\frac {\pi}2 + \alpha`: ` sin(\frac {\pi}2 + \alpha)=cos \ \alpha` и` cos(\frac {\pi}2 + \alpha)=-sin \ \alpha`. Остальные выводятся из них.

Возьмем единичную окружность и на ней точку А с координатами (1,0). Пусть после поворота на угол `\alpha` она перейдет в точку `А_1(х, у)`, а после поворота на угол `\frac {\pi}2 + \alpha` в точку `А_2(-у,х)`. Опустив перпендикуляры с этих точек на прямую ОХ, увидим, что треугольники `OA_1H_1` и `OA_2H_2` равны, поскольку равны их гипотенузы и прилежащие углы. Тогда исходя из определений синуса и косинуса можно записать `sin \alpha=у`, `cos \alpha=х`, ` sin(\frac {\pi}2 + \alpha)=x`, ` cos(\frac {\pi}2 + \alpha)=-y`. Откуда можно записать, что ` sin(\frac {\pi}2 + \alpha)=cos \alpha` и ` cos(\frac {\pi}2 + \alpha)=-sin \alpha`, что доказывает формулы приведения для синуса и косинуса угла `\frac {\pi}2 + \alpha`.

Выходя из определения тангенса и котангенса, получим ` tg(\frac {\pi}2 + \alpha)=\frac {sin(\frac {\pi}2 + \alpha)}{cos(\frac {\pi}2 + \alpha)}=\frac {cos \alpha}{-sin \alpha}=-ctg \alpha` и ` сtg(\frac {\pi}2 + \alpha)=\frac {cos(\frac {\pi}2 + \alpha)}{sin(\frac {\pi}2 + \alpha)}=\frac {-sin \alpha}{cos \alpha}=-tg \alpha`, что доказывает формулы приведения для тангенса и котангенса угла `\frac {\pi}2 + \alpha`.

Чтобы доказать формулы с аргументом `\frac {\pi}2 — \alpha`, достаточно представить его, как `\frac {\pi}2 + (-\alpha)` и проделать тот же путь, что и выше. Например, `cos(\frac {\pi}2 — \alpha)=cos(\frac {\pi}2 + (-\alpha))=-sin(-\alpha)=sin(\alpha)`.

Углы `\pi + \alpha` и `\pi — \alpha` можно представить, как `\frac {\pi}2 +(\frac {\pi}2+\alpha)` и `\frac {\pi}2 +(\frac {\pi}2-\alpha)` соответственно.

А `\frac {3\pi}2 + \alpha` и `\frac {3\pi}2 — \alpha` как `\pi +(\frac {\pi}2+\alpha)` и `\pi +(\frac {\pi}2-\alpha)`.