Клеточная мембрана - это оболочка клетки, выполняющая следующие функции: разделение содержимого клетки и внешней среды, избирательный транспорт веществ (обмен с внешней для клетки средой), место протекания некоторых биохимических реакций, объединение клеток в ткани и рецепция.

Клеточные мембраны подразделяют на плазматические (внутриклеточные) и наружные. Основное свойство любой мембраны - полупроницаемость, то есть способность пропускать только определенные вещества. Это позволяет осуществлять избирательный обмен между клеткой и внешней средой или обмен между компартментами клетки.

Плазматические мембраны - это липопротеиновые структуры. Липиды спонтанно образуют бислой (двойной слой), а мембранные белки «плавают» в нем. В мембранах присутствует несколько тысяч различных белков: структурные, переносчики, ферменты и др. Между белковыми молекулами имеются поры, сквозь которые проходят гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны присоединены гликозильные группы (моносахариды и полисахариды), которые участвуют в процессе распознавания клеток при образовании тканей.

Мембраны отличаются по своей толщине, обычно она составляет от 5 до 10 нм. Толщина определяется размерами молекулы амфифильного липида и составляет 5,3 нм. Дальнейшее увеличение толщины мембраны обусловлено размерами мембранных белковых комплексов. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более плотным или жидким - от этого зависит скорость перемещения веществ вдоль мембран.

К клеточным мембранам относят: плазмолемму, кариолемму, мембраны эндоплазматической сети, аппарата Гольджи, лизосом, пероксисом, митохондрий, включений и т. д.

Липиды не растворимы в воде (гидрофобность), но хорошо растворяются в органических растворителях и жирах (липофильность). Состав липидов в разных мембранах неодинаков. Например, плазматическая мембрана содержит много холестерина. Из липидов в мембране чаще всего встречаются фосфолипиды (глицерофосфатиды), сфингомиелины (сфинголипиды), гликолипиды и холестерин.

Фосфолипиды, сфингомиелины, гликолипиды состоят из двух функционально различных частей: гидрофобной неполярной, которая не несет зарядов - «хвосты», состоящие из жирных кислот, и гидрофильной, содержащей заряженные полярные «головки» - спиртовые группы (например, глицерин).

Гидрофобная часть молекулы обычно состоит из двух жирных кислот. Одна из кислот предельная, а вторая непредельная. Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры. Липиды мембран выполняют следующие функции: барьерную, транспортную, микроокружение белков, электрическое сопротивление мембраны.

Мембраны отличаются друг от друга набором белковых молекул. Многие мембранные белки состоят из участков, богатых полярными (несущими заряд) аминокислотами, и участков с неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Биологические мембраны обладают общими свойствами :

мембраны - замкнутые системы, которые не позволяют содержимому клетки и ее компартментов смешиваться. Нарушение целостности мембраны может привести к гибели клетки;

поверхностная (плоскостная, латеральная) подвижность. В мембранах идет непрерывное перемещение веществ по поверхности;

асимметрия мембраны. Строение наружного и поверхностного слоев химически, структурно и функционально неоднородно.

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии - гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции биомембран

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .

  • маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами . К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клеки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход . Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell . - 5th ed. - New York: Garland Science, 2007. - ISBN 0-8153-3218-1 - учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт. . - 3-е издание, исправленное и дополненное. - Москва: издательство Московского университета, 2004. - ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - Москва: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. - Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. - Москва: Наука, 1994.

См. также

  • Владимиров Ю. А., Повреждение компонентов биологических мембран при патологических процессах

Wikimedia Foundation . 2010 .

Клеточная мембрана имеет достаточно сложное строение , которое можно рассмотреть в электронный микроскоп. Грубо говоря, она состоит из двойного слоя липидов (жиров), в который в разных местах включены различные пептиды (белки). Общая толщина мембраны составляет около 5-10 нм.

Общий план строения клеточной мембраны универсален для всего живого мира. Однако мембраны животных содержат включения холестерина, который определяет ее жесткость. Отличие мембран разных царств организмов в основном касается надмембранных образований (слоев). Так у растений и грибов над мембраной (с внешней стороны) находится клеточная стенка. У растений она состоит преимущественно из целлюлозы, а у грибов - из вещества хитина. У животных надмембранный слой называется гликокаликсом.

По-другому клеточная мембрана называется цитоплазматической мембраной или плазматической мембраной.

Более глубокое изучение строения клеточной мембраны открывает многие ее особенности, связанные с выполняемыми функциями .

Двойной слой липидов в основном состоит из фосфолипидов. Это жиры, один конец которых содержит остаток фосфорной кислоты, обладающий гидрофильными свойствами (т. е. притягивает молекулы воды). Второй конец фосфолипида - это цепи жирных кислот, обладающие гидрофобными свойствами (не образуют с водой водородных связей).

Молекулы фосфолипидов в клеточной мембране выстраиваются в два ряда так, что их гидрофобные «концы» находятся внутри, а гидрофильные «головки» – снаружи. Получается достаточно прочная структура, ограждающая содержимое клетки от внешней среды.

Белковые включения в клеточной мембране распределены неравномерно, кроме того они подвижны (так как фосфолипиды в бислое обладают боковой подвижностью). С 70-х годов XX века стали говорить о жидкостно-мозаичном строении клеточной мембраны .

В зависимости от того, как белок входит в состав мембраны, выделяют три типа белков: интегральные, полуинтегральные и периферические. Интегральные белки проходят через всю толщу мембраны, и их концы торчат по обеим ее сторонам. В основном выполняют транспортную функцию. У полуинтегральных белков один конец находится в толще мембраны, а второй выходит наружу (с внешней или внутренней) стороны. Выполняют ферментативную и рецепторную функции. Периферические белки находятся на внешней или внутренней поверхности мембраны.

Особенности строения клеточной мембраны говорят о том, что она является основным компонентом поверхностного комплекса клетки, но не единственным. Другими его компонентами являются надмембранный слой и субмембранный слой.

Гликокаликс (надмембранный слой животных) образуют олигосахариды и полисахариды, а также периферические белки и выступающие части интегральных белков. Компоненты гликокаликса выполняют рецепторную функцию.

Кроме гликокаликса у клеток животных бывают и другие надмембранные образования: слизи, хитин, перилемма (подобна мембране).

Надмембранным образованием у растений и грибов является клеточная стенка.

Субмембранный слой клетки - это поверхностная цитоплазма (гиалоплазма) с входящей в нее опорно-сократительной системой клетки, фибриллы которой взаимодействуют с белками, входящими в клеточную мембрану. По таким соединениям молекул передаются различные сигналы.

Имеет толщину 8-12 нм, поэтому рассмотреть ее в световой микроскоп невозможно. Строение мембраны изучают при помощи электронного микроскопа.

Плазматическая мембрана образована двумя слоями липидов – билипидным слоем, или бислоем. Каждая молекула состоит из гидрофильной головки и гидрофобного хвоста, причем в биологических мембранах липиды расположены головками наружу, хвостами внутрь.

В билипидный слой погружены многочисленные молекулы белков. Одни из них находятся на поверхности мембраны (внешней или внутренней), другие пронизывают мембрану .

Функции плазматической мембраны

Мембрана защищает содержимое клетки от повреждений, поддерживает форму клетки, избирательно пропускает необходимые вещества внутрь клетки и выводит продукты обмена, а также обеспечивает связь клеток между собой.

Барьерную, отграничительную функцию мембраны обеспечивает двойной слой липидов. Он не дает содержимому клетки растекаться, смешиваться с окружающей средой или межклеточной жидкостью, и препятствует проникновению в клетку опасных веществ.

Ряд важнейших функций цитоплазматической мембраны осуществляется за счет погруженных в нее белков. При помощи белков-рецепторов может воспринимать различные раздражения на свою поверхность. Транспортные белки образуют тончайшие каналы, по которым внутрь клетки и из нее проходят ионы калия, кальция, и другие ионы малого диаметра. Белки- обеспечивают процессы жизнедеятельности в самой .

Крупные пищевые частицы, не способные пройти через тонкие мембранные каналы, попадают внутрь клетки путем фагоцитоза или пиноцитоза. Общее название этим процессам – эндоцитоз.

Как происходит эндоцитоз – проникновение крупных пищевых частиц в клетку

Пищевая частица соприкасается с наружной мембраной клетки, и в этом месте образуется впячивание. Затем частица, окруженная мембраной, попадает внутрь клетки, образуется пищеварительная , и внутрь образовавшегося пузырька проникают пищеварительные ферменты.

Лейкоциты крови, способные захватывать и переваривать чужеродные бактерии, называются фагоцитами.

В случае пиноцитоза впячиванием мембраны захватываются не твердые частицы, а капельки жидкости с растворенными в ней веществами. Этот механизм является одним из основных путей проникновения веществ в клетку.

Клетки растений, покрытые поверх мембраны твердым слоем клеточной стенки, не способны к фагоцитозу.

Процесс, обратный эндоцитозу, – экзоцитоз. Синтезированные вещества (к примеру, гормоны) упаковываются в мембранные пузырьки, подходят к , встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким образом клетка может избавляться и от ненужных продуктов обмена.


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.