Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(ВолгГТУ)

Кафедра «Информационные системы в экономике»

по дисциплине

«Информационная безопасность»

«Теория нечетких множеств»

Выполнил:

студент гр. ЭИС-458 Злобина В.О.

Проверил:

к. к.э.н., доцент Фролова Т.С.

Волгоград 2009

Теория нечетких множеств -- раздел прикладной математики, посвященный методам анализа неопределенных данных, в которых описание неопределенностей реальных явлений и процессов проводится с помощью понятия о множествах, не имеющих четких границ.

Теория нечетких множеств -- это расширение классической теории множеств. В классической теории множеств принадлежность элементов некоторому множеству понимается в бинарных терминах в соответствии с четким условием -- элемент либо принадлежит, либо не принадлежит данному множеству. В теории нечетких множеств допускается градуированное понимание принадлежности элемента множеству; степень принадлежности элемента описывается при помощи функции принадлежности.

Переход от принадлежности элементов заданному множеству - к непринадлежности их этому множеству происходит или может происходить постепенно, не резко.

Математический аппарат

Нечеткое множество характеризуется функцией принадлежности, отображающей некоторое множество (носитель нечеткого множества) в отрезок . Значение функции принадлежности показывает степень принадлежности соответствующего элемента носителя рассматриваемому нечеткому множеству. Это значение меняется от 0 (полная непринадлежность) до 1 (полная принадлежность).

Понятие "нечеткое множество" введено Л.А. Заде в 1965 г.. Исходный термин - fuzzy set. Другие варианты перевода на русский язык - нечеткое, расплывчатое, размытое, туманное, пушистое множество.

Теория нечетких множеств в определенном смысле сводится к теории случайных множеств и тем самым к теории вероятностей.

Применение

Теория нечетких множеств применяется в теории и практике управления системами, в экономике и финансах для решения задач в условиях неопределенности ключевых показателей. Ряд стиральных машин и фотоаппаратов сегодня оборудованы нечёткими контроллерами.

В социологии

В социологии классификация и типология может проводиться по выбранным критериям, или по эмпирически обнаруженным основаниям. Это позволяет выделить теоретические и эмпирические типологии.

В психологии

Применение теории нечетких множеств к финансовому анализу предпри я тий

Введение

В практике финансового анализа хорошо известен ряд показателей, характеризующих отдельные стороны текущего финансового положения предприятия. Сюда относятся показатели ликвидности, рентабельности, устойчивости, оборачиваемости капитала, прибыльности и т.д. По ряду показателей известны некие нормативы, характеризующие их значение положительно или отрицательно. Например, когда собственные средства предприятия превышают половину всех пассивов, соответствующий этой пропорции коэффициент автономии больше 1/2, и это его значение считается "хорошим" (соответственно, когда оно меньше 1/2 - "плохим"). Но в большинстве случаев показатели, оцениваемые при анализе, однозначно нормировать невозможно. Это связано со спецификой отраслей экономики, с текущими особенностями действующих предприятий, с состоянием экономической среды, в которой они работают.

Тем не менее, любое заинтересованное положением предприятия лицо (руководитель, инвестор, кредитор, аудитор и т.д.), далее именуемое лицом, принимающим решения (ЛПР), не довольствуется простой количественной оценкой показателей. Для ЛПР важно знать, приемлемы ли полученные значения, хороши ли они, и в какой степени. Кроме того, ЛПР стремится установить логическую связь количественных значений показателей выделенной группы с неким комплексным показателем, характеризующим финансовое состояния предприятия в целом. То есть ЛПР не может быть удовлетворено бинарной оценкой "хорошо - плохо", его интересуют оттенки ситуации и экономическая интерпретация этих оттеночных значений. Задача осложняется тем, что показателей много, изменяются они зачастую разнонаправленно, и поэтому ЛПР стремится "свернуть" набор всех исследуемых частных финансовых показателей в один комплексный, по значению которого и судить о степени благополучия ("живучести") фирмы.

В анализе хорошо известны так называемые Z-показатели, сопряженные с вероятностью предполагаемого банкротства:

Z = ? ai * xi (1)

нечеткий множество финансовый альтман

где Xi - функции показателей бухгалтерской отчетности, Ai - веса в свертке, получаемые на основе так называемого дискриминантного анализа выборки предприятий, часть из которых обанкротилась. Также устанавливаются пороговые нормативы Z1 и Z2: когда Z < Z1 , вероятность банкротства предприятия высока, когда Z > Z2 - вероятность банкротства низка, Z1 < Z < Z2 - состояние предприятия не определимо. Этот метод, разработанный в 1968 году Э. Альтманом, получил широкое признание на всех континентах и продолжает широко использоваться в анализе, в том числе и в России.

Сопоставление данных, полученных для ряда стран, показывает, что веса в Z - свертке и пороговый интервал сильно разнятся не только от страны к стране, но и от года к году в рамках одной страны (можно сопоставить выводы Альтмана о положении предприятий США за 10 лет анализа). Получается, что Z - методы Альтмана не обладают устойчивостью к вариациям в исходных данных. Статистика, на которую опирается Альтман и его последователи, возможно, и репрезентативна, но она не обладает важным свойством статистической однородности выборки событий. Одно дело, когда статистика применяется к выборке радиодеталей из одной произведенной партии, а другое, - когда она применяется к фирмам с различной организационно-технической спецификой, со своими уникальными рыночными нишами, стратегиями и целями, фазами жизненного цикла и т.д. Здесь невозможно говорить о статистической однородности событий, и, следовательно, допустимость применения вероятностных методов, самого термина "вероятность банкротства" ставится под сомнение.

К тому же, при использовании методов Альтмана возникают передержки. В переводной литературе по финансовому анализу, а также во всевозможных российских компиляциях часто встретишь формулу Альтмана образца 1968 года, и ни слова не говорится о допустимости этого соотношения в анализе ожидаемого банкротства. С таким же успехом в формуле Альтмана могли бы стоять любые другие веса, и это было бы столь же справедливо в отношении российской специфики, как и исходные веса. Такой подход иначе как неквалифицированным и не назовешь.

Словом, подход Альтмана имеет право на существование, когда в наличии (или обосновываются модельно) однородность и репрезентативность событий выживания/банкротства. Но ключевым ограничением этого метода является даже не проблема качественной статистики. Дело в том, что классическая вероятность - это характеристика не отдельного объекта или события, а характеристика генеральной совокупности событий. Рассматривая отдельное предприятие, мы вероятностно описываем его отношение к полной группе. Но уникальность всякого предприятия в том, что оно может выжить и при очень слабых шансах, и, разумеется, наоборот. Единичность судьбы предприятия подталкивает исследователя присмотреться к предприятию пристальнее, расшифровать его уникальность, его специфику, а не "стричь под одну гребенку"; не искать похожести, а, напротив, диагностировать и описывать отличия. При таком подходе статистической вероятности места нет. Исследователь интуитивно это чувствует и переносит акцент с прогнозирования банкротства (которое при отсутствии полноценной статистики оборачивается гаданием на кофейной гуще) на распознавание сложившейся ситуации с определением дистанции, которая отделяет предприятие от состояния банкротства.

В работах, относящихся к выявлению природы вероятности, появляются неклассические вероятности различных типов. Отметим лишь два типа: валентные и аксиологические вероятности. Валентная вероятность выражает ожидаемость реализации гипотезы Н с учетом наличного контекста фактических свидетельств об объекте исследования Е (в частном случае, когда Е - это репрезентативная выборка однородных событий, тогда вероятность является статистической). Аксиологическая вероятность выражает ожидаемость реализации гипотезы Н с учетом контекста субъективных оценок S об объекте исследования, выдвинутых одним из экспертов - квалифицированных наблюдателей объекта исследования, или совокупностью экспертов. Такого рода вероятности уже можно применять в финансовом анализе, как это уже широко делается в экспертных системах и при принятии решений в условиях неопределенности (в частности, при оценке риска инвестиций). Здесь понятие случайности замещается понятием ожидаемости. Однако обозначим еще один аспект, который делает применение неклассичиских вероятностей неудобным в принципе, когда есть гораздо более пригодный математический аппарат для исследований.

Речь идет о нечетких множествах и нечеткой логике. Чем глубже исследуется предприятие, тем больше обнаруживается новых источников неопределенности. Декомпозиция исходной, обычно грубой и приблизительной, модели анализа сопряжена с растущим дефицитом количественных и качественных исходных данных. Сплошь и рядом мы сталкиваемся с неопределенностью, которая в принципе не может быть раскрыта однозначно и четко. Ряд параметров оказывается недоступным для точного измерения, и тогда в его оценке неизбежно появляется субъективный компонент, выражаемый нечеткими оценками типа "высокий", "низкий", "наиболее предпочтительный", "весьма ожидаемый", "скорее всего", "маловероятно", "не слишком" и т.д. Появляется то, что в науке описывается как лингвистическая переменная со своим терм-множеством значений, а связь количественного значения некоторого фактора с его качественным лингвистическим описанием задается так называемыми функциями m-принадлежности фактора нечеткому множеству.

Кривая m строится на основании:

а) данных объективных тестов для работников различных возрастных групп, с выявлением психофизиологических особенностей этих групп (контекст наблюдений такого рода есть контекст свидетельств Е);

б) интуитивных представлений экспертов (контекст S).

Таким образом, функции принадлежности параметров нечетким множествам обладают теми же достоинствами в анализе, что и неклассические типы вероятностей, и вдобавок к этому они являются количественной мерой наличной информационной неопределенности в отношении анализируемых параметров, значение которых описывается в лингвистически-нечеткой форме.

Существо нового комплексного показателя финансового анализа

Нами, специалистами консультационной группы "Воронов и Максимов", разработан новый комплексный показатель финансового анализа на основании результатов теории нечетких множеств. Схема построения показателя следующая:

1. Полное множество состояний А предприятия разбивается на пять (в общем случае пересекающихся) нечетких подмножеств вида:

А1 - нечеткое подмножество состояний "предельного неблагополучия (фактического банкротства)";

А2 - нечеткое подмножество состояний "неблагополучия";

А3 - нечеткое подмножество состояний "среднего качества";

А4 - нечеткое подмножество состояний "относительного благополучия";

А5 - нечеткое подмножество состояний "предельного благополучия".

То есть терм-множество лингвистической переменной "Состояние предприятия" состоит из пяти компонент. Каждому из подмножеств А1… А5 соответствуют свои функции принадлежности m 1(V&M) … m 5(V&M), где V&M - комплексный показатель финансового состояния предприятия, причем, чем выше V&M, тем "благополучнее" состояние предприятия.

2. Осуществляется выбор базовой системы показателей Хi и производится нечеткая классификация их значений. Пусть D(Хi) - область определения параметра Хi, несчетное множество точек оси действительных чисел. Определим лингвистическую переменную "Уровень показателя Хi" с введением пяти нечетких подмножеств множества D(Хi):

В1 - нечеткое подмножество "очень низкий уровень показателя Хi",

В2 - нечеткое подмножество "низкий уровень показателя Хi",

В3 - нечеткое подмножество "средний уровень показателя Хi",

В4 - нечеткое подмножество "высокий уровень показателя Хi",

В5 - нечеткое подмножество "очень высокий уровень показателя Хi".

Задача описания подмножеств {В} - это задача формирования соответствующих функций принадлежности l 1-5(хi).

3. Построение функций принадлежности {m } нечетких подмножеств {А}. Анализируя опыт различных квалификаций лингвистической переменной "Состояние", мы задаемся набором функций принадлежности {m }. Эти функции мы сформировали таким образом, что искомый комплексный показатель финансового состояния предприятия V&M по построению принимает значения от нуля до единицы.

4. Оценка значимостей показателей для комплексной оценки. Каждому i-му показателю в отношении каждого к-го уровня состояния предприятия можно сопоставить оценку pik значимости данного показателя для распознавания данного уровня состояния предприятия. Например, ряд банков, анализируя кредитоспособность заемщика, присваивает большую значимость показателям финансовой устойчивости и ликвидности, и меньшую - показателям прибыльности и оборачиваемости. В то же время, этот критерий не может считаться приемлемым в отношении приватизированных предприятий, ранее находящихся в госсобственности. Обыкновением для таких предприятий является то, что значительный вес основных средств в структуре активов (здания, сооружения и т.д.) соседствует с низкой рентабельностью или даже убыточностью. То есть построение системы весов pik должно проводиться по каждому предприятию строго индивидуально.

Систему оценок значимостей {p} целесообразно пронормировать следующим образом:

k = 1,…,5. (3)

Если система предпочтений одних показателей другим отсутствует, то показатели являются равнозначными, и pik = 1/N.

5. Построение показателя V&M. Комплексный показатель V&M строится как двумерная свертка по совокупности показателей Хi с весами рi и по совокупности их качественных состояний с весами {l }.

6. Распознавание текущего состояния предприятия. Правило для распознавания состояния предприятия имеет вид таблицы 1. Одновременно, в соответствии с результатом распознавания по таблице 1, оценивается степень риска банкротства предприятия.

Заключение

Предложенная методика комплексной оценки финансового состояния предприятия, в действительности, воспроизводит мыслительные человеческие процессы, основанные на субъективных суждениях. Мы добиваемся, чтобы предложенная модель была адекватна не только реалиям объекта исследования, но и специфическим особенностям познающего субъекта, а также формально очерченным границам наличной информационной неопределенности. То, что мы знаем об объекте исследования, и то, как мы это знаем, - все это находит отражение в логико-математических формализмах, на которых основан метод. Мы не пытаемся строить сомнительные свертки на финансовых показателях, тем самым как бы складывая килограммы с километрами, а осуществляем свертку сопоставимых компонент принадлежности показателей к тем или иным нечетким классам и этим обеспечиваем корректность модели.

Распознавание и классификация состояний предприятий - задача, которая вне идеологии нечетких множеств вообще не может быть решена удовлетворительно, потому что прежде чем говорить "плохое" или "хорошее", необходимо принять соглашение, как различать эти субъективные высказывания.

(из статьи Недосекина А. http://www.aup.ru/articles/finance/8.htm)

Размещено на Allbest.ru

Подобные документы

    Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности. Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов.

    реферат , добавлен 21.10.2006

    Усовершенствование теории Альтмана. Разработка оптимизационных подходов для минимизации рисков. Реализация программных комплексов для анализа финансового состояния при оценке кредитоспособности предприятия о возможности принятия решения выдавать кредита.

    дипломная работа , добавлен 16.02.2016

    Описание лингвистической переменной. Моделирование оценки показателей проекта. Построение функции принадлежности термов, используемых для лингвистической оценки переменной "рост мужчины". Нечеткое моделирование конкурентоспособности кинотеатров.

    контрольная работа , добавлен 09.07.2014

    Понятие и структура интеллектуальной системы. Математическая теория нечетких множеств. Причины распространения системы Fuzzy-управления. Предпосылки для внедрения нечетких систем управления. Принципы построения системы управления на базе нечеткой логики.

    реферат , добавлен 31.10.2015

    Исторический обзор теории финансового инвестирования. Применение методологического аппарата нелинейной динамики к моделированию и анализу процессов, протекающих на рынках ценных бумаг. Исследование фрактальных свойств американского фондового рынка.

    дипломная работа , добавлен 04.02.2011

    Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.

    курсовая работа , добавлен 04.05.2011

    Основные положения теории игр. Терминология и классификация игр. Решение матричных игр в чистых и в смешанных стратегиях. Сведение матричной игры к задаче линейного программирования. Применение теории игр в задачах экономико-математического моделирования.

    курсовая работа , добавлен 12.12.2013

    Функция и экономическая деятельность предприятия. Сущность методов статистического анализа. Технологии проектирования имитационных математических моделей по оценке и анализу финансового состояния предприятия, экономическая эффективность от их внедрения.

    дипломная работа , добавлен 12.12.2011

    Решение задач линейного программирования с применением алгоритма графического определения показателей и значений, с использованием симплекс-метода. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана ЗЛП.

    контрольная работа , добавлен 23.04.2013

    Основные показатели финансового состояния предприятия. Кризис на предприятии, его причины, виды и последствия. Современные методы и инструментальные средства кластерного анализа, особенности их использования для финансово-экономической оценки предприятия.

2. ОПИСАНИЕ НЕОПРЕДЕЛЕННОСТЕЙ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

2.4. Описание неопределенностей с помощью теории нечеткости

2.4.1. Нечеткие множества

Пусть A - некоторое множество. Подмножество B множества A характеризуется своей характеристической функцией

Что такое нечеткое множество? Обычно говорят, что нечеткое подмножество C множества A характеризуется своей функцией принадлежности Значение функции принадлежности в точке х показывает степень принадлежности этой точки нечеткому множеству. Нечеткое множество описывает неопределенность, соответствующую точке х – она одновременно и входит, и не входит в нечеткое множество С . За вхождение - шансов, за второе – (1- ) шансов.

Если функция принадлежности имеет вид (1) при некотором B , то C есть обычное (четкое) подмножество A . Таким образом, теория нечетких множество является не менее общей математической дисциплиной, чем обычная теория множеств, поскольку обычные множества – частный случай нечетких. Соответственно можно ожидать, что теория нечеткости как целое обобщает классическую математику. Однако позже мы увидим, что теория нечеткости в определенном смысле сводится к теории случайных множеств и тем самым является частью классической математики. Другими словами, по степени общности обычная математика и нечеткая математика эквивалентны. Однако для практического применения в теории принятия решений описание и анализ неопределенностей с помощью теории нечетких множеств весьма плодотворны.

Обычное подмножество можно было бы отождествить с его характеристической функцией. Этого математики не делают, поскольку для задания функции (в ныне принятом подходе) необходимо сначала задать множество. Нечеткое же подмножество с формальной точки зрения можно отождествить с его функцией принадлежности. Однако термин "нечеткое подмножество" предпочтительнее при построении математических моделей реальных явлений.

Теория нечеткости является обобщением интервальной математики. Действительно, функция принадлежности

задает интервальную неопределенность – про рассматриваемую величину известно лишь, что она лежит в заданном интервале [a ,b ]. Тем самым описание неопределенностей с помощью нечетких множеств является более общим, чем с помощью интервалов.

Начало современной теории нечеткости положено работой 1965 г. американского ученого азербайджанского происхождения Л.А.Заде. К настоящему времени по этой теории опубликованы тысячи книг и статей, издается несколько международных журналов, выполнено достаточно много как теоретических, так и прикладных работ. Первая книга российского автора по теории нечеткости вышла в 1980 г. .

Л.А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от "принадлежности" к "непринадлежности" не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении предприятием, качеством продукции и технологическими процессами.

Л.А. Заде использовал термин "fuzzy set" (нечеткое множество). На русский язык термин "fuzzy" переводили как нечеткий, размытый, расплывчатый, и даже как пушистый и туманный.

Аппарат теории нечеткости громоздок. В качестве примера дадим определения теоретико-множественных операций над нечеткими множествами. Пусть C и D - два нечетких подмножества A с функциями принадлежности и соответственно. Пересечением , произведением CD , объединением , отрицанием , суммой C + D называются нечеткие подмножества A с функциями принадлежности

соответственно.

Как уже отмечалось, теория нечетких множеств в определенном смысле сводится к теории вероятностей, а именно, к теории случайных множеств. Соответствующий цикл теорем приведен ниже. Однако при решении прикладных задач вероятностно-статистические методы и методы теории нечеткости обычно рассматриваются как различные.

Для знакомства со спецификой нечетких множеств рассмотрим некоторые их свойства.

В дальнейшем считаем, что все рассматриваемые нечеткие множества являются подмножествами одного и того же множества Y .

Законы де Моргана для нечетких множеств. Как известно, законами же Моргана называются следующие тождества алгебры множеств

Теорема 1. Для нечетких множеств справедливы тождества

(4)

Доказательство теоремы 1 состоит в непосредственной проверке справедливости соотношений (3) и (4) путем вычисления значений функций принадлежности участвующих в этих соотношениях нечетких множеств на основе определений, данных выше.

Тождества (3) и (4) назовем законами де Моргана для нечетких множеств . В отличие от классического случая соотношений (2), они состоят из четырех тождеств, одна пара которых относится к операциям объединения и пересечения, а вторая - к операциям произведения и суммы. Как и соотношение (2) в алгебре множеств, законы де Моргана в алгебре нечетких множеств позволяют преобразовывать выражения и формулы, в состав которых входят операции отрицания.

Дистрибутивный закон для нечетких множеств. Некоторые свойства операций над множествами не выполнены для нечетких множеств. Так, за исключением случая, когда А - "четкое" множество (т.е. функция принадлежности принимает только значения 0 и 1).

Верен ли дистрибутивный закон для нечетких множеств? В литературе иногда расплывчато утверждается, что "не всегда". Внесем полную ясность.

Теорема 2. Для любых нечетких множеств А, В и С

В то же время равенство

справедливо тогда и только тогда, когда при всех

Доказательство . Фиксируем произвольный элемент . Для сокращения записи обозначим Для доказательства тождества (5) необходимо показать, что

Рассмотрим различные упорядочения трех чисел a, b, c. Пусть сначала Тогда левая часть соотношения (7) есть а правая т.е. равенство (7) справедливо.

Пусть Тогда в соотношении (7) слева стоит а справа т.е. соотношение (7) опять является равенством.

Если то в соотношении (7) слева стоит а справа т.е. обе части снова совпадают.

Три остальные упорядочения чисел a, b, c разбирать нет необходимости, поскольку в соотношение (6) числа b и c входят симметрично. Тождество (5) доказано.

Второе утверждение теоремы 2 вытекает из того, что в соответствии с определениями операций над нечеткими множествами

Эти два выражения совпадают тогда и только тогда, когда, когда что и требовалось доказать.

Определение 1. Носителем нечеткого множества А называется совокупность всех точек , для которых

Следствие теоремы 2. Если носители нечетких множеств В и С совпадают с У, то равенство (6) имеет место тогда и только тогда, когда А - "четкое" (т.е. обычное, классическое, не нечеткое) множество.

Доказательство. По условию при всех . Тогда из теоремы 2 следует, что т.е. или , что и означает, что А - четкое множество.

2.4.2. Пример описания неопределенности с помощью

нечеткого множества

Понятие «богатый» часто используется при обсуждении социально-экономических проблем, в том числе и в связи с подготовкой и принятием решений. Однако очевидно, что разные лица вкладывают в это понятие различное содержание. Сотрудники Института высоких статистических технологий и эконометрики провели в 1996 г. социологическое исследование представления различных слоёв населения о понятии "богатый человек".

Мини-анкета опроса выглядела так:

1. При каком месячном доходе (в млн. руб. на одного человека) Вы считали бы себя богатым человеком?

2. Оценив свой сегодняшний доход, к какой из категорий Вы себя относите:

а) богатые;

б) достаток выше среднего;

в) достаток ниже среднего;

г) бедные;

д) за чертой бедности?

(В дальнейшем вместо полного наименования категорий будем оперировать буквами, например "в" - категория, "б" - категория и т.д.)

3. Ваша профессия, специальность.

Всего было опрошено 74 человека, из них 40 - научные работники и преподаватели, 34 человека - не занятых в сфере науки и образования, в том числе 5 рабочих и 5 пенсионеров. Из всех опрошенных только один (!) считает себя богатым. Несколько типичных ответов научных работников и преподавателей приведено в табл.1, а аналогичные сведения для работников коммерческой сферы – в табл.2.

Таблица 1.

Типичные ответы научных работников и преподавателей

Ответы на вопрос 3

Ответы на вопрос 1, млн. руб./чел.

Ответы на вопрос 2

Кандидат наук

Преподаватель

Старший. научный сотрудник

Инженер-физик

Программист

научный работник

Таблица 2

Типичные ответы работников коммерческой сферы.

Ответы на вопрос 3

Ответы на вопрос 1

Ответы на вопрос 2

Вице-президент банка

Зам. директора банка

Начальник. кредитного отдела

Начальник отдела ценных бумаг

Главный бухгалтер

Бухгалтер

Менеджер банка

Начальник отдела проектирования

Разброс ответов на первый вопрос – от 1 до 100 млн. руб. в месяц на человека. Результаты опроса показывают, что критерий богатства у финансовых работников в целом несколько выше, чем у научных (см. гистограммы на рис.1 и рис.2 ниже).

Опрос показал, что выявить какое-нибудь конкретное значение суммы, которая необходима "для полного счастья", пусть даже с небольшим разбросом, нельзя, что вполне естественно. Как видно из таблиц 1 и 2, денежный эквивалент богатства колеблется от 1 до 100 миллионов рублей в месяц. Подтвердилось мнение, что работники сферы образования в подавляющем большинстве причисляют свой достаток к категории "в" и ниже (81% опрошенных), в том числе к категории "д" отнесли свой достаток 57%.

Со служащими коммерческих структур и бюджетных организаций иная картина: "г" - категория 1 человек (4%), "д" - категория 4 человека (17%), "б" - категория - 46% и 1 человек "а" - категория.

Пенсионеры, что не вызывает удивления, отнесли свой доход к категории "д" (4 человека), и лишь один человек указал "г" - категорию. Рабочие же ответили так: 4 человека - "в", и один человек - "б".

Для представления общей картины в табл.3 приведены данные об ответах работников других профессий.

Таблица 3.

Типичные ответы работников различных профессий.

Ответы на вопрос 3

Ответы на вопрос 1

Ответы на вопрос 2

Работник торговли

Водитель

Военнослужащий

Владелец бензоколонки

Пенсионер

Начальник фабрики

Домохозяйка

Слесарь-механик

Оператор ЭВМ

Работник собеса

Архитектор

Прослеживается интересное явление: чем выше планка богатства для человека, тем к более низкой категории относительно этой планки он себя относит.

Для сводки данных естественно использовать гистограммы. Для этого необходимо сгруппировать ответы. Использовались 7 классов (интервалов):

1 – до 5 миллионов рублей в месяц на человека (включительно);

2 – от 5 до 10 миллионов;

3- от 10 до 15 миллионов;

4 – от 15 до 20 миллионов;

5 – от 20 до 25 миллионов;

6 – от 25 до 30 миллионов;

7 – более 30 миллионов.

(Во всех интервалах левая граница исключена, а правая, наоборот – включена.)

Сводная информация представлена на рис.1 (для научных работников и преподавателей) и рис.2 (для всех остальных, т.е. для лиц, не занятых в сфере науки и образования - служащих иных бюджетных организаций, коммерческих структур, рабочих, пенсионеров).

Рис.1. Гистограмма ответов на вопрос 1 для научных работников и преподавателей (40 человек).

Рис.2. Гистограмма ответов на вопрос 1 для лиц, не занятых в сфере науки и образования (34 человека).

Для двух выделенных групп, а также для некоторых подгрупп второй группы рассчитаны сводные средние характеристики – выборочные средние арифметические, медианы, моды. При этом медиана группы - количество млн. руб., названное центральным по порядковому номеру опрашиваемым в возрастающем ряду ответов на вопрос 1, а мода группы - интервал, на котором столбик гистограммы - самый высокий, т.е. в него "попало" максимальное количество опрашиваемых. Результаты приведены в табл. 4.

Таблица 4.

Сводные средние характеристики ответов на вопрос 1

для различных групп (в млн. руб. в мес. на чел.).

Группа опрошенных

арифметическое

Научные работники и преподаватели

Лиц, не занятых в сфере науки и образования

Служащие коммерческих структур и бюджетных организаций

Пенсионеры

Построим нечеткое множество, описывающее понятие «богатый человек» в соответствии с представлениями опрошенных. Для этого составим табл.5 на основе рис.1 и рис.2 с учетом размаха ответов на первый вопрос.

Таблица 5.

Число ответов, попавших в интервалы

Номер интервала

Интервал, млн. руб. в месяц

Число ответов в интервале

Доля ответов в интервале

Накопленное число ответов

Накопленная доля ответов

Продолжение табл.5.

Номер интервала

Интервал, млн. руб. в месяц

Число ответов в интервале

Доля ответов в интервале

Накопленное число ответов

Накопленная доля ответов

Пятая строка табл.5 задает функцию принадлежности нечеткого множества, выражающего понятие "богатый человек" в терминах его ежемесячного дохода. Это нечеткое множество является подмножеством множества из 9 интервалов, заданных в строке 2 табл.5. Или множества из 9 условных номеров {0, 1, 2, …, 8}. Эмпирическая функция распределения, построенная по выборке из ответов 74 опрошенных на первый вопрос мини-анкеты, описывает понятие "богатый человек" как нечеткое подмножество положительной полуоси.

2.4.3. О разработке методики ценообразования

на основе теории нечетких множеств

Для оценки значений показателей, не имеющих количественной оценки, можно использовать методы нечетких множеств. Например, в диссертации П.В. Битюкова нечеткие множества применялись при м оделировании задач ценообразования на электронные обучающие курсы, используемые при дистанционном обучении. Им было проведено исследование значений фактора «Уровень качества курса» с использованием нечетких множеств. В ходе практического использования предложенной П.В. Битюковым методики ценообразования значения ряда других факторов могут также определяться с использованием теории нечетких множеств. Например, ее можно использовать для определения прогноза рейтинга специальности в вузе с помощью экспертов, а также значений других факторов, относящихся к группе «Особенности курса». Опишем подход П.В. Битюкова как пример практического использования теории нечетким множеств.

Значение оценки, присваиваемой каждому интервалу для фактора «Уровень качества курса», определяется на универсальной шкале , где необходимо разместить значения лингвистической переменной «Уровень качества курса»: НИЗКИЙ, СРЕДНИЙ, ВЫСОКИЙ. Степень принадлежности некоторого значения вычисляется как отношение числа ответов, в которых оно встречалось в определенном интервале шкалы, к максимальному (для этого значения) числу ответов по всем интервалам.

В ходе работы над диссертацией был проведен опрос экспертов о степени влияния уровня качества электронных курсов на их потребительную ценность. Каждому эксперту в процессе опроса предлагалось оценить с позиции потребителя ценность того или иного класса курсов в зависимости от уровня качества. Эксперты давали свою оценку для каждого класса курсов по 10-ти балльной шкале (где 1 - min, 10 - max). Для перехода к универсальной шкале , все значения 10-ти балльной шкалы оценки ценности были разделены на максимальную оценку 10.

Используя свойства функции принадлежности, необходимо предварительно обработать данные с тем, чтобы уменьшить искажения, вносимые опросом. Естественными свойствами функций принадлежности являются наличие одного максимума и гладкие, затухающие до нуля фронты. Для обработки статистических данных можно воспользоваться так называемой матрицей подсказок. Предварительно удаляются явно ошибочные элементы. Критерием удаления служит наличие нескольких нулей в строке вокруг этого элемента.

Элементы матрицы подсказок вычисляются по формуле: ,

где - элемент таблицы с результатами анкетирования, сгруппированными по интервалам. Матрица подсказок представляет собой строку, в которой выбирается максимальный элемент: , и далее все ее элементы преобразуются по формуле:

.

Для столбцов, где , применяется линейная аппроксимация:

.

Результаты расчетов сводятся в таблицу, на основании которой строятся функции принадлежности. Для этого находятся максимальные элементы по строкам: . Функция принадлежности вычисляется по формуле: . Результаты расчетов приведены в табл. 6.

Таблица 6

Значения функции принадлежности лингвистической переменной

Интервал на универсальной шкале

Рис. 3 . График функций принадлежности значений лингвистической переменной «Уровень качества курса»

На рис.3 сплошными линиями показаны функции принадлежности значений лингвистической переменной «Уровень качества курса» после обработки таблицы, содержащей результаты опроса. Как видно из графика, функции принадлежности удовлетворяют описанным выше свойствам. Для сравнения пунктирной линией показана функция принадлежности лингвистической переменной для значения НИЗКИЙ без обработки данных.

2.4.4. О статистике нечетких множеств

Нечеткие множества – частный вид объектов нечисловой природы. Статистические методы анализа объектов нечисловой природы описаны в . В частности, среднее значение нечеткого множества можно определить по формуле:

,

A .

Как известно, методы статистики нечисловых данных базируются на использовании расстояний (или показателей различия) в соответствующих пространствах нечисловой природы. Расстояние между нечеткими подмножествами А и В множества Х = {x 1 , x 2 , …, x k } можно определить как

где - функция принадлежности нечеткого множества A, а - функция принадлежности нечеткого множества B . Может использоваться и другое расстояние:

(Примем это расстояние равным 0, если функции принадлежности тождественно равны 0.)

В соответствии с аксиоматическим подходом к выбору расстояний (метрик) в пространствах нечисловой природы разработан обширный набор систем аксиом, из которых выводится тот или иной вид расстояний (метрик) в конкретных пространствах . При использовании вероятностных моделей расстояние между случайными нечеткими множествами само является случайной величиной, имеющей в ряде постановок асимптотически нормальное распределение .

2.4.5. Нечеткие множества как проекции случайных множеств

С самого начала появления современной теории нечеткости в 1960-е годы началось обсуждение ее взаимоотношений с теорией вероятностей. Дело в том, что функция принадлежности нечеткого множества напоминает распределение вероятностей. Отличие только в том, что сумма вероятностей по всем возможным значениям случайной величины (или интеграл, если множество возможных значений несчетно) всегда равна 1, а сумма S значений функции принадлежности (в непрерывном случае - интеграл от функции принадлежности) может быть любым неотрицательным числом. Возникает искушение пронормировать функцию принадлежности, т.е. разделить все ее значения на S (при S 0), чтобы свести ее к распределению вероятностей (или к плотности вероятности). Однако специалисты по нечеткости справедливо возражают против такого "примитивного" сведения", поскольку оно проводится отдельно для каждой размытости (нечеткого множества), и определения обычных операций над нечеткими множествами с ним согласовать нельзя. Последнее утверждение означает следующее. Пусть указанным образом преобразованы функции принадлежности нечетких множеств А и В . Как при этом преобразуются функции принадлежности ? Установить это невозможно в принципе. Последнее утверждение становится совершенно ясным после рассмотрения нескольких примеров пар нечетких множеств с одними и теми же суммами значений функций принадлежности, но различными результатами теоретико-множественных операций над ними, причем и суммы значений соответствующих функций принадлежности для этих результатов теоретико-множественных операций, например, для пересечений множеств, также различны.

В работах по нечетким множествам довольно часто утверждается, что теория нечеткости является самостоятельным разделом прикладной математики и не имеет отношения к теории вероятностей (см., например, обзор литературы в монографиях ). Авторы, сравнивавшие теорию нечеткости и теорию вероятностей, обычно подчеркивали различие между этими областями теоретических и прикладных исследований. Обычно сравнивают аксиоматику и сравнивают области приложений. Надо сразу отметить, что аргументы при втором типе сравнений не имеют доказательной силы, поскольку по поводу границ применимости даже такой давно выделившейся научной области, как вероятностно-статистические методы, имеются различные мнения. Напомним, что итог рассуждений одного из наиболее известных французских математиков Анри Лебега по поводу границ применимости арифметики таков: "Арифметика применима тогда, когда она применима" (см. его монографию ).

При сравнении различных аксиоматик теории нечеткости и теории вероятностей нетрудно увидеть, что списки аксиом различаются. Из этого, однако, отнюдь не следует, что между указанными теориями нельзя установить связь, типа известного сведения евклидовой геометрии на плоскости к арифметике (точнее к теории числовой системы - см., например, монографию ). Напомним, что эти две аксиоматики - евклидовой геометрии и арифметики - на первый взгляд весьма сильно различаются.

Можно понять желание энтузиастов нового направления подчеркнуть принципиальную новизну своего научного аппарата. Однако не менее важно установить связи нового подхода с ранее известными.

Как оказалось, теория нечетких множеств тесно связана с теорией случайных множеств. Еще в 1974 г. в работе было показано, что нечеткие множества естественно рассматривать как "проекции" случайных множеств. Рассмотрим этот метод сведения теории нечетких множеств к теории случайных множеств.

Определение 2. Пусть - случайное подмножество конечного множества У. Нечеткое множество В, определенное на У, называется проекцией А и обозначается Proj A, если

(8)

при всех

Очевидно, каждому случайному множеству А можно поставить в соответствие с помощью формулы (8) нечеткое множество В = Proj A. Оказывается, верно и обратное.

Теорема 3. Для любого нечеткого подмножества В конечного множества У существует случайное подмножество А множества У такое, что В = Proj A.

Доказательство. Достаточно задать распределение случайного множества А . Пусть У 1 - носитель В (см. определение 1 выше). Без ограничения общности можно считать, что при некотором m и элементы У 1 занумерованы в таком порядке, что

Введем множества

Для всех остальных подмножеств Х множества У положим Р(А=Х)=0 . Поскольку элемент y t входит во множества Y(1), Y(2),…, Y(t) и не входит во множества Y(t+1),…, Y(m), то из приведенных выше формул следует, что Если то, очевидно, Теорема 3 доказана.

Распределение случайного множества с независимыми элементами, как следует из рассмотрений главы 8 монографии , полностью определяется его проекцией. Для конечного случайного множества общего вида это не так. Для уточнения сказанного понадобится следующая теорема.

Теорема 4. Для случайного подмножества А множества У из конечного числа элементов наборы чисел и выражаются один через другой.

Доказательство. Второй набор выражается через первый следующим образом:

Элементы первого набора выразить через второй можно с помощью формулы включений и исключений из формальной логики, в соответствии с которой

В этой формуле в первой сумме у пробегает все элементы множества Y\X, во второй сумме переменные суммирования у 1 и у 2 не совпадают и также пробегают это множество, и т.д. Ссылка на формулу включений и исключений завершает доказательство теоремы 4.

В соответствии с теоремой 4 случайное множество А можно характеризовать не только распределением, но и набором чисел В этом наборе а других связей типа равенств нет. В этот набор входят числа следовательно, фиксация проекции случайного множества эквивалентна фиксации k = Card(Y) параметров из (2 k -1) параметров, задающих распределение случайного множества А в общем случае.

Будет полезна следующая теорема.

Теорема 5 . Если Proj A = B , то

Для доказательства достаточно воспользоваться тождеством из теории случайных множеств формулой для вероятности накрытия , определением отрицания нечеткого множества и тем, что сумма всех P (A =X ) равна 1. При этом под формулой для вероятности накрытия имеется в виду следующее утверждение: чтобы найти вероятность накрытия фиксированного элемента q случайным подмножеством S конечного множества Q , достаточно вычислить

где суммирование идет по всем подмножествам A множества Q , содержащим q .

2.4.6. Пересечения и произведения нечетких

и случайных множеств

Выясним, как операции над случайными множествами соотносятся с операциями над их проекциями. В силу законов де Моргана (теорема 1) и теоремы 5 достаточно рассмотреть операцию пересечения случайных множеств.

Теорема 6. Если случайные подмножества А 1 и А 2 конечного множества У независимы, то нечеткое множество является произведением нечетких множеств Proj A 1 и Proj A 2 .

Доказательство. Надо показать, что для любого

По формуле для вероятности накрытия точки случайным множеством (см. выше)

Легко проверить, что распределение пересечения случайных множеств можно выразить через их совместное распределение следующим образом:

Из соотношений (10) и (11) следует, что вероятность накрытия для пересечения случайных множеств можно представить в виде двойной суммы

Заметим теперь, что правую часть формулы (12) можно переписать следующим образом:

(13)

Действительно, формула (12) отличается от формулы (13) лишь тем, что в ней сгруппированы члены, в которых пересечение переменных суммирования принимает постоянное значение. Воспользовавшись определением независимости случайных множеств и правилом перемножения сумм, получаем, что из (12) и (13) вытекает равенство

Тогда равенство (14) сводится к условию

Ясно, что соотношение (15) выполнено тогда и только тогда, когда р 2 р 3 =0 при всех т.е. не существует ни одного элемента такого, что одновременно и , а это эквивалентно пустоте пересечения носителей случайных множеств и . Теорема 7 доказана.

24.7. Сведение последовательности операций

над нечеткими множествами к последовательности операций

над случайными множествами

Выше получены некоторые связи между нечеткими и случайными множествами. Стоит отметить, что изучение этих связей в работе началось с введения случайных множеств с целью развития и обобщения аппарата нечетких множеств Л. Заде. (Для фиксации приоритета на мировом уровне целесообразно отметить, что эта работа выполнена в 1974 г. и доложена в Центральном экономико-математическом институте АН СССР на всесоюзном научном семинаре "Многомерный статистический анализ и вероятностное моделирование реальных процессов" 18 декабря 1974 г. - см. .) Дело в том, что математический аппарат нечетких множеств не позволяет в должной мере учитывать различные варианты зависимости между понятиями (объектами), моделируемыми с его помощью, не является достаточно гибким. Так, для описания "общей части" двух нечетких множеств есть лишь две операции - произведение и пересечение. Если применяется первая из них, то фактически предполагается, что множества ведут себя как проекции независимых случайных множеств (см. выше теорему 6). Операция пересечения также накладывает вполне определенные ограничения на вид зависимости между множествами (см. выше теорему 7), причем в этом случае найдены даже необходимые и достаточные условия. Желательно иметь более широкие возможности для моделирования зависимости между множествами (понятиями, объектами). Использование математического аппарата случайных множеств предоставляет такие возможности.

Цель сведения теории нечетких множеств к теории случайных множеств состоит в том, чтобы за любой конструкцией из нечетких множеств увидеть конструкцию из случайных множеств, определяющую свойства первой, аналогично тому, как за плотностью распределения вероятностей мы видим случайную величину. В настоящем пункте приводим результаты по сведению алгебры нечетких множеств к алгебре случайных множеств.

Определение 4. Вероятностное пространство {Ω, G, P } назовем делимым, если для любого измеримого множества Х G и любого положительного числа , меньшего Р(Х), можно указать измеримое множество такое, что

Пример. Пусть - единичный куб конечномерного линейного пространства, G есть сигма-алгебра борелевских множеств, а P - мера Лебега. Тогда {Ω, G, P } - делимое вероятностное пространство.

Таким образом, делимое вероятностное пространство - это не экзотика. Обычный куб является примером такого пространства.

Доказательство сформулированного в примере утверждения проводится стандартными математическими приемами. Они основаны на том, что измеримое множество можно сколь угодно точно приблизить открытыми множествами, последние представляются в виде суммы не более чем счетного числа открытых шаров, а для шаров делимость проверяется непосредственно (от шара Х тело объема отделяется соответствующей плоскостью).

Теорема 8. Пусть даны случайное множество А на делимом вероятностном пространстве {Ω, G, P } со значениями во множестве всех подмножеств множества У из конечного числа элементов, и нечеткое множество D на У. Тогда существуют случайные множества С 1 , С 2 , С 3 , С 4 на том же вероятностном пространстве такие, что

где B = Proj A.

Доказательство. В силу справедливости законов де Моргана для нечетких (см. теорему 1 выше) и для случайных множеств, а также теоремы 5 выше (об отрицаниях) достаточно доказать существование случайных множеств С 1 и С 2 .

Рассмотрим распределение вероятностей во множестве всех подмножеств множества У , соответствующее случайному множеству С такому, что Proj C = D (оно существует в силу теоремы 3). Построим случайное множество С 2 с указанным распределением, независимое от А . Тогда по теореме 6.

Чтобы для полученного случайного множества случайное множество не меняется). Перебрав все элементы У , получим случайное множество , для которого выполнено требуемое. Теорема 8 доказана.

Основной результат о сведении теории нечетких множеств к теории случайных множеств дается следующей теоремой.

Теорема 9. Пусть - некоторые нечеткие подмножества множества У из конечного числа элементов. Рассмотрим результаты последовательного выполнения теоретико-множественных операций

где - символ одной из следующих теоретико-множественных операций над нечеткими множествами: пересечение, произведение, объединение, сумма (на разных местах могут стоять разные символы). Тогда существуют случайные подмножества того же множества У такие, что

и, кроме того, результаты теоретико-множественных операций связаны аналогичными соотношениями

где знак означает, что на рассматриваемом месте стоит символ пересечения случайных множеств, если в определении B m стоит символ пересечения или символ произведения нечетких множеств, и соответственно символ объединения случайных множеств, если в B m стоит символ объединения или символ суммы нечетких множеств.

Аннотация: В лекции представлены методы моделирования экономических задач с использованием нечетких множеств в среде Mathcad. Введены основные понятия теории нечетких множеств. На примерах показаны операции над множествами, расчет свойств. Рассмотрены оригинальные задачи, в которых применен нечетко-множественный подход в процессе принятия решения. Техника моделирования реализована с помощью матриц программы Mathcad.

Цель лекции. Познакомить с нечеткими множествами. Научить ставить задачу для построения нечетко-множественной модели. Показать, как строить нечеткие множества и производить действия над ними в Mathcad. Представить методы решения нечетко-множественной модели в процессе решения задач.

6.1 Нечетко-множественное моделирование

При моделировании широкого класса реальных объектов возникают необходимость принимать решения в условиях неполной нечеткой информации. Современным перспективным направлением моделирования различного вида неопределенностей является теория нечетких множеств. В рамках теории нечетких множеств разработаны методы формализации и моделирования рассуждений человека, таких понятий как "более или менее высокий уровень инфляции", "устойчивое положение на рынке", "более ценный" и т.д.

Впервые понятие нечетких множеств предложил американский ученый Л.А.Заде (1965 г). Его идеи послужили развитию нечеткой логики. В отличие от стандартной логики с двумя бинарными состояниями (1/0, Да/Нет, Истина/Ложь), нечеткая логика позволяет определять промежуточные значения между стандартными оценками. Примерами таких оценок являются: "скорее да, чем нет", "наверное да", "немного вправо", "резко влево" в отличие от стандартных: "вправо" или "влево", "да". В теории нечетких множеств введены нечеткие числа как нечеткие подмножества специализированного вида, соответствующих высказываниям типа " значение переменной примерно равно а". В качестве примера рассмотрим треугольное нечеткое число , где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значение фактора. Треугольные числа – это самый часто используемый на практике тип нечетких чисел, причем, чаще всего их используют в качестве прогнозных значений параметра. Например, ожидаемое значение инфляции на следующий год. Пусть наиболее вероятное значение – 10%, минимально возможное – 5%, а максимально возможное – 20%, тогда все эти значения могут быть сведены к виду нечеткого подмножества или нечеткого числа A: А: (5, 10, 20)

С введением нечетких чисел оказалось возможным прогнозировать будущие значения параметров, которые меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраическим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности). Применение нечетких чисел позволяет задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости).

Нечеткая логика , как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

6.2 Основные понятия теории нечетких множеств

Множество - неопределяемое понятие математики. Георг Кантор (1845 – 1918) – немецкий математик, чьи работы лежат в основе современной теории множеств, дает такое понятие: "…множество - это многое, мыслимое как единое".

Множество, включающее в себя все объекты, рассматриваемые в задаче, называют универсальным множеством. Универсальное множество принято обозначать буквой . Универсальное множество является максимальным множеством в том смысле, что все объекты являются его элементами, т.е. утверждение в рамках задачи всегда истинно. Минимальным множеством является пустое множество – , которое не содержит ни одного элемента. Все остальные множества в рассматриваемой задаче являются подмножествами множества . Напомним, что множество называют подмножеством множества , если все элементы являются также элементами . Задание множества - это правило, позволяющее относительно любого элемента универсального множества однозначно установить, принадлежит множеству или не принадлежит. Другими словами, это правило, позволяющее определить, какое из двух высказываний, или , является истинным, а какое ложным. Одним из способов задания множеств является задание с помощью характеристической функции.

Характеристической функцией множества называют функцию , заданную на универсальном множестве и принимающую значение единица на тех элементах множества , которые принадлежат , и значение нуль на тех элементах, которые не принадлежат :

(6.1)

В качестве примера рассмотрим универсальное множество и два его подмножества: - множество чисел, меньших 7, и - множество чисел, немного меньших 7. Характеристическая функция множества имеет вид

(6.2)

Множество в данном примере является обычным множеством.

Записать характеристическую функцию множества , используя лишь 0 и 1, невозможно. Например, включать ли в числа 1 и 2? "намного" или "ненамного" число 3 меньше 7? Ответы на эти и подобные им вопросы могут быть получены в зависимости от условий задачи, в которой используются множества и , а также от субъективного взгляда того, кто решает эту задачу. Множество называется нечетким множеством. При составлении характеристической функции нечеткого множества решающий задачу (эксперт) может высказать свое мнение относительно того, в какой степени каждое из чисел множества принадлежит множеству . В качестве степени принадлежности можно выбрать любое число с отрезка . При этом означает полную уверенность эксперта в том, что - столь же полную уверенность, что говорит о том, что эксперт затрудняется в ответе на вопрос, принадлежит ли множеству или не принадлежит. Если , то эксперт склонен отнести к множеству , если же , то не склонен.

Функцией принадлежности нечеткого множества называют функцию , которая

Такую функцию называют функцией принадлежности нечеткому множеству . - Максимальное значение функции принадлежности , присутствующее в множестве - верхняя грань - называется супремум. Функция принадлежности отражает субъективный взгляд специалиста на задачу, вносит индивидуальность в ее решение.

Характеристическую функцию обычного множества можно рассматривать как функцию принадлежности этому множеству, но в отличие от нечеткого множества , принимает лишь два значения: 0 или 1.

Нечетким множеством называют пару , где - универсальное множество , - функция принадлежности нечеткого множества .

Несущим множеством или носителем нечеткого множества называют подмножество множества , состоящее из элементов, на которых .

Точкой перехода нечеткого множества называют элемент множества , на котором .

В рассматриваемом примере, где , - множество чисел, меньших 7, - множество чисел, немного меньших 7, субъективно выбираем значения для множества , которые будут составлять функцию принадлежности . В таблице 6.1 представлены функции принадлежности и для и .

Таблица 6.1.
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 0 0 0 0
0 0 0,5 0,6 0,8 0,9 0 0 0 0

Часто используется более компактная запись конечных или счетных нечетких множеств. Так, вместо приведенного выше табличного представления подмножеств и , эти подмножества можно записать следующим образом.


Теория нечетких множеств позволяет использовать при синтезе алгоритма управления нечеткие лингвистически определенные переменные.  

Теория нечетких множеств прошла путь от разработки формальных средств представления плохо определяемых понятий, используемых человеком, и аппарата для их обработки до моделирования приближенных рассуждений, к которым человек прибегает в повседневной и профессиональной деятельности и даже до создания компьютеров с нечеткой логикой.  

Теория нечетких множеств позволяет заменить строгую принадлежность объекта некоторому множеству на непрерывную степень принадлежности. Для ознакомления с теорией нечетких множеств, их применением для исследований в области каталитических процессов читатель может обратиться к разд.  

Теорию нечетких множеств часто путают с теорией вероятностей. В самом деле, ее критики заявляли, что теория нечетких множеств не способна решать задачи, которые не сформулированы в терминах теории вероятностей. За исключением этих величин, две данные меры совершенно различны, хотя обе могут быть описаны как меры неопределенности. Из них каждая измеряет отличный аспект неопределенности.  

В теории нечетких множеств, как известно, используются функции принадлежности, интерпретируемые как характеристические функции для нечетких множеств. Ее значение, равное 0, соответствует утверждению, что данный элемент х не принадлежит А, а ее значение, равное 1, свидетельствует о его безусловной принадлежности данному множеству. Промежуточные значения / ид (ж) не следует трактовать в вероятностном смысле, так как степень принадлежности элемента к нечеткому множеству не обязана иметь статистическую природу.  

В теории нечетких множеств важную роль играет понятие комбинации двух нечетких отношений.  

В теории нечетких множеств вводится ряд операций над множествами, которые должны соответствовать комбинациям нечетких терминов и их смысловым нагрузкам при решении прикладных задач. В работе отмечается, что в частном случае операции над нечеткими множествами должны соответствовать операциям в теории обычных множеств. При решении конкретных задач: каждый исследователь использует свои знания об объекте исследования и роли каждой операции.  

В теории нечетких множеств большинство арифметических операций определены для непрерывных областей. Операции для дискретных областей выделяются обычно в виде особого случая.  

В теории нечетких множеств в зависимости от способов задания операции (Т), которые удовлетворяют аксиомам (2.1) - (2.5), существует бесконечное число нечетких операций И. В теории нечеткого управления находят применение следующие их типы.  

Элементы теории нечетких множеств могут успешно применяться для принятия решений в условиях неопределенности. Нечеткая логика возникла как наиболее удобный способ построения систем управления сложными технологическими процессами, а также нашла применение в диагностических и других экспертных системах. Несмотря на то что математический аппарат нечеткой логики впервые был разработан в США, активное развитие данного метода началось в Японии, Исследования в области нечеткой логики получили широкую финансовую поддержку, В Европе и США усилия были направлены на то, чтобы сократить огромное отставание от японцев.  

Однако аксиоматика теории нечетких множеств существенно отличается от аксиоматики теории вероятностей и позволяет использовать более простые вычислительные процедуры. Чтобы убедиться в этом, достаточно рассмотреть операции объединения и пересечения нечетких множеств.  

Упомянем также теорию нечетких множеств, в которой исходные понятия описываются нечеткими множествами и переменными и, соответственно, получаемое решение интерпретируется в терминах нечетких множеств. Как показывают конкретные примеры, эти методы во многом аналогичны статистическим. При их использовании предполагаются заданными функции принадлежности результатов наблюдений, и на их основе получают соответствующие функции принадлежности для конечных результатов.  

Математическая теория нечетких множеств, созданная в 60-е гг. для решения узкой утилитарной задачи распознавания образов, в настоящее время имеет приложения в самых различных областях научной и хозяйственной деятельности - от работ по созданию искусственного интеллекта в ЭВМ пятого поколения до управления сложными технологическими процессами.
В основе данной теории лежат понятия нечеткого множества и функции принадлежности, определение которых приводятся ниже.

Пусть Е - множество, счетное или нет, их: - элемент Е. Тогда нечеткое подмножество А множества Е определяется как множество упорядоченных пар {(х, ц~А(х))}, Ух є Е, где ц-А(х) - характеристическая функция принадлежности, принимающая свои значения во вполне упорядоченном множестве М, указывающая степень принадлежности элемента х подмножеству А. Множество М называется множеством принадлежностей.
Применение теории нечетких множеств в экономике проиллюстрируем на примере вычисления перспективного ассортимента оптового предприятия в одном товарном профиле при фиксированной торговой зоне. Под перспективным ассортиментом в данном случае понимается набор товаров, которые заведомо будут иметь спрос среди потребителей - в данном случае розничных торговых предприятий, входящих в район эффективной коммерческой деятельности оптовой организации. Нахождение перспективного ассортимента гарантирует оптовой организации формирование ассортиментного ядра, которое будет реализовано на рынке с минимальным риском, а также помогает отразить общие тенденции того потребительского рынка, на котором организация оптовой торговли осуществляет свою коммерческую деятельность.
Успешное решение задачи нахождения перспективного ассортимента позволяет принять решение о заключении сделки при анализе поступающего коммерческого предложения.
Дано:
X = \хг х2,..., хп} - множество товаров, имеющихся на складе оптового торгового предприятия или выдвигаемых в качестве коммерческих предложений.
У = {уг у2,..., ур} - множество признаков товаров.
Z = {zr z2,., zm} - множество рассматриваемых розничных торговых предприятий - потребителей оптовой организации.
Требуется определить перспективный ассортимент организации оптовой торговли, т.е. набор х; для удовлетворения предполагаемых запросов из Z.
Модель строится при следующих допущениях:

  1. на рынке действуют поставщик и потребители - соответственно оптовая и розничные торговые организации;
  2. коммерческие запросы от розничных торговых организаций zt, z2,..., zm рассматриваются и по возможности удовлетворяются независимо от времени их поступления.
  3. сделки между оптовой и розничными торговыми организациями имеют различный порядок, который определяется весовой функцией розничных организаций с помощью экс
    пертной оценки по итогам предыдущей коммерческой деятельности;
  4. товары хр х2,...,хп характеризуютсяр признаками;
  5. степени принадлежности признаков уг у2,...,ур товарам варьируются между отдельными товарами хр х2,..., хп;
  6. один товар предпочитается другому всякий раз, когда его признаки v. по степени важности более близки к оценке потребителя z. (розничного предприятия).
Пусть л х Y -gt; - функция принадлежности нечеткого бинарного отношения R, определяемая с помощью эксперта.
Отношение R представляется в матричной форме следующим образом:
.У, У2 " * * Ур ¦
  1. %r(xi’ У і)^r(xpУ2) ^r(xi" Ур)
Х2 ?r(X2gt; У/) ?r(X2’ У2) " ‘ ^r(X2’ Ур)
*„1,іж(\’Уі) у2-gt; fAV .
В этой матрице элементы каждой строки выражают относительные степени принадлежности признаков определенным товарам. Чем выше значения, тем более важен признак.
Пусть fs:7xZ-gt; - функция принадлежности нечеткого бинарного отношения S. Для всех у є Y и всех zeZ ф5(у, z) равна степени совместимости розничного торгового предприятия z с признаком у. Чем выше значения функции, тем более данный признак совместим с конкретным предприятием розничной торговли.
В матричной форме это отношение имеет вид:
Значение матрицы S отражают относительные степени важности признаков Yt при принятии предприятием решения
о закупке партии какого-либо товара у рассматриваемого нами оптовика.

Z, ... Z
2 п
Из матриц R и S получаем матрицу Т:
элементы которой определяются функцией принадлежности
? ІR(X, У) -ф(У,Z,)
Рл/Хgt; zi) =¦
, для всех хе X, ye Y, zi Z.
Сумма 2, фв(х, у) равна степени нечеткого подмножества,
У
указывающей число важнейших признаков у, которое присуще товару д: с точки зрения предприятия розничной торговли. Далее строится матрица:
^A,(xl’zl) Л 1*А7(Х1- z2gt; - Iі Л /*/¦ zm-l) Л Мл (xl’zm)\
‘ * m-і т
I
\!lAt(xn‘Zl)^ltA7(xn-z2) - ,(xn-zm-l) Л ЦА (хп- zm)\
" 1 * т-1 т "
где конъюнкция Л означает операцию попарного минимума. Порог разделения / ассортимента ограничивается условием /lt;шіп шах шіп (и.(х, г.), и,(х, z.J).
i.j X ЯІ ‘ Aj 3
После того как порог I выбран, можно для любого z определить уровневое множество:
М\ = {х\ц,(х)gt; тіптахтіп(ц (х, г),ц (х, z))},
I 1 Л,j х I 1 Л] J
YxeMr
Пусть oj(z) - весовая функция, задающая для каждого розничного торгового предприятия его вес по итогам предыдущей коммерческой деятельности.

Ассортимент предприятия оптовой торговли описывается объединением уровневых множеств:
м = U 0)(z)Mr
І
Вычисление перспективного ассортимента помогает оптовому торговому предприятию определить:
как оптимизировать товарный ассортимент (какие товары обязательно следует иметь на складе при сохранении сложившейся структуры потребителей);
как изменить ассортиментную концепцию при заданном изменении зоны обслуживания, т.е. какие стратегические действия предпринять в случае выхода из числа обслуживаемых потребителей отдельных розничных организаций;
как оптимизировать зону обслуживания (в нашем случае это район эффективной коммерческой деятельности) при исключении из ассортимента тех товаров, признаки которых не удовлетворяют оптовую организацию, или включении тех товаров, признаки которых устраивают ее).
В качестве иллюстрации к данной задаче рассмотрим упрощенный числовой пример.
Пусть оптовая организация имеет на складе 6 потребительских товаров {х„ х2,..., х6} и осуществляет поставки трем потребителям - Zj (крупный универмаг), z2 (небольшой магазин) и z3 (палатка).
В качестве рассматриваемых признаков товаров возьмем следующие:
yt - «цена», у3-«внешний вид»
у2-«качество», у4-«сезонность»,
у5-«ступень жизненного цикла товара».
Пусть: X х Y -gt; и ф5: Y х Z -gt; [О, 1] задаются следующими матрицами:


1

0,8

0,5

1

0,2


1

0,5

о

0,8

0,7

1

0,1

0,7


1

0,5

0

0,5

0,5 0,3

1

0,7

gt;

1

0,3

1

0,5

0,3

0,9

0,1

0,2

5 =

0

1

0.5

0,3

0,4 0,1

0

0


1

0

0,5

0,5 0,5

1

1

0,5/


,


і

а значения весовой функции равны:
co(Zj) = 30, ш(^) = 20, co(z,) = 15.

Характеристики товаров, стоящие в матрице R, указывают, например, что товар х, - дорогой, высококачественный, внешне неброский, соответствует сезону, но несколько устарел технически (или, наоборот, только поступает на рынок и еще неизвестен покупателям).
Характеристики магазинов, стоящие в матрице 5, указывают, например, что второй потребитель - магазин z2 - стеснен в складских помещениях и поэтому предпочитает торговать товарами, соответствующими данному сезону, что следует из значения функции ф$(у4, zJ.
Вычисляем матрицу Т:


/0,714

0,586

0,314

0,97

0,348

0,41

0,667

0,53

0,234

0,95

0,34

0,525

1

0,475

0,125

\ 0,714

0,514

0,5

Заранее отметим для внимательного читателя, что уже на этом этапе можно предположить, что товар х6, как следует из последней строки матрицы Т, по всей видимости, будет закуплен всеми тремя потребителями.
Попарными сведениями получаем матрицу W:

(0,586

0,314

0,314

0,348

0,41

0,348

0,53

0,234

0,234

0,34

0,525

0,34

0,475

0,125

0,125

№,514

0,5

0,5

На этом этапе вычислений учитывается конкуренция между потребителями-магазинами zr z2 и z}.
Далее находятся максимальные элементы в каждом из столбцов матрицы W:
maxmin(nAi(x, zl)tjiAJx, z2))= 0,586; maxmm(nA](x, zl),nAJx, z3)) =0,525; maxminfnAJx, г2),цА](х, z})) =0,5.

{ X, х2, х3, х4, х}, х6,} ,
{Хг х3, ху х6),
{х4,х6,},
Таким образом, широкие возможности крупного универмага zt позволяют ему торговать всем спектром продукции, предлагаемой оптом, магазин z2 в силу недостатка складских помещений, избегает приобретать товары, реализация которых потребует длительного срока, а палатка z3 берет только броские и относительно недорогие товары. Большой спрос на товар х6 не случаен, это действительно товар с блестящими характеристиками: он имеет невысокую цену при среднем качестве, великолепно выглядит, соответствует сезону и достаточно известен розничному покупателю.
Воспользовавшись значениями весовой функции, получаем значения ассортимента:
М = {50хр 30х2, 50х3, 45х4, 50х}, 105х6}
Результатами этой задачи легко воспользоваться при принятии решения о заключении сделки (при анализе поступающего коммерческого предложения).
Для этого следует, определив функцию принадлежности цредлагаемого товара хп +, провести счет согласно приведенному алгоритму, и определить, в какой степени этот товар принадлежит множеству товаров перспективного ассортимента, а если принадлежит, то не вытеснит ли он каких-либо товаров из набора хг,..., хп, уже находящихся на складе предприятия оптовой торговли.
На основании этой оценки лицо, ответственное за заключение сделки, может принять положительное, выжидательное или отрицательное решение.