Наименование переменных и параметров. Учет влияния случайных факторов. В общем виде линейной уравнение множественной регрессии можно записать следующим образом:

y = a 1 x 1 + a 2 x 2 + … +a n x n + b + ε,

где y – результативный признак (зависимая, результирующая, эндогенная переменная);

n – число факторов, включенных в модель;

x 1 , x 2 , …, x n – признаки-факторы (регрессоры, объясняющие, предикторные, предопределенные, экзогенные переменные);

a 1 , a 2 , …, a n – коэффициенты регрессии;

b – свободный член регрессии;

ε - компонента, отражающая в модели влияние случайных факторов, из-за которых реальное значение показателя может отклоняться от теоретического (регрессионный остаток).

По своей природе результирующая переменная всегда случайна. Регрессионный остаток позволяет отразить в модели стохастическую, вероятностную природу экономических процессов. Кроме того, можно также сказать, что он отражает все прочие не учтенные в явном виде факторы, которые могут повлиять на результат.

В дальнейшем в этом разделе, рассматривая способы построения уравнения регрессии, случайную компоненту пока не будем учитывать, т.е. будем рассматривать только детерминированную часть результата.

Экономический смысл параметров регрессии. Коэффициенты и свободный член регрессии принято также называть параметрами регрессии, или параметрами модели.

Коэффициенты регрессии a 1 , a 2, … , a n , как видно из записи модели, представляют собой частные производные результата по отдельным признакам-факторам:

(1.11)

Они показывают, на сколько изменяется результативный признак при изменении соответствующего признака на единицу и неизменных значениях остальных признаков (например, в формуле (1.9) коэффициент a показывает, на сколько изменится спрос на продукт при изменении цены на единицу) . Поэтому иногда коэффициент линейной регрессии называют также предельной эффективностью фактора.

Знак коэффициента линейной регрессии всегда совпадает со знаком коэффициента корреляции, так как положительная корреляция означает, что результат растет с ростом фактора, а отрицательная – что с ростом фактора результат убывает.

Однако, сравнение коэффициентов регрессии при различных признаках-факторах между собой представляется затруднительным, поскольку различные факторы обычно имеют разные единицы измерения, характеризуются различными значениями средних и показателями вариации. Чтобы решить эту проблему, рассчитывают стандартизованные коэффициенты регрессии (см. далее). В отличие от стандартизованных коэффициентов регрессии коэффициенты регрессии a 1 , a 2, … , a n принято называть коэффициентами чистой регрессии .



Свободный член регрессии b показывает значение признака-результата при условии, что все признаки-факторы равны нулю. Если такая ситуация невозможна, свободный член может и не иметь экономического содержания.

Частные уравнения регрессии. На основе линейного уравнения множественной регрессии могут быть получены частные уравнения регрессии, в которых все факторы, кроме обычно одного, закреплены на своем среднем уровне. Такое частное уравнение регрессии устанавливает связь между результативным признаком и одним из признаков-факторов при условии, что остальные факторы приравнены к своим средним значениям. Система таких уравнений выглядит следующим образом:

,
(1.14)

Кроме того, можно построить частные уравнения регрессии и для нескольких независимых переменных, т.е. закрепить на среднем уровне все факторы, кроме нескольких.

На основе частных уравнений регрессии могут быть построены так называемые частные коэффициенты эластичности Э i , которые рассчитываются по формулам и показывают, на сколько процентов изменится результат при изменении фактора x i на 1%. Расчет этих коэффициентов позволяет оценить, какие факторы более сильно воздействуют на результативный признак. Таким образом, их тоже можно использовать при отборе факторов в регрессионную модель.

Стандартизованное уравнение регрессии [Лукин]. Перейдем от переменных модели y, x 1 , x 2 , …, x n к так называемым стандартизованным переменным по следующим формулам:

,

где - стандартизованные переменные;

α 1 , α 2 , …, α n – стандартизованные коэффициенты регрессии.

Для нахождения стандартизованных коэффициентов используют матрицу парных коэффициентов корреляции (1.6). Можно доказать, что для стандартизованных коэффициентов регрессии выполняется следующая система уравнений:

где α i – стандартизованные коэффициенты регрессии,

Парные коэффициенты корреляции результата с каждым из факторов.

Подставив в стандартизованное уравнение регрессии (1.16) вместо стандартизованных переменных формулы (1.15), можно вернуться к уравнению чистой регрессии.


Парную линейную регрессию еще иногда называют простой регрессией.

Формулы для нелинейных функций приведены для случая, когда имеется один признак-фактор, хотя эти функции можно использовать и в случае множественной регрессии.

Можно показать, что показательная и экспоненциальная функция – одно и то же. Действительно, пусть у = ab x = a(e ln b) x = ae x * ln b = aе bx , где
b = ln b.

Формула (1.17) получена из формулы (1.6) следующим образом: правые части уравнений получены путем перемножения стандартизованных коэффициентов на столбцы матрицы (1.6), начиная со второго столбца и второй строки. В левой части – первая строка матрицы (1.6). Аналогичный результат можно получить, если перемножать коэффициенты на строки, а в левой части оставить первый столбец.

1. Основные определения и формулы

Множественная регрессия - регрессия между переменными и т.е. модель вида:

где - зависимая переменная (результативный признак);

- независимые объясняющие переменные;

Возмущение или стохастическая переменная, включающая влияние неучтенных в модели факторов;

Число параметров при переменных

Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Уравнение множественной линейной регрессии в случае независимых переменных имеет вид а в случае двух независимых переменных - (двухфакторное уравнение).

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов . Строится система нормальных уравнений:

Решение этой системы позволяет получить оценки параметров регрессии с помощью метода определителей

где - определитель системы;

- частные определители, которые получаются путем замены соответствующего столбца матрицы определителя системы данными правой части системы.

Для двухфакторного уравнения коэффициенты множественной линейной регрессии можно вычислить по формулам:

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности :

Средние коэффициентами эластичности показывают на сколько процентов в среднем изменится результат при изменении соответствующего фактора на 1%:

Их можно сравнивать друг с другом и соответственно ранжировать факторы по силе их воздействия на результат.

Тесноту совместного влияния факторов на результат оценивает коэффиц и ент (индекс) множественной корреляции :

Величина индекса множественной корреляции лежит в пределах от 0 до 1 и должна быть больше или равна максимальному парному индексу корреляции:

Чем ближе значение индекса множественной корреляции к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной и парной корреляции, можно сделать вывод о целесообразности (величина индекса множественной корреляции существенно отличается от индекса парной корреляции) включения в уравнение регрессии того или иного фактора.

При линейной зависимости совокупный коэффициент множественной ко р реляции определяется через матрицу парных коэффициентов корреляции:

где - определитель матрицы парных коэффициентов корреляции;

- определитель матрицы межфакторной корреляции.

Частны е коэффициент ы корреляции характеризуют тесноту линейной зависимости между результатом и соответствующим фактором при устранении влияния других факторов. Если вычисляется, например, (частный коэффициент корреляции между и при фиксированном влиянии ), это означает, что определяется количественная мера линейной зависимости между и которая будет иметь место, если устранить влияние на эти признаки фактора

Частные коэффициенты корреляции, измеряющие влияние на фактора при неизменном уровне других факторов, можно определить как:

или по рекуррентной формуле:

Для двухфакторного уравнения:

или

Частные коэффициенты корреляции изменяются в пределах от -1 до +1.

Сравнение значений парного и частного коэффициентов корреляции показывает направление воздействия фиксируемого фактора. Если частный коэффициент корреляции получится меньше, чем соответствующий парныйкоэффициент значит взаимосвязь признаков и в некоторой степени обусловлена воздействием на них фиксируемой переменной И наоборот, большее значение частного коэффициента по сравнению с парным свидетельствует о том, что фиксируемая переменная ослабляет своим воздействием связь и

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, - коэффициент частной корреляции первого порядка.

Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент мн о жественной корреляции :

Качество построенной модели в целом оценивает коэффициент (индекс) множественной детерминации , который рассчитывается как квадрат индекса множественной корреляции: Индекс множественной детерминации фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как

Если число параметров при близко к объему наблюдений, то коэффициент множественной корреляции приблизится к единице даже при слабой связи факторов с результатом. Для того чтобы не допустить возможногопреувеличения тесноты связи, используется скорректированный индекс множественной корреляции , который содержит поправку на число степеней свободы:

Чем больше величина тем сильнее различия и

Значимость частных коэффициентов корреляции проверяется аналогично случаю парных коэффициентов корреляции. Единственным отличием является число степеней свободы, которое следует брать равным =--2.

Значимость уравнения множественной регрессии в целом , так же как и в парной регрессии, оценивается с помощью - критерия Фишера :

Мерой для оценки включения фактора в модель служит частный -критерий . В общем виде для фактора частный -критерий определяется как

Для двухфакторного уравнения частные -критерии имеют вид:

Если фактическое значение превышает табличное, то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то фактор нецелесообразно включать в модель, а коэффициент регрессии при данном факторе в этом случае статистически незначим.

Для оценки значимости коэффициентов чистой регрессии по -критерию Стьюдента используется формула:

где - коэффициент чистой регрессии при факторе

- средняя квадратическая (стандартная) ошибка коэффициента регрессии которая может быть определена по формуле:

При дополнительном включении в регрессию нового фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться. Если это не так, то включаемый в анализ новый фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по -критерию Стьюдента.

При построении уравнения множественной регрессии может возникнуть проблема мультиколлинеарности факторов. Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается не фактору, более тесно связанному с результатом, а тому фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Для оценки мультиколлинеарности факторов может использоваться опред е литель матрицы между факторами . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель, тем меньше мультиколлинеарность факторов.

Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это означает, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность . При нарушении гомоскедастичности выполняются неравенства

Наличие гетероскедастичности можно наглядно видеть из поля корреляции (рис. 9.22).

Рис. 9.22 . Примеры гетероскедастичности:

а) дисперсия остатков растет по мере увеличения

б) дисперсия остатков достигает максимальной величины при средних значениях переменной и уменьшается при минимальных и максимальных значениях

в) максимальная дисперсия остатков при малых значениях и дисперсия остатков однородна по мере увеличения значений

Для проверки выборки на гетероскедастичность можно использовать метод Гольдфельда-Квандта (при малом объеме выборки) или критерий Бартлетта (при большом объеме выборки).

Последовательность применения теста Гольдфельда-Квандта :

1) Упорядочить данные по убыванию той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2) Исключить из рассмотрения центральных наблюдений. При этом где - число оцениваемых параметров. Из экспериментальных расчетов для случая однофакторного уравнения регрессии рекомендовано при =30 принимать =8, а при =60 соответственно =16.

3) Разделить совокупность из наблюдений на две группы (соответственно с малыми и большими значениями фактора ) и определить по каждой из групп уравнение регрессии.

4) Вычислить остаточную сумму квадратов для первой и второй групп и найти их отношение где При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию Фишера со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает тем более нарушена предпосылка о равенстве дисперсий остаточных величин.

Если необходимо включить в модель факторы, имеющие два или более качественных уровней (пол, профессия, образование, климатические условия, принадлежность к определенному региону и т.д.), то им должны быть присвоены цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные называют фиктивными (и с кусственными) переменными .

К оэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории к другой при неизменных значениях остальных параметров. Значимость влияния фиктивной переменной проверяется с помощью -критерия Стьюдента.

2. Решение типовых задач

Пример 9. 2. По 15 предприятиям отрасли (табл. 9.4) изучается зависимость затрат на выпуск продукции (тыс. ден. ед.) от объема произведенной продукции (тыс. ед.) и расходов на сырье (тыс. ден. ед). Необходимо:

1) Построить уравнение множественной линейной регрессии.

2) Вычислить и интерпретировать:

Средние коэффициенты эластичности;

Парные коэффициенты корреляции, оценить их значимость на уровне 0,05;

Частные коэффициенты корреляции;

Коэффициент множественной корреляции, множественный коэффициент детерминации, скорректированный коэффициент детерминации.

3) Оценить надежность построенного уравнения регрессии и целесообразность включения фактора после фактора и после

Таблица 9.4

x 1

x 2

Решение:

1) В Excel составим вспомогательную таблицу рис. 9.23.

Рис. 9.23 . Расчетная таблица многофакторной регрессии.

С помощью встроенных функций вычислим: =345,5; =13838,89; =8515,78; =219,315; =9,37; =6558,08.

Затем найдем коэффициенты множественной линейной регрессии и оформим вывод результатов как на рис. 9.24.

Рис. 9.24 . Решение задачи в MS Excel

Для вычисления значения коэффициента используем формулы

Формулы для вычисления параметров заносим в ячейки Е 20 , Е 2 1, Е 2 2. Так длявычисления параметра b 1 в Е 20 поместим формулу =(B20*B24-B21*B22)/(B23*B24-B22^2) и получим 29,83. Аналогично получаем значения =0,301 и Коэффициент =-31,25 (рис. 9.25.).

Рис. 9.25 . Вычисление параметров уравнения множественной регрессии (в с т роке формул формула для расчета b 2) .

Уравнение множественной линейной регрессии примет вид:

31,25+29,83+0,301

Таким образом, при увеличении объема произведенной продукции на 1 тыс. ед. затраты на выпуск этой продукции в среднем увеличатся на 29,83 тыс. ден. ед., а при увеличении расходов на сырье на 1 тыс. ден. ед. затраты увеличатся в среднем на 0,301 тыс. ден. ед.

2) Для вычисления средних коэффициентов эластичности воспользуемся формулой: Вычисляем: =0,884 и =0,184. Т.е. увеличение только объема произведенной продукции (от своего среднего значения) или только расходов на сырье на 1% увеличивает в среднем затраты на выпуск продукции на 0,884% или 0,184% соответственно. Таким образом, фактор оказывает большее влияние на результат, чем фактор

Для вычисления парных коэффициентов корреляции воспользуемся функцией «КОРРЕЛ» рис. 9.26.

Рис. 9.26 . Вычисление парных коэффициентов корреляции

Значения парных коэффициентов корреляции указывают на весьма тесную связь с и на тесную связь с В то же время межфакторная связь очень сильная (=0,88>0,7), что говорит о том, что один из факторов является неинформативным, т.е. в модель необходимо включать или или

З начимост ь парных коэффициентов корреляции оценим с помощью -критерия Стьюдента. =2,1604 определяем с помощью встроенной статистической функции СТЬЮДРАСПОБР взяв =0,05 и =-2=13.

Фактическое значение -критерия Стьюдента для каждого парного коэффициента определим по формулам: . Результат расчета представлен на рис. 9.27.

Рис. 9.27 . Результат расчета фактических значений -критерия Стьюдента

Получим =12,278; =7,1896; =6,845.

Так как фактические значения -статистики превосходят табличные, то парные коэффициенты корреляции не случайно отличаются от нуля, а статистически значимы.

Получим =0,81; =0,34; =0,21. Таким образом, фактор оказывает более сильное влияние на результат, чем

При сравнении значений коэффициентов парной и частной корреляции приходим к выводу, что из-за сильной межфакторной связи коэффициенты парной и частной корреляции отличаются довольно значительно.

Коэффициент множественной корреляции

Следовательно, зависимость от и характеризуется как очень тесная, в которой =93% вариации затрат на выпуск продукции определяются вариацией учтенных в модели факторов: объема произведенной продукции и расходов на сырье. Прочие факторы, не включенные в модель, составляют соответственно 7% от общей вариации

Скорректированный коэффициент множественной детерминации =0,9182 указывает на тесную связь между результатом и признаками.

Рис. 9.28 . Результаты расчета частных коэффициентов корреляции и коэфф и циента множественной корреляции

3) Оценим надежность уравнения регрессии в целом с помощью -критерия Фишера. Вычислим . =3,8853 определяем взяв =0,05, =2, =15-2-1=12 помощью встроенной статистической функции FРАСПОБР с такими же параметрами.

Так как фактическое значение больше табличного, то с вероятностью 95% делаем заключение о статистической значимости уравнения множественной линейной регрессии в целом.

Оценим целесообразность включения фактора после фактора и после с помощью частного -критерия Фишера по формулам

; .

Для этого в ячейку B32 заносим формулу для расчета F x 1 «=(B28- H24^2)*(15-3)/(1-B28) », а в ячейку B 33 формулу для расчета F x 2 «=(B28-H23^2)*(15-3)/(1-B28) », результат вычисления F x 1 = 22,4127, F x 2 = 1,5958. Табличное значение критерия Фишера определим с помощью встроенной функции FРАСПОБР с параметрами =0,05, =1, =12 «=FРАСПОБР(0,05; 1 ;12) », результат - =4,747. Так как =22,4127>=4,747, а =1,5958<=4,747, то включение фактора в модель статистически оправдано и коэффициент чистой регрессии статистически значим, а дополнительное включение фактора после того, как уже введен фактор нецелесообразно (рис. 9.29).

Рис. 9.29 . Результаты расчета критерия Фишера

Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора Это означает, что парная регрессионная модель зависимости затрат на выпуск продукции от объема произведенной продукции является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (расходы на сырье).

3. Дополнительные сведения для решения задач с помощью MS Excel

Сводные данные основных характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Опис а тельная статистика . Порядок действий следующий:

1. Необходимо проверить доступ к Пакету анализа . Для этого в ленте выбираем вкладку «Данные», в ней раздел «Анализ» (рис. 9.30.).

Рис. 9.30 . Вкладка данные диалоговое окно «Анализ данных»

2. В диалоговом окне «Анализ данных» выбрать Описательная стат и стика и нажать кнопку «ОК», в появившемся диалоговом окне заполните необходимые поля (рис. 9.31):

Рис. 9.31 . Диалоговое окно ввода параметров инструмента
« Описательная статистика »

Входной интервал - диапазон, содержащий данные результативного и объясняющих признаков;

Группирование - указать, как расположены данные (в столбцах или строках);

Метки - флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Выходной интервал - достаточно указать левую верхнюю ячейку будущего диапазона;

Новый рабочий лист - можно задать произвольное имя нового листа, на который будут выведены результаты.

Для получения информации Итоговой статистики, Уровня наде ж ности, -го наибольшего и наименьшего значений нужно установить соответствующие флажки в диалоговом окне.

Получаем следующую статистику (рис. 2.10).


Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный минерально-сырьевой университет «Горный»

Кафедра информатики и компьютерных технологий
Расчетно-графическое задание
Вариант 7
По дисциплине: Эконометрика

Тема: «построение уравнения множественной регрессии»

Выполнил: студент гр. ЭГ-13-2 _________ /Чакир А.Ю./

Проверил: доцент ____________ / Беляев В.В./

Санкт-Петербург

ЦЕЛЬ РАБОТЫ: закрепить и углубить знания, полученные при изучении курса, в области построения моделей множественной регрессии.

ЗАДАНИЕ: изучить влияние факторов, определяющих цену строящегося жилья в Санкт-Петербурге.

ИСХОДНЫЕ ДАННЫЕ

Общая площадь квартиры, кв.м

Жилая площадь квартиры, кв.м

Площадь кухни, кв.м

Наличие балкона

Срок до окончания строительства, мес

Цена квартиры, тыс.долл.

Рис. 1 Фрагмент таблицы исходных данных

ТРЕБУЕТСЯ

1. Определить факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге.

2. Построить уравнение регрессии, характеризующее зависимость цены от всех факторов в линейной форме. Оценить адекватность полученной модели. Составить матрицу парных коэффициентов корреляции исходных переменных и проанализировать ее.

3. Построить модельв линейной форме методом включения. Определить, какие факторы значимо воздействуют на формирование цены квартиры в этой модели.

4. Построить графики остатков, выполнить визуальный анализ. Провести тестирование ошибок (остатков) уравнения множественной регрессии на гетероскедастичность, применив тест Гельфельда-Квандта.

5. Оценить автокорреляцию остатков с помощью статистики Дарбина-Уотсона.

6. Написать уравнение множественной регрессии в стандартизованном масштабе, пояснить экономический смысл его параметров.

7. Вычислить средние частные коэффициенты эластичности для факторов, вошедших в модель. Пояснить их экономический смысл.

8. Пользуясь уравнением регрессии вычислить прогнозные значения стоимости объекта недвижимости, если значения значимых факторов равны, где и максимальное и минимальное значения факторов в таблице исходных данных. Вычислить точечный и интервальный прогноз.

ХОД РАБОТЫ

матрица корреляция уравнение регрессия

Предположим, что на стоимость строящего в Санкт-Петербурге жилья влияют все перечисленные в таблице факторы, т.е. общая и жилая площадь квартиры, площадь кухни, наличие балкона и число месяцев до окончания срока строительства. Наличие балкона - качественная характеристика, поэтому влияние этой характеристики на стоимость жилья учтем с помощью фиктивной переменной, которая будет принимать значение 0, если балкона нет и 1 - если балкон есть.

Введем следующие переменные:

y - цена квартиры, тыс.долл.

x1 - общая площадь квартиры (кв.м)

x2 - жилая площадь квартиры (кв.м)

x3 - площадь кухни (кв.м)

x4 - наличие балкона (1- есть, 0 - нет)

x5 - число месяцев до окончания срока строительства.

Пользуясь надстройкой «Анализ данных - Регрессия» построим уравнение регрессии.

Рис. 2 Регрессионная статистика

Получили уравнение

y=1,062+0,513 x1-0,04 x2+0,08 x3+0,514 x4-0,426 x5

Очевидно, что полученное уравнение противоречит практике, коэффициент при x2 отрицательный, то есть увеличение жилой площади уменьшает общую стоимость квартиры.

Проанализируем межфакторную корреляцию. Для получения матрицы парных линейных коэффициентов корреляции воспользуемся надстройкой «Анализ данных - Корреляция».

Рис. 3 Корреляционный анализ

Значения коэффициентов линейной парной корреляции высоки; , что говорит о взаимозависимости этих факторов, то есть о мультиколлинеарности.

Полученное уравнение множественной регрессии, включающее весь имеющийся набор факторов, не адекватно. Возможная причина - мультиколлинеарность факторов, квлюченных в модель.

Построение модели методом включения - это пошаговый отбор переменных.

На 1-м шаге (k=1) по наибольшему значению коэффициента корреляции с y найдем наиболее информативную переменную - это x1.

Так как при k=1 величина R2 совпадает с квадратом обычного (парного) коэффициента корреляции R2 = r2(y,x), из матрицы корреляций находим наибольший коэффициент детерминации для набора однофакторных регрессионных моделей:

Аналогичный результат можно получить последовательно строя уравнения регрессии для зависимостей y-xj с помощью табличной функции ЛИНЕЙН.

Рис. 4 Нахождение информативное переменной с помощью функции ЛИНЕЙН

Таким образом, в классе однофакторных регрессионных моделей наиболее информативным предиктором (предсказателем) является x1 - общая площадь квартиры. Включим эту переменную в выстраиваемую методом включения модель.

Вычислим скорректированный коэффициент детерминации:

где k-количество факторов.

2-й шаг (k=2). Среди всевозможных пар (х1 , хj), j = 2, 3, 4, 5, выбирается наиболее информативная пара:

Последовательно применяем табличную функцию ЛИНЕЙН к различным парам:

(х1 , х2) = 0.8684, (х1 , х3) = 0.8709,

(х1 , х4) = 0.8681, (х1 , х5) = 0.9147.

Очевидно, что наиболее информативной парой является (х1, х5), которая дает

С включением параметра х5 коэффициент детерминации вырос, следовательно, это правильное решение. Линейное уравнение с учетом факторов х1 и х5 имеет вид:

y (х1, х5) = 1,9787 + 0.4971 х1 - 0,4286 х5

Используя надстройку «Регрессия», проведем анализ значимости найденных коэффициентов.

Рис. 5 Фрагмент отчета регрессии по двум переменным

Столбец t-статистика содержит наблюдаемые значения t-критерия Стьюдента. Столбец «P-значение» используется для проверки гипотезы (о незначимости i-го коэффициента регрессии) с помощью критерия Стьюдента. Столбец содержит вероятности того, что в силу случайных причин принимает это или большее значение, хотя коэффициент регрессии bi =0. «P-значение» сравнивается с выбранным уровнем значимости б, если «P-значение» больше или равно б, то гипотеза подтверждается и коэффициент незначим, в противоположном случае коэффициент существенно отличен от 0, т.е. значим. Рассмотрев столбец «P-значение», приходим к выводу: два коэффициента при независимых переменных (х1 , х5) отличаются от нуля при уровне значимости = 0.05. Коэффициент «Y-пересечение» (1,9787) не значим, и его следует исключить из уравнения. Таким образом, уравнение фактически имеет вид:

3-й шаг (k = 3). Попытаемся добавить третью переменную в наше уравнение регрессии. Среди всевозможных троек (х1 , х5 , хj), j = 2, 3, 4, выбираем аналогично наиболее информативную: (х1, х5, х2), которая дает (3) = 0.9139, что меньше, чем (2) = 0.9147.

Рис. 6 Применение функции ЛИНЕЙН для нахождения третьего фактора

Следовательно, третью переменную в модель включать нецелесообразно, т.к. она понижает значение. Этот же результат получим, применив надстройку «Регрессия» Отметим, что коэффициент при x2 не значим при уровне значимости 0,05.

Рис. 7 Фрагмент отчета регрессии по трем переменным

Уравнение

y (х1, х5) = 0.4971 х1 - 0,4286 х5

адекватно описывает зависимость стоимости квартиры от влияющих на нее факторов, и может быть использовано для анализа и прогноза. Все коэффициенты при неизвестных в нем значимы.

Для применения метода наименьших квадратов требуется, чтобы дисперсия остатков была гомоскедастичнной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.

Рассмотрим графики остатков для переменных x1 и x5, полученные при построении уравнения регрессии с помощью надстройки «Анализ данных - Регрессия» (рис.8).

Визуальный анализ остатков (ошибок аппроксимации) по графикам не может однозначно исключить наличие гетероскедастичности.

Рис. 8 Графики остатков

Нарушение гомоскедастичности может быть выявлено с помощью метода (теста) Гельфельда-Квандта. Предварительно все наблюдения упорядочим по одному из факторов, например, по х1.

Для применения теста Гельфельда-Квандта необходимо определить число исключаемых центральных наблюдений С. Из экспериментальных расчетов, проведенных авторами метода, рекомендовано при n=30 принимать C=8, а при n=60, - соответственно, С=16.

В задании при n= 69 было исключено 17 наблюдений (С=17). Тогда в каждой группе будет по 26 наблюдений

Рис. 9 Организация данных при использовании теста Гельфельда-Квандта (часть строк скрыта). Строки с 27 по 43 (#nn) исключены из рассмотрения

Для первой группы наблюдений строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S1) для первой группы (рис.10)

Рис. 10

Для второй группы наблюдений также строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S2) для этой группы (рис.11)

Рис. 11

Fкрит=FРАСПОБР(0.05;23;23)=2.01. Fнабл > Fкрит, следовательно, гипотеза о гомоскедастичности остатков отвергается. Значит, имеет место гетероскедастичность.

Для решения данной проблемы введем новую величину z равную стоимости квадратного метра общей площади квартиры.

Для первой группы наблюдений строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S1) для первой группы (рис.12)

Рис. 12 Результат работы функции ЛИНЕЙН для первой группы

Для второй группы наблюдений также строим уравнение линейной регрессии с помощью функции ЛИНЕЙН. Определяем остаточную сумму квадратов (S2) для этой группы (рис.13)

Рис. 13 Результат работы функции ЛИНЕЙН для второй группы

Fкрит=FРАСПОБР(0.05;23;23)=2.01. Fнабл < Fкрит, следовательно, гипотеза о гомоскедастичности остатков подтверждается.

Так как ошибки аппроксимации гомоскедастичны, применение МНК по данному условию корректно.

Для применения МНК требуется, чтобы значения остатков были распределены независимо друг от друга. Если это не так, то говорят, что остатки автокоррелированы.

Тестом на простейшую автокорреляцию ошибок (первого порядка) является тест Дарбина-Уотсона (Durbin-Watson).

Рис. 14 Организация данных для вычисления статистики Дарбина-Уотсона в Excel (часть строк скрыта)

Вычислим значение статистики d по формуле:

По таблице для n = 26 и p=3 находим критические значения DU=1.67 и DL=1.55. Поскольку, остатки не коррелированы.

Так как значения остатков были распределены независимо друг от друга, применение МНК по данному условию корректно.

Рис. 15 Распределение остатков

Выведем уравнение множественной регрессии в стандартизованном масштабе. Определим стандартизованные переменные:

Рис. 16 Отчет "Описательная статистика"

Для определения коэффициентов стандартизованного уравнения множественной регрессии можно использовать МНК или воспользоваться связью стандартизованных коэффициентов с полученными ранее коэффициентами множественной регрессии

Таким образом, уравнение множественной регрессии в стандартизованном масштабе имеет вид:

В силу того, что стандартизованные переменные центрированные и нормированы, стандартизованные коэффициенты можно сравнивать между собой, т.е. сравнивать факторы по силе воздействия. В нашем случае влияние первого фактора на результат более чем в четыре раза (0.95/0.21> 4) превышает влияние пятого фактора.

Рассчитаем средние частные коэффициенты эластичности, воспользовавшись результатами работы надстройки «Описательная статистика».

При изменении фактора х1 на один процент результат возрастет на 1.02%, при неизменных прочих параметрах. Аналогично, при изменении фактора х5 на один процент значение результирующего фактора уменьшится на 0.08%, при неизменных прочих параметрах.

По формуле найдем точки, в которых необходимо построить прогноз.

Вычислим точечный прогноз путем подстановки найденных значений в уравнение:

y (х1, х5) = 0.4971*117,39 - 0,4286 *19,2=50,129

Для получения интервальной оценки необходимо воспользоваться формулой:

где-стандартная ошибка групповой средней

Вектор значений факторов, определяющий точку, в которой строим прогноз;

Матрица, по которой было построено уравнение.

Стандартное отклонение остаточной дисперсии или стандартная ошибка уравнения регрессии.

Рис. 17 Результаты прогнозирования

Интервальной оценкой является доверительный интервал с надежностью 95% тыс.долл.

· Уравнение y (х1, х5) = 0.4971 х1 - 0,4286 х5 адекватно описывает зависимость стоимости квартиры от влияющих на нее факторов и может быть использовано для анализа и прогноза. Все коэффициенты в нем значимы.

· Увеличение общей площади квартиры на 1 м2 приводит к увеличению стоимости квартиры на величину в среднем на 497$, отдаление срока сдачи на 1 месяц снижает стоимость квартиры на 428,6$. Влияние прочих факторов несущественно

· Влияние общей площади квартиры на ее стоимость более чем в четыре раза превышает влияние срока сдачи объекта на стоимость

· При изменении цены общей площади квартиры на 1% стоимость квартиры возрастет на 1.02%, при неизменных прочих параметрах. Аналогично, при изменении срока сдачи квартиры на один процент стоимость квартиры упадет на 0.08%, при неизменных прочих параметрах.

· Проверка корректности применения МНК показала, что ошибки аппроксимации (значения остатков) гомоскедастичны и распределены независимо друг от друга.

· Стоимость квартиры площадью 117,39 кв.м со сроком сдачи через 19.2 мес с вероятностью 95 % будет лежать в пределах тыс.долл.

Подобные документы

    Построение обобщенной линейной модели множественной регрессии, ее суть; теорема Айткена. Понятие гетероскедастичности, ее обнаружение и методы смягчения проблемы: тест ранговой корреляции Спирмена, метод Голдфелда-Квандта, тесты Глейзера, Парка, Уайта.

    контрольная работа , добавлен 28.07.2013

    Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа , добавлен 17.01.2016

    Построение линейной модели и уравнения регрессии зависимости цены на квартиры на вторичном рынке жилья в Москве в 2006 г. от влияющих факторов. Методика составления матрицы парных коэффициентов корреляции. Экономическая интерпретация модели регрессии.

    лабораторная работа , добавлен 25.05.2009

    Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.

    контрольная работа , добавлен 19.04.2013

    Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа , добавлен 10.02.2014

    Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа , добавлен 29.06.2013

    Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа , добавлен 28.07.2012

    Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 01.12.2013

    Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

    лабораторная работа , добавлен 05.12.2010

    Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.


Лекция 3. Множественная регрессия

    Условия применения метода и его ограничения

Парная регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономических переменных контролировать нельзя, т.е. не удается обеспечить равенство всех прочих условий для оценки влияния одного исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т.е. построить уравнение множественной регрессии:

Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Требования к факторам:

    Должны быть количественно измеримы. Если необходимо, включить в модель качественный фактор, не имеющий количественного измерения, ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).

    Не должны быть интеркоррелированы и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой интеркорреляцией, когда

для зависимости

может привести к нежелательным последствиям, повлечь неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель, поэтому параметры уравнения регрессии оказываются неинтерпретированными.

    Мультиколлинеарность

Специфическим для многофакторных систем является условие недопустимости слишком тесной связи между факторными признаками. Это условие часто именуется проблемой коллинеарности факторов. Коллинеарность означает достаточно тесную неслучайную линейную корреляцию одних факторов с другими. Часто рекомендуют исключить фактор, связанный с другим фактором при . Из двух тесно связанных друг с другом факторов рационально исключить фактор, слабее связанный с результативным признаком.

Более сложная методика требуется для нахождения и исключения фактора, не имеющего тесной связи с каким-либо отдельным фактором, но имеющего тесную многофакторную связь с комплексом остальных факторов. Это положение называют мультиколлинеарностью. Для ее измерения следует вычислить последовательно коэффициенты множественной корреляции (или детерминации) каждого фактора (в роли результата) со всеми прочими факторами (в роли объясняющих переменных). Обнаружив мультиколлинеарный фактор либо несколько таковых, следует рассмотреть возможность исключения наиболее зависимого от комплекса остальных фактора, если это не приведет к потере экономического смысла модели.

Коллинеарность и мультиколлинеарность факторов в экономических системах возникают неслучайно. В совокупности однородных предприятий или регионов, как правило, в силу законов экономики возникает параллельная вариация факторных признаков: те предприятия, которые имеют лучшие значения одних факторов, например, лучшие природные условия, одновременно имеют и более высокую фондо- и энерговооруженность, более высокую квалификацию персонала, лучшую технологию и т.п. Отсюда и неизбежная большая или меньшая коллинеарность всех факторов производства либо социально-экономических условий жизни.

Наличие в системе коллинеарности ухудшает математические качества модели, может привести к неустойчивости результативных параметров, резко меняющихся при небольшом изменении значений факторов.

Специфичной проблемой многофакторного анализа является вопрос о возможности замены фактора, по которому отсутствует информация, на другой фактор и последствия такой замены.

Следует по возможности найти другую переменную, значения которой известны и которая находится в достаточно тесной связи с отсутствующим фактором. Например, если нет данных по региону о средней заработной плате, то их можно заменить величиной валового регионального продукта на душу населения, имея в виду, что между этими экономическими признаками должна быть тесная (хотя и неизвестная точно) связь.

Важно учитывать, с какой целью строится модель. Если целью является только прогнозирование результативного признака, то замена фактора другой пременной при ее тесной связи с заменяемым фактором не приведет к существенным ошибкам. Но если целью модели являлось принятие менеджером решений о своей экономической политике, то замена управляемого фактора на тесно с ним связанный, однако неуправляемый заменяющий фактор лишает модель смысла, несмотря на высокую детерминацию.

    Выбор типа многофакторной модели и факторных признаков

Связь результативного признака y с факторами x 1 , x 2 , …, x k выражается уравнением:

(22)

где a – свободный член уравнения;

k – число факторов;

j – номер фактора;

i – номер единицы совокупности;

b j – коэффициент условно-чистой регрессии при факторе x j , измеряющий изменение результата при изменении фактора на его единицу, и при постоянстве прочих факторов, входящих в модель;

ε i – случайная вариация y i , не объясненная моделью.

Модель в форме (22) является аддитивной. Это означает, что в основе модели лежит гипотеза о том, что каждый фактор что-то добавляет или что-то отнимает от значения результативного признака. Такая гипотеза о типе связи причин и следствия вполне отражает ряд экономических систем взаимосвязанных признаков. Например, если y – это урожайность сельскохозяйственной культуры, а x 1 , x 2 , …, x k – агротехнические факторы: дозы разных видов удобрений, число прополок, поливов, доля потерь при уборке, то действительно, каждый из этих факторов либо повышает, либо снижает величину урожайности, причем результат может существовать и без любых из перечисленных факторов.

Однако аддитивная модель пригодна не для любых связей в экономике. Если изучается такая связь как зависимость объема продукции предприятия y от занимаемой площади x 1 , числа работников x 2 , стоимости основных фондов x 3 (или всего капитала), то каждый из факторов является необходимым для существования результата, а не добавлением к нему. В таких ситуациях нужно исходить из гипотезы о мультипликативной форме модели:

(23)

Такая модель по ее первым создателям получила название «модель Кобба-Дугласа».

Возможна и смешанная форма модели, в которой одни факторы будут входить аддитивно, а другие мультипликативно.

При выборе факторных признаков следует исходить из следующих положений.

    Факторы должны являться причинами, а результативный признак – их следствием. Недопустимо в число факторов включать признак, занимающий в реальной экономике место на «выходе» системы, т.е. зависимый от моделируемого. Например, строится модель себестоимости центнера зерна. Факторами взяты урожайность зерновых культур и трудоемкость центнера, но коэффициент детерминации невелик, модель плохая. Для ее «улучшения» в число факторов добавили рентабельность производства зерна. Коэффициент детерминации сразу подскочил до 0,88. Но модель не стала лучше, она стала бессмысленной, так как рентабельность зависит от себестоимости, а не наоборот.

    Факторный признаки не должны быть составными частями результативного признака. В ту же модель себестоимости нельзя вводить факторами зарплату в расчете на центнер зерна, затраты на перевозку центнера зерна и т.п. связь целого с ее структурными частями следует анализировать не с помощью корреляционного анализа, а с помощью систем индексов.

    Следует избегать дублирования факторов. Каждый реальный фактор должен быть представлен одним показателем. Например, трудовой фактор в модели объема продукции может быть представлен либо среднесписочным числом работников, либо затратами человеко-дней (человеко-часов) на производство продукции, но не обоими показателями. Дублирование факторов ведет к раздроблению влияния фактора, и он может оказаться ненадежным из-за такого раздробления.

    Следует по возможности избегать факторов, тесно связанных с другими.

    Следует включать факторы одного уровня иерархии, не следует включать и факторы вышележащего уровня и их субфакторы. Например, в модель себестоимости зерна включаем урожайность, трудоемкость, но не добавляем еще балл плодородия, дозу удобрений, энерговооруженность работников, т.е. субфакторы – причины, влияющие на урожайность и трудоемкость. Включение субфакторов тоже дублирование фактора.

    Есть логика в таком построении модели, при котором все признаки отнесены на одну и ту же единицу совокупности, как результативный признак, так и факторы. Например, если моделируется объем продукции предприятия, то и факторы должны относиться к предприятию: число работников, площадь угодий, основные фонды и т.д. Если строится модель заработной платы работника, то и факторы должны относиться к работнику: его стаж, возраст, образование, разряд тарифной сетки (шкалы), энерговооруженность и т.д.

    Действует принцип простоты модели. Если возможно построить хорошую модель с пятью факторами, то не следует гнаться за идеальной моделью с десятью факторами, обычно лишние факторы ухудшают модель.

    Системы показателей многофакторной корреляции и регрессии

Рассмотрим данную систему показателей на примере связи урожайности зерновых культур в 51 агрофирме Орловской области. Первоначально были отобраны 8 факторных признаков, которые могут влиять на вариацию урожайности:

x 1 – размер посевной площади зерновых, га;

x 2 – удельный вес зерновых в общей площади, %;

x 3 – затраты на 1 га посева зерновых, тыс. руб./га;

x 4 – затраты труда на 1 га, чел.-ч;.

x 5 – уровень оплаты труда, руб./чел.-ч.;

x 6 – энергообеспеченность, л.с./100 га пашни;

x 7 – число комбайнов на 1000 га зерновых, шт.;

x 8 – число трактористов-машинистов на 100 га пашни, чел.

Первоначальное уравнение регрессии имеет вид:

Однако надежно отличными от нуля оказались только коэффициенты при x 3 (t -критерий равен 10,5) и при x 8 (t -критерий равен 2,72). Большую надежность, чем другие факторы имеет и x 5 .

После отсева ненадежных факторов, т.е. исключения их из уравнения, окончательное уравнение регрессии таково:

Таким образом, на различие урожайности в данных 51 агрофирмы сильнее всего и надежно повлияли различия между предприятиями в затратах на 1 га, в уровне оплаты труда и в обеспеченности квалифицированными работниками.

Каждый из коэффициентов, называемых коэффициентами чистой регрессии, интерпретируются как величина изменения урожайности при условии, что данный фактор изменяется на принятую единицу измерения, а два других фактора остаются постоянными на средних уровнях. Например, b 3 означает, что при увеличении затрат на 1 га зерновых и при неизменности оплаты труда и обеспеченности трактористами-машинистами урожайность в среднем увеличивалась в среднем на 4, 6 ц/га. Термин «условно чистая регрессия» означает, что влияние отдельного фактора очищено от сопутствующей вариации только тех факторов, которые входят в уравнение, но не очищено от возможной сопутствующей вариации других факторов.

Величина коэффициентов условно чистой регрессии зависит от принятых единиц измерения. Если бы фактор x 3 измерялся не в тысячах рублей на гектар, а в рублях на гектар, то коэффициент b 3 был бы равен 0,00461 руб./га. Следовательно, сравнивать между собой коэффициенты условно чистой регрессии нельзя. Чтобы получить сравнимые коэффициенты влияния вариации факторов на вариацию результата, следует избавиться от единиц измерения, привести к одной условной единице. Для этого можно применить два способа.

Первый способ называется стандартизацией. Этот термин возник из английского названия среднего квадратического отклонения (Standard deviation). Стандартизированные коэффициенты регрессии выражаются в долях или величинах, если они превышают единицу – в величинах σ y . Стандартизированные коэффициенты обозначают греческой буквой β и называют бета-коэффициентами. Их формула такая:

В нашем примере получаем:

β 3 = 0,772;

β 5 = 0,147;

β 8 = 0,223.

Интерпретация бета-коэффициентов такова: при изменении фактора x 3 на одно его среднее квадратическое отклонение от средней величины и при постоянстве других факторов результативный признак (урожайность) отклонится от своего среднего уровня на 0,772 его среднего квадратического отклонения. Так как все стандартизированные коэффициенты выражены в одинаковых единицах измерения, в σ y , они сравнимы между собой, и можно сделать вывод, что на вариацию урожайности сильнее всего повлияла в изучаемой совокупности предприятий вариация затрат на гектар посева.

Другой способ приведения коэффициентов регрессии к сравнимому виду – их преобразование в коэффициенты эластичности. Формула коэффициента эластичности ℓ j :

(25)

Интерпретируется коэффициент эластичности следующим образом: при изменении фактора x j на его среднюю величину и при постоянстве других входящих в уравнение факторов результативный признак в среднем изменится на ℓ j части его средней величины (или на ℓ j средних, если ℓ j >1, что бывает реже). Часто говорят, «изменится на ℓ j процентов на 1% изменения фактора».

В нашем примере имеем:

Коэффициенты эластичности так же выражены, как и β j , в одинаковых единицах и сравнимы между собой. Ими удобнее, чем β-коэффициентами, пользоваться в планировании и прогнозировании. Вряд ли менеджер станет планировать увеличение фактора, скажем, инвестиций на 0,6 сигмы. Обычно планируют изменение факторов, если они управляемы, на столько-то процентов от достигнутого уровня. Например, если планируем увеличить затраты на гектар зерновых на 10%, оплату труда на 30%, а обеспеченность квалифицированными трактористами-машинистами на 20%, то можно ожидать изменения урожайности на
, где k j – планируемые темпы прироста факторов.

Теперь рассмотрим систему показателей тесноты многофакторных связей. Прежде всего строится матрица парных коэффициентов корреляции (табл. 1).

Таблица 1. Матрица парных коэффициентов корреляции

Признаки

x 3

x 5

x 8

x 3

x 5

x 8

Матрица парных коэффициентов корреляции дает исходные данные для других показателей тесноты связи и для первичной проверки на коллинеарность. В данном случае все связи между факторами слабые, коллинеарность не испортит модель.

Важнейшим показателем тесноты связи в многофакторной системе является коэффициент множественной детерминации R 2 . Он измеряет общую тесноту связи вариации результативного признака y с вариацией всей системы входящих в модель факторов. Величина коэффициента множественной детерминации может быть вычислена несколькими способами.

1.Вычисление на основе матрицы парных коэффициентов корреляции

,

где Δ * - определитель матрицы;

, (26)

а Δ – определитель матрицы, не включающей первой строки Δ * и ее последнего столбца, т.е.:

При двух факторах получается упрощенная формула расчета:

(27)

Из (27) следует, что при независимости факторов друг от друга, т.е. , коэффициент множественной детерминации есть сумма парных коэффициентов детерминации.

Пользуясь формулой (27), можно вычислить три возможных двухфакторных коэффициента детерминации:

2.Вычисление на основе парных коэффициентов корреляции и β-коэффициентов:

В примере: R 2 =0,86·0,772+0,35·0,147+0,433·0,223=0,8119.

3.Вычисление как корреляционное отношение, т.е. отношение вариации результативного признака y , связанной с вариацией системы факторов, входящих в модель (в уравнение регрессии), ко всей, общей, вариации результативного признака:

. (30)

Числитель формулы (30) – это сумма квадратов отклонений индивидуальных расчетных значений результативного признака от его средней, а знаменатель – сумма квадратов фактических значений результативного признака от средней, для всех единиц совокупности.

Частными коэффициентами детерминации называются показатели, измеряющие, на какую долю уменьшается необъясненная вариация уже имеющимися в модели факторами при включении в модель данного фактора x m . Формула частного коэффициента детерминации такова:

В нашем примере:

Интерпретация такова: включение в модель фактора x 3 после x 5 и x 8 y на 74%; включение фактора x 5 после x 3 и x 8 уменьшает необъясненную вариацию y на 10%; включение фактора x 8 после x 3 и x 5 уменьшает необъясненную вариацию y на 20%.

Коэффициенты частной детерминации несравнимы между собой, так как это доли разных величин-знаменателей.

Извлекая корень квадратный из любого коэффициента детерминации, получают коэффициент соответствующей корреляции: множественной, парной или частной.

5. Включение в многофакторную модель неколичественных факторов

Неколичественными являются такие факторы аграрного производства, как природная зона, форма собственности предприятий, преобладающее производственное направление (отрасль) и другие. Предпочтительно не смешивать в исходной совокупности предприятия или регионы, различающиеся по этим качественным признакам. Но может возникнуть и необходимость построения модели с неоднородными единицами совокупности, например, если число единиц, однородных по качественному признаку, слишком мало для надежной связи. Иногда может быть поставлена цель измерения чистого влияния неколичественного фактора, например, формы собственности на результаты производства, а это требует включения качественного фактора в многофакторную модель.

В таких случаях качественные градации признака можно закодировать специальными переменными, часто называемыми «фиктивными» или «структурными» переменными. Они отражают неоднородность качественной структуры совокупности. Предположим, необходимо построить регрессионную модель рентабельности продукции предприятий, причем в регионе имеется 16 государственных предприятий, 28 частных, 13 кооперативной формы собственности.

Если игнорировать различия, связанные с формой собственности, то они или уйдут в остаточную вариацию, ухудшив модель рентабельности, либо в неизвестной пропорции станут смешиваться с влиянием тех или иных качественных факторов, искажая меру их влияния.

Необходимо для m неколичественных факторов или градаций такового фактора ввести m -1 структурную переменную, обозначим которую U j . Данные для расчета будут иметь следующий вид при m =3 (табл. 2).

Таблица 2. Исходные данные со структурными переменными

Форма собственности

Единица совокупности

Количественные признаки

Структурные переменные

X 1

X 2

X k

U 1

U 2

Государственная

Значения этих признаков

Значения этих признаков

Кооперативная

Значения этих признаков

В результате решения будет получена модель вида:

где x k +1 соответствуют переменной U 1 , а x k +2 – переменной U 2 .

Перепишем модель в специальных обозначениях:

Значение коэффициентов при структурных переменных таково: коэффициент c 1 означает, что предприятия частной формы собственности при тех же значениях количественных факторов x 1 x k имеют рентабельность на c 1 больше, чем государственные предприятия, которые приняты за базу сравнения (не имеют структурных переменных U 1 и U 2 ). Предприятия кооперативной формы собственности имеют рентабельность на c 2 большую, чем государственные. Величины c 1 и c 2 могут быть как положительными, так и отрицательными.

Вместо общей модели можно записать три частные модели для предприятий отдельных групп по формам собственности, присоединяя коэффициент при структурной переменной к свободному члену уравнения:

а) для предприятий государственного сектора

б) для предприятий частного сектора

в) для предприятий кооперативного сектора

6.Применение многофакторных регрессионных моделей для анализа деятельности предприятий и прогнозирования

Оценка деятельности на основе регрессионной модели в сравнении с простейшим приемом такой оценки – сравнением результата, достигнутого данным предприятием, со средним результатом по однородной совокупности – дает дополнительные преимущества.

Согласно нашему примеру, средняя урожайность по 51 агрофирме составила 22,9 ц/га зерна.

Агрофирма 1 получила 17,6 ц/га. Следовательно, эта фирма отстающая. Однако возникает вопрос: может быть и условия производства у этой фирме были хуже средних? Сравнение со средней по совокупности полностью игнорирует различие в «факторообеспеченности» предприятий, а на самом деле предприятия всегда находятся не в одинаковых условиях.

Оценка деятельности на основе регрессионной модели предполагает учет неравенства условий производства, например, плодородия почв, финансового положения, наличия квалифицированных кадров и другие. Полностью учесть различие в условиях производства между предприятиями невозможно, так как любая модель учитывает не все факторы вариации урожайности. Оценка на основе модели производится сравнением фактического результата (урожайности) с тем результатом, который был бы достигнут предприятием при фактически имеющихся факторах и средней по совокупности их эффективности, выраженной коэффициентами условно чистой регрессии. Рассмотрим результаты расчета урожайности двух фирм (табл. 3).

Таблица 3. Фактический и расчетный результат производства

Агрофирма

Факторные признаки

Урожайность, ц/га

x 3

x 5

x 8

фактическая

расчетная

Средняя по выборке

Обе фирмы имеют худшие, чем в среднем в выборке, значения основных факторов x 3 и x 8 , а соответственно и значения расчетной урожайности ниже, чем средняя. Но при этом фирма 1 практически имеет ту же расчетную урожайность, что и фактически полученную. Нет основания считать эту фирму отстающей. Фирма 2 имеет фактическую урожайность ниже, чем расчетная по имеющимся факторам. Это означает, что либо у этой фирмы оказались хуже среднего неизвестные, не входящие в модель факторы, либо степень использования основных факторов – затрат на гектар и обеспеченность квалифицированными работниками ниже, чем в среднем.

Прогнозирование на основе регрессионной модели исходит из предположения, что факторы управляемы и могут принять то или иное плановое, ожидаемое значение, а прочие неизвестные условия сохранятся на среднем по совокупности уровне. Управляемость факторов не означает, что при прогнозе в модель можно подставлять любые их значения. Уравнение регрессии отражает те условия, которые существовали в совокупности, по данным которой уравнение получено. Если бы значения факторных признаков были в 2-3 раза более высокими, то нельзя утверждать, что коэффициенты условно чистой регрессии остались бы теми же.

Поэтому рекомендуется при прогнозировании по уравнению регрессии не выходить за пределы реально наблюдаемых значений факторов в совокупности или выходить за эти границы не более чем на 10-15% средних величин. Не менее важным требованием при прогнозировании является требование о соблюдении системности прогнозируемых значений факторов. Необходимо учитывать знак и тесноту связи между факторами. Например, если прогнозируется повысить степень обеспеченности квалифицированными работниками, то нельзя оставить без изменения, тем более снижать, прогнозируемую величину уровня оплаты труда. Планируя рост энерговооруженности, необходимо примерно в той же пропорции увеличить и фондовооруженность.

Ориентируясь на указанные в таблице 3 значения факторов, предположим, что прогнозируя урожайность, планируем затраты на гектар (x 3 ) на уровне 3 тыс. руб., наличие трактористов-машинистов на 100 га пашни 0,8; оплату часа труда в размере 20 руб. в час. Подставляя эти значения в регрессионную модель получим точечный прогноз урожайности зерновых культур:

Точечный прогноз представляет собой математическое ожидание (среднюю) возможных с разной вероятностью значений прогнозируемого признака. Необходимо дополнить точечный прогноз расчетом доверительных границ с достаточно большой вероятностью. Для этого следует использовать величину средней квадратической ошибки аппроксимации, которая вычисляется по формуле:

(33)

Числитель подкоренного выражения – это остаточная, не объясненная моделью сумма квадратов отклонений результативного признака, а знаменатель – число степеней свободы остаточной вариации. В нашем примере остаточная сумма квадратов отклонений равна 814,3. Имеем:

Следовательно, с надежностью 0,95 прогнозируемая урожайность составит 25,4±4,16·2, или от 17,8 до 33,72 ц/га. Все эти расчеты относятся к прогнозам урожайности для отдельных агрофирм. Если речь идет о средней урожайности по совокупности 51 агрофирмы, то средняя ошибка средней арифметической величины равна среднему квадратическому отклонению, деленному на корень квадратный из объема выборки n , т.е. составит:

Интерпретация этого значения ошибки прогноза средней величины такова: если обеспечить 51 агрофирму факторами x 3 , x 5 , x 8 на уровнях соответственно 3, 20, 0,8, то будет получена средняя по совокупности урожайность 25,4±0,583 ц/га. С вероятностью 0,95 средняя по совокупности ожидаемая урожайность составит 25,4±0,583·2, или от 23,7 до 27,1 ц/га.

Эконометрической корреляционно-регрессионной моделью системы взаимосвязанных признаков изучаемой совокупности является такое уравнение регрессии, которое включает основные факторы, влияющие на вариацию результативного признака в совокупности, обладает высоким значением коэффициента детерминации (не ниже 0,5), надежными и правильно интерпретируемыми в соответствии (по знаку и по порядку величины) с теорией изучаемой системы коэффициентами регрессии, и в силу данных свойств пригодное для оценки деятельности единиц совокупности и для прогнозирования.

Множественной регрессии (2)Реферат >> Маркетинг

Вводя их в модель, т.е, построить уравнение множественной регрессии . Множественная регрессия широко используется в решении проблем спроса...

Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости переменной у от нескольких объясняющих переменных (х 1, х 2 ,…, х k) которая может быть решена с помощью множественного корреляционно-регрессионного анализа.

При исследовании зависимости методами множественной регрессии задача формируется так же, как и при использовании парной регрессии, т.е. требуется определить аналитическое выражение формы связи между результативным признаком у и факторными признаками х, х 2 , ..., х k , найти функцию , где k – число факторных признаков

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Из-за особенностей метода наименьших квадратов во множественной регрессии, как и в парной, применяются только линейные уравнения и уравнения, приводимые к линейному виду путем преобразования переменных. Чаще всего используется линейное уравнение, которое можно записать следующим образом:

a 0 , a 1, …, a k – параметры модели (коэффициенты регрессии);

ε j – случайная величина (величина остатка).

Коэффициент регрессии а j показывает, на какую величину в среднем изменится результативный признак у, если переменную х j увеличить на единицу измерения при фиксированном (постоянном) значении других факторов, входящих в уравнение регрессии. Параметры при x называются коэффициентами «чистой» регрессии .

Пример.

Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

y – расходы семьи за месяц на продукты питания, тыс. руб.;

x 1 – месячный доход на одного члена семьи, тыс. руб.;

x 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.

Оценивание достоверности каждого из параметров модели осуществляется при помощи t-критерия Стьюдента. Для любого из параметров модели а j значение t-критерия рассчитывается по формуле , где


S ε – стандартное (среднее квадратическое) отклонение уравнения регрессии)

определяется по формуле

Коэффициент регрессии а j считается достаточно надежным, если расчетное значение t- критерия с (n - k - 1 ) степенями свободы превышает табличное, т.е. t расч > t а jn - k -1 . Если надеж­ность коэффициента регрессии не подтверждается, то следует; вывод о несущественности в модели факторного j признака и необходимости его устранения из модели или замены на другой факторный признак.

Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставлять факторные признаки по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий применяются частные коэффициенты эластичности Э j и бета-коэффициенты β j .

Формула для расчета коэффициента эластичности

где

a j – коэффициент регрессии фактора j ,

Среднее значение результативного признака

Среднее значение признака j

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная у при изменении фактора j на 1 %.

Формула определения бета - коэффициента.

, где

S xj – среднее квадратическое отклонение фактора j ;

S y - среднее квадратическое отклонение фактора y.

β - коэффициент показывает, на какую часть величины среднего квадратического отклонения S y из­менится зависимая переменная у с изменением со­ответствующей независимой переменной х j на величину своего среднего квадратического отклонения при фиксированном значении остальных неза­висимых переменных.

Долю влияния определенного фактора в суммарном влиянии всех факторов можно оценить по величине дельта-коэффициентов Δ j .

Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.

Формула определения дельта - коэффициента.

r yj – коэффициент парной корреляции между фактором j и зависимой переменной;

R 2 – множественный коэффициент детерминации.

Коэффициент множественной детерминации используют для оценки качества множественных регрессионных моделей.

Формула определения коэффициента множественной детерминации.

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием факторных признаков, т.е. опре­деляет, какая доля вариации признака у учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе R 2 к единице, тем выше качество модели

При добавлении независимых переменных значение R 2 уве­личивается, поэтому коэффициент R 2 должен быть скорректи­рован с учетом числа независимых переменных по формуле

Для проверки значимости модели регрессии используется F-критерий Фишера. Он определяется по формуле

Если расчетное значение критерия с γ 1 , = k и γ 2 = (n - k- 1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

В качестве меры точностимодели применяют стандартную ошибку, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n - k -1):

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК) . Система нормальных уравнений имеет вид:

Решение системы может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.

Пример15.

По четырем предприятиям региона (таблица 41) изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%). Требуется написать уравнение множественной регрессии.

Таблица 41 – Зависимость выработки продукции на одного работника