Лекция: Синус, косинус, тангенс, котангенс произвольного угла

Синус, косинус произвольного угла


Чтобы понять, что такое тригонометрические функции, обратимся к окружности с единичным радиусом. Данная окружность имеет центр в начале координат на координатной плоскости. Для определения заданных функций будем использовать радиус-вектор ОР , который начинается в центре окружности, а точка Р является точкой окружности. Данный радиус-вектор образует угол альфа с осью ОХ . Так как окружность имеет радиус, равный единице, то ОР = R = 1 .

Если с точки Р опустить перпендикуляр на ось ОХ , то получим прямоугольный треугольник с гипотенузой, равной единице.


Если радиус-вектор двигается по часовой стрелке, то данное направление называется отрицательным , если же он двигается против движения часовой стрелки - положительным .


Синусом угла ОР , является ордината точки Р вектора на окружности.

То есть, для получения значения синуса данного угла альфа необходимо определиться с координатой У на плоскости.

Как данное значение было получено? Так как мы знаем, что синус произвольного угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе, получим, что

А так как R = 1 , то sin(α) = y 0 .


В единичной окружности значение ординаты не может быть меньше -1 и больше 1, значит,

Синус принимает положительное значение в первой и второй четверти единичной окружности, а в третьей и четвертой - отрицательное.

Косинусом угла данной окружности, образованного радиусом-вектором ОР , является абсцисса точки Р вектора на окружности.

То есть, для получения значения косинуса данного угла альфа необходимо определиться с координатой Х на плоскости.


Косинус произвольного угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе, получим, что


А так как R = 1 , то cos(α) = x 0 .

В единичной окружности значение абсциссы не может быть меньше -1 и больше 1, значит,

Косинус принимает положительное значение в первой и четвертой четверти единичной окружности, а во второй и в третьей - отрицательное.

Тангенсом произвольного угла считается отношение синуса к косинусу.

Если рассматривать прямоугольный треугольник, то это отношение противолежащего катета к прилежащему. Если же речь идет о единичной окружности, то это отношение ординаты к абсциссе.

Судя по данным отношениям, можно понять, что тангенс не может существовать, если значение абсциссы равно нулю, то есть при угле в 90 градусов. Все остальные значения тангенс принимать может.

Тангенс имеет положительное значение в первой и третьей четверти единичной окружности, а во второй и четвертой является отрицательным.


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

    Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

    Теоремы косинусов и синусов

    Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

    Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

    Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

    Производные

    Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

    При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

    Применение в математике

    Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

    Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

    Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

    Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

    Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

    π = 3.141592653589793238462… (приблизительное значение числа Пи).

    Таблица косинусов для углов: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°.

    Угол х (в градусах) 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
    Угол х (в радианах) 0 π/6 π/4 π/3 π/2 2 x π/3 3 x π/4 5 x π/6 π 7 x π/6 5 x π/4 4 x π/3 3 x π/2 5 x π/3 7 x π/4 11 x π/6 2 x π
    cos x 1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

    Составной частью ЕГЭ являются тригонометрические уравнения.

    К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

    Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

    сos px = a; sin gx = b; tg kx = c; ctg tx = d.

    Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

    1. Формулы двойного аргумента, тройного аргумента:

    сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

    sin 2x = 2 sin x cos x;

    tg 2x = 2 tg x/1 – tg x;

    ctg 2x = (ctg 2 x – 1)/2 ctg x;

    sin 3x = 3 sin x – 4 sin 3 x;

    cos 3x = 4 cos 3 x – 3 cos x;

    tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

    ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

    2. Формулы половинного аргумента или понижения степени:

    sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

    tg 2 x = (1 – cos x)/(1 + cos x);

    ctg 2 x = (1 + cos x)/(1 – cos x);

    3. Введение вспомогательного аргумента:

    рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2), cos y = a/v(a 2 + b 2), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

    4. Формулы сложения и вычитания:

    sin (a + b) = sin a cos b + cos a sin b;

    sin (a – b) = sin a cos b – cos a sin b;

    cos (a + b) = cos a cos b – sin a sin b;

    cos (a – b) = cos a cos b + sin a sin b;

    tg (a + b) = (tg a + tg b)/(1 – tg a tg b);

    tg (a – b) = (tg a – tg b)/(1 + tg a tg b);

    5. Универсальная тригонометрическая подстановка:

    sin a = 2 tg (a/2)/(1 + (tg 2 (a/2));

    cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

    tg a = 2 tg a/2/(1 – tg 2 (a/2));

    6. Некоторые важные соотношения:

    sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

    cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

    7. Формулы преобразования суммы тригонометрических функций в произведение:

    sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

    cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

    tg a + tg b = sin (a + b)/(cos a cos b);

    tg a – tg b = sin (a – b)/(cos a cos b).

    А также формулы приведения.

    В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

    Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

    Ознакомимся с методами решения уравнений:

    1. Сведение к виду аx 2 + bx + c = 0

    2. Однородность уравнений.

    3. Разложение на множители.

    4. Сведение к виду a 2 + b 2 + c 2 = 0

    5. Замена переменных.

    6. Сведение уравнения к уравнению с одной переменной.

    7. Оценка левой и правой части.

    8. Метод пристального взгляда.

    9. Введение вспомогательного угла.

    10. Метод “ Разделяй и властвуй ”.

    Рассмотрим примеры:

    1. Решить уравнение: sin x + cos 2 х = 1/4.

    Решение : Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

    sin x + 1 – sin 2 x = 1/4

    4 sin 2 x – 4 sin x – 3 = 0

    sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

    т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

    Ответ : (-1) к+1 /6 + k, k€z.

    2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

    решим способом разложения на множители

    2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

    2 cos x (tg x – 1) – (tg x – 1) = 0

    (2 cos x – 1) (tg x – 1) = 0

    2 cos x – 1 = 0 или tg x – 1 = 0

    cos x = 1/2, tgx = 1,

    т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

    Ответ : ± /3 + 2k, k€z, /4 + m, m€z.

    3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

    Решение : sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

    tg 2 x – 3 tg x + 2 = 0,

    tg x = 1 и tg x = 2,

    откуда х = /4 + m, m€z,

    х = arctg 2 + k, k€z.

    Ответ : /4 + m, m€z, arctg 2 + k, k€z.

    4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

    Решение : Метод введения новой переменной

    Пусть 5х + 6 = у, тогда cos 2у + 4 2 sin у = 4

    1 – 2 sin 2 у + 4 2 sin у – 4 = 0

    sin у = t, где t€[-1;1]

    2t 2 – 4 2t + 3 = 0

    t = 2/2 и t = 3 2/2 (не удовлетворяет условию t€[-1;1])

    sin (5x + 6) = 2/2,

    5x + 6 = (-1) к /4 + k, k€z,

    х = (-1) к /20 – 6/5 + k/5, k€z.

    Ответ : (-1) к?/20 – 6/5 + ?k/5, k€z.

    5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

    Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

    х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

    Ответ : (0; /2 + k) k€z.

    6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

    Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

    (sin 2 х – 2 sin х +1) + cos 4 х = 0;

    (sin х – 1) 2 + cos 4 х = 0; это возможно если

    (sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

    sin х – 1 = 0, и cos х = 0,

    sin х = 1, и cos х = 0, следовательно

    х = /2 + k, k€z

    Ответ : /2 + k, k€z.

    7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

    Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

    – 1 sin 5х 1, и -1 sin х 1

    0 + 2 2 + cos 2 х 1 + 2

    2 2 + cos 2 х 3

    sin 5х + sin х 2, и 2 + cos 2 х 2

    2 sin 5х + sin х 2, т.е.

    sin 5х + sin х 2,

    имеем левая часть 2, а правая часть 2,

    равенство возможно если, они оба равны 2.

    cos 2 х = 0, и sin 5х + sin х = 2, следовательно

    х = /2 + k, k€z (обязательно проверить).

    Ответ : /2 + k, k€z.

    8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

    Решение : Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

    (В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

    2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

    cos х/2 (cos 3/2х + cos 7/2х) = 0,

    2 cos 5/2х cos х/2 cos х = 0,

    Возникают три случая:

    Ответ : + 2k, /5 + 2/5k, /2 + k, k€z.

    Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х 1 = /5 + 2/5k, х 2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

    Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

    sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

    sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

    cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

    cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

    Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

    Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

    9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

    Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

    2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

    (cos 3х + 1) (2 sin х – 1) = 0.

    Получаем два уравнения:

    cos 3х + 1 = 0, х = /3 + 2/3k.

    Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х < 2 (один раз “обойти” круг), затем к найденным значениям прибавить 2k.

    Неравенству 0 х < 2 удовлетворяют три числа: /3, 5/3.

    Первое не подходит, поскольку sin 2/3 = 3/2, знаменатель обращается в нуль.

    Ответ для первого случая: х 1 = + 2k, х 2 = 5/3 + 2k (можно х 2 = – /3 + 2k), k€z.

    Найдём решение этого уравнения, удовлетворяющие условию 0 х < 2. Их два: /6, 5/6. Подходит второе значение.

    Ответ : + 2k, 5/3 + 2k, 5/6 + 2k, k€z.

    10. Найти корни уравнений: v(cos 2х + sin 3х) = v2 cos х.

    Решение этого уравнения распадается на два этапа:

    1) решение уравнения, получающегося из данного возведением в квадрат обеих его частей;

    2) отбор тех корней, которые удовлетворяют условию cos х 0. При этом (как и в случае алгебраических уравнений) заботиться об условии cos 2х + sin 3х 0 нет необходимости. Все значения k, удовлетворяющие возведённому в квадрат уравнению, этому условию удовлетворяют.

    Первый шаг приводит нас к уравнению sin 3х = 1, откуда х 1 = /6 + 2/3k.

    Теперь надо определить, при каких k будет иметь место cos (/6 + 2/3k) 0. Для этого достаточно для k рассмотреть значения 0, 1, 2, т.е. как обычно “обойти один раз круг”, поскольку дальше значения косинуса будут отличаться от уже рассмотренных на величину, кратную 2.

    Ответ : /6 + 2k, 3/2/3 + 2k, 5/6 + 2k, k€z.

    11. Решить уравнение: sin 8 х – cos 5 х = 1.

    Решение этого уравнения основывается на следующем простом соображении: если 0 < a < 1 то a t убывает с ростом t.

    Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

    Сложив почленно эти неравенства, будем иметь:

    sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

    Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

    sin 8 х = sin 2 х, cos 5 х = cos 2 х,

    т.е. sin х может принимать значения -1, 0

    Ответ : /2 + k, + 2k, k€z.

    Для полноты картины рассмотрим ещё пример.

    12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

    Решение : Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

    Пусть D – дискриминант этого трёхчлена:

    1/4 D = 4 (cos 4 3х – cos 2 3х).

    Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

    Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

    Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

    Эти значения х удовлетворяют уравнению.

    Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

    Ответ : /2 + k, /3 + 2k, k€z.

    13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

    Решение : Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

    1-1/2 sin 2 2х = 7/4 sin 2х.

    обозначив sin 2х = t, -1 t 1,

    получим квадратное уравнение 2t 2 + 7t – 4 = 0,

    решая которое, находим t 1 = 1/2, t 2 = – 4

    уравнение sin 2х = 1/2

    2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .

    Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

    Понятие угла: радиан, градус

    Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

    Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

    Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

    Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

    То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

    Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

    Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

    Где - центральный угол в радианах.

    Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

    Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

    А сколько радиан составляют? Всё верно!

    Уловил? Тогда вперёд закреплять:

    Возникли трудности? Тогда смотри ответы :

    Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

    Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

    Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

    Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

    В нашем треугольнике.

    Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

    В нашем треугольнике.

    Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

    В нашем треугольнике.

    Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

    В нашем треугольнике.

    Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

    Косинус→касаться→прикоснуться→прилежащий;

    Котангенс→касаться→прикоснуться→прилежащий.

    В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

    Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

    Если разобрался в определениях, то вперёд закреплять их!

    Для треугольника, изображённого ниже на рисунке, найдём.

    Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

    Единичная (тригонометрическая) окружность

    Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

    Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

    Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

    Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

    А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

    Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

    А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

    А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

    Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

    Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

    Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

    Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

    Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

    Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

    Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

    Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

    Вот тебе в помощь единичная окружность:

    Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

    Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

    Не существует;

    Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

    Ответы:

    Не существует

    Не существует

    Не существует

    Не существует

    Таким образом, мы можем составить следующую табличку:

    Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

    А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

    Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

    Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

    Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

    Координаты точки на окружности

    А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

    Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

    Вот, к примеру, перед нами такая окружность:

    Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

    Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

    Тогда имеем, что для точки координата.

    По той же логике находим значение координаты y для точки. Таким образом,

    Итак, в общем виде координаты точек определяются по формулам:

    Координаты центра окружности,

    Радиус окружности,

    Угол поворота радиуса вектора.

    Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

    Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

    1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

    4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

    5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

    Возникли проблемы в нахождении координот точки на окружности?

    Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

    1.

    Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

    2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

    Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

    Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

    Таким образом, искомая точка имеет координаты.

    3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

    Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

    Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

    Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

    Таким образом, искомая точка имеет координаты.

    4.

    Угол поворота радиуса вектора (по условию,)

    Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

    Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

    Подставим полученные значения в нашу формулу и найдём координаты:

    Таким образом, искомая точка имеет координаты.

    5. Для решения данной задачи воспользуемся формулами в общем виде, где

    Координаты центра окружности (в нашем примере,

    Радиус окружности (по условию,)

    Угол поворота радиуса вектора (по условию,).

    Подставим все значения в формулу и получим:

    и - табличные значения. Вспоминаем и подставляем их в формулу:

    Таким образом, искомая точка имеет координаты.

    КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

    Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

    Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

    Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

    Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).