1. если прилагательное не употребляется без не , например: не ряшливый, не лепый, не разлучный, не победимый;
  2. если не служит для образования нового прилагательного, которое можно заменить близким по смыслу словом или выражением, например: не высокий (низкий), не вежливый (грубый). В этом случае не является приставкой.
  3. Если в прилагательном имеются слова очень , весьма , крайне , довольно , абсолютно и некоторые другие, усиливающие степень проявления признака, например: Это был очень не высокий забор; Это был крайне не вежливый ответ.

НЕ является отрицательной частицей и пишется с прилагательными раздельно :

  1. если имеется или подразумевается противопоставление, например: Дом был не высокий, а низкий; Ответ был не вежливый, а грубый ;
  2. если при прилагательном употребляется отрицательные частицы далеко не , отнюдь не , вовсе не , например: далеко не вежливый ответ; отнюдь не хорошее настроение ;
  3. если у прилагательного есть зависимые слова с ни , например: никому не интересная статья, ничуть не трудная задача.

НЕ с краткими прилагательными

Правописание не с краткими прилагательными, значение которых совпадает с полными, подчиняется тем же правилам, что и правописание не с полными прилагательными, например: потолок не высок (низок); потолок очень невысок ; потолок не высок, а низок; потолок не высок (а каков?).

Слитное и раздельное написание не с краткими прилагательными помогает на письме различать смысл того, что хочет выразить пишущий, например: повесть неинтересна (довольно скучна) — повесть не интересна (т. е. нельзя сказать, что она скучна, но не читается с большим интересом); дорога неширока (довольна узка) — дорога не широк а (т.е. нельзя сказать, что она узка, но не очень широкая).

Примечание

Есть небольшая группа кратких прилагательных, с которыми не пишется всегда раздельно. Такие прилагательные или не имеют полной формы, или в полной форме имеют другое значение, например: не рад, не должен, не способен, не готов, не нужен, не согласен, не обязан .

(5 оценок, среднее: 5,00 из 5 )
Для того чтобы оценить запись, вы должны быть зарегистрированным пользователем сайта.

Чтобы учащиеся поняли, в каких случаях написание не идет раздельно, а в каких случаях слитно, обязательно нужно пояснять эту тему при помощи таблиц, игр и развивающих заданий. Наградные примеры для заданий лучше всего запомнятся ребятам и легко будет употребляться в письменной речи

Существуют правила, которые нужно запомнить и выучить, чтобы знать, когда не пишется слитно. Это такие случаи написания не слитно :

  1. В словах, которые без “НЕ” не употребляются (невежа, непобедимый);
  2. В словах, которые дают качественную характеристику предмету и которые можно заменить синонимом (неприятель – враг, очень нездоровый вид – очень больной вид, нездоров – болен);
  3. В отглагольных прилагательных на -мый (независимый);
  4. В неопределенных местоимениях (некто, нечто, некоторый);
  5. В глаголах с приставкой недо-, придающей глаголу значение неполноты, недостаточности действия (недоделать, недооценивать).

В этих случаях написание не всегда раздельно, вне зависимости от того, к какой из частей речи принадлежит слово. Слитное написание не указывает на то, что предмет или признак имеет противоположное качество, действие или признак.

Раздельное написание НЕ

Ученики обязательно должны усвоить раздельно написание частицы не, так как это имеет большое значение для правильной и грамотной письменной речи.

Частица “НЕ” пишется раздельно :

  1. С глаголами (не ел);
  2. С числительными (не два);
  3. С краткими прилагательными с оттенком долженствования (он не нужен – не требуется);
  4. Со всеми словами, если при них есть или подразумевается противопоставление с союзом а (не тихая, а полноводная речка), а также при усилении отрицания словами далеко не, никому не, нисколько не, вовсе не, отнюдь не (вовсе не счастливые люди);
  5. С прилагательными в сравнительной степени (не толще);
  6. В словах с предлогами (не для кого, не в силах).

Раздельно написание не с разными частями речи чаще всего указывает на отрицание признака предмета или действия.

Тест на проверку

Предлагает вам задания и тесты на проверку усвоения знаний по поводу того, каким будет написание не – раздельное или слитное в письменной речи. Мы приведем вам примеры разных частей речи, а вы должны будете на слух или письменно определись, какое же написание не, слитное или раздельное. Попробуйте пройти тесты указанные ниже, исполнение разных заданий, чтобы усвоить раздельное написание не с разными частыми речи.

Упражнение на внимательность, а также на умение различать причастия и прилагательные. Пусть кто-то вслух диктует вам ниже указанные слова, а ты только записываете номера прилагательных, которые без не не употребляются:

  • незавершенная книга;
  • неторопливая;
  • неказистая;
  • непричастная;
  • небрежная;
  • незрелая;
  • некрасивая;
  • необратимая.

На слух постарайтесь понять, является ли не частью корня существительного или это приставка, без которой слово не употребляется :

  • небо;
  • неряха;
  • немощь;
  • ненависть;
  • немой;
  • нектар.

Укажите, как пишется не с глаголом, деепричастием, причастием :

  1. Солнце (не) принесло облегчения
  2. Упражнение было (не) выполнено.
  3. Он (не) навидел плохую погоду.
  4. Звери (не) убежали, а смотрели на охотника.
  5. (Не) читая книг, трудно быть интеллектуалом.
  6. Как пишется не с прилагательными и существительными:
  7. Она совершила (не) красивый поступок.
  8. Из чащи выполз (не) человек, а зверь.
  9. Это (не) кирпичный гараж.
  10. Река (не) большая, а маленькая.
  11. Ущелье (не) длинное, но очень глубокое.

Укажите, как пишется не с местоимения, наречия, числительные:

  1. Мы (не) раз любовались восходом.
  2. Виктору (не) когда было искать книгу.
  3. (Не) что проникло в здание музея.
  4. Я живу (не) на десятом этаже.
  5. (Не) которые люди любят собак.

Русский язык. Правописание частицы “не” с разными частями речи

К основным электрическим характеристикам диэлектриков относятся диэлектрическая проницаемость , электропроводность , диэлектрические потери и электрическая прочность .

Диэлектрическая проницаемость

В диэлектрике носители электрического заряда прочно связаны с атомами или ионами и в электрическом поле могут лишь смещаться. При этом происходит разделение центров положительного и отрицательного зарядов, т.е. поляризация . Различают следующие виды поляризации: электронная, ионная, дипольно-релаксационная и спонтанная (самопроизольная).

Рисунок 3.1 – Электронная поляризация атомов водорода

а – в отсутствии внешнего поля, б – при наличии поля

Способность различных материалов поляризоваться в электрическом поле характеризуется диэлектрической проницаемостью . Она может быть найдена по измеренной емкости кон­денсатора с диэлектриком:

где С – емкость конденсатора с диэлектриком;

С 0 - емкость того же конденсатора в вакууме.

На рис. 3.2 изображены два плоских конденсатора, площадь электро­дов которых равна S (м 2), а расстояние между ними h (м). В кон­денсаторе, изображенном на рис. 3.2, а, между электродами ва­куум, а на рис. 3.2, б - диэлектрик. Если электрическое напря­жение на электродах U (В), то напряженность электрического поля равна Е = U/h (В/м).

Электрический заряд, накопленный в конденсаторе с вакуумом, называется свободным зарядом и равен Q 0 (Кл).

В электрическом поле в частицах, из которых построен диэлек­трик, связанные положительные и отрицательные заряды смещают­ся. В результате образуются электрические диполи (рис. 3.2, б).

Рис. 3.2 - Электрические заряды на электродах конденсатора при подаче напряжения U

Поэтому на поверхности ди­электрика образуются поляризационные заряды: отрицательный у положительного электрода, и наоборот. Для компенсации этих по­ляризационных зарядов источником электрического напряжения создается дополнительный связанный заряд Q д. Суммарный пол­ный заряд Q в конденсаторе с диэлектриком равен

Q=Q 0 + Q д = ε r Q 0 ,

где ε r - относительная диэлектрическая проницаемость.

Электрическая емкость конденсатора с вакуумом и с диэлектриком между элек­тродами равна

Емкость С 0 (Ф) называют геометрической емкостью конденсатора.

При этом емкость плоского конденсатора определяется по формуле

где ε 0 = 8,84·10 -12 Ф/м – диэлектрическая постоянная.

Емкость цилиндрического конденсатора

Значение относительной диэлектрической проницаемости вещества, характеризующее степень его поляризуемости, в первую очередь, определяется механизмами поляризации. Однако величина в в боль­шой мере зависит и от агрегатного состояния вещества, так как при переходах из одного состояния в другое существенно меняются плот­ность вещества, его вязкость и изотропность.



Газообразные вещества характеризуются весьма малыми плотностями вследствие больших рас­стояний между молекулами. Благодаря этому поляризация всех газов незначительна и диэлектрическая проницаемость их близка к единице.

Зависимость диэлектрической проницаемости газа от температуры и давления определяется числом молекул в единице объема газа, ко­торое пропорционально давлению и обратно пропорционально абсолют­ной температуре.

Поляризация жидкостей, содержащих дипольные молекулы, опре­деляется одновременно электронной и дипольно-релаксационной сос­тавляющими. Такие жидкости обладают тем большей диэлектрической проницаемостью, чем больше значение электрического момента дипо­лей и чем больше число молекул в единице объема.

В твердых телах возможны все виды поляризации. Наименьшее значение диэлектрической проницаемости имеют твер­дые диэлектрики, состоящие из неполярных молекул и обладающие только электронной поляризацией.

Диэлектрики подразделяются на полярные - ε r >2 – в них проявляется несколько видов поляризации и неполярные - ε r ≤2 – проявляется только электронная поляризация. Неполярные используются для создания электроизоляционных материалов, полярные – как диэлектрики в конденсаторах.

К неполярным диэлектрикам относятся газы, жидкости и твердые вещества, обладающие только электронной поляризацией (водород, бензол, парафин, сера, полиэтилен). К полярным (дипольным) относятся жидкие и твердые вещества, имеющие одновременно несколько видов поляризаций (кремнийорганические соединения, смолы, компаунды и др.).

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

иначе изоляторы, т. е. тела, не проводящие электричества, не проводник.

Полный словарь иностранных слов, вошедших в употребление в русском языке.- Попов М. , 1907 .

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

непроводящие электричество, изоляторы.

, 1907 .

ИЗОЛЯТОРЫ ИЛИ ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

вообще все тела, дурно проводящие электричество и служащая для изолирования проводников; в частности же этим именем называются стеклянные или фарфоровые стаканы, употр. на телеграфной линии для изолирования проволоки в местах прикрепления её к столбам.

Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф. , 1907 .


Смотреть что такое "ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА" в других словарях:

    Название, данное Майклом Фарадеем телам, не проводящим, или, иначе, плохо проводящим электричество, как, напр., воздух, стекло, различные смолы, сера и т. д. Подобные тела называются также изоляторами. До исследований Фарадея, произведенных в 30… …

    Название, данное Михаилом Фарадеем телам непроводящимили, иначе, дурно проводящим электричество, как, напр., воздух, стекло,различные смолы, сера и т. д. Подобные тела называются такжеизоляторами. До исследований Фарадея, произведенных в 30 х… … Энциклопедия Брокгауза и Ефрона

    Дурные проводники электричества и потому употребляемые для изолирования проводников. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИЗОЛЯТОРЫ ИЛИ ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА вообще все тела, дурно проводящие… … Словарь иностранных слов русского языка

    Вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

    УЛЬТРАКОРОТКИЕ ВОЛНЫ - были впервые применены в терапии Шлипгаке (Schliephake). Переменные токи, применяемые в диатермии, характеризуются частотой от 800 000 до 1 млн. колебаний в секунду при длине волны в 300 400 м. В наст, время в терапию введены токи с частотой в 10 … Большая медицинская энциклопедия

    электрический - 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

    Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Один из отделов учения об электрических явлениях, заключающий в себе исследования распределения электричества, при условии равновесия его, на телах и определение тех электрических сил, какие возникают при этом. Основание Э. положили работы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Классическая электродинамика … Википедия

    Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия

Книги

  • Физика твердого тела для инженеров. Учебное пособие. Гриф УМО вузов России , Гуртов Валерий Алексеевич. Учебное пособие представляет собой систематизированное и доступное изложение курса физики твердого тела, содержащее основные элементы физики конденсированногосостояния и ее приложения для…
  • Фундаментальные основы процессов химического осаждения пленок и структур для наноэлектроники , Коллектив авторов. В монографии представлены результаты развития процессов химического осаждения из газовой фазы металлических и диэлектрических пленок с использованием нетрадиционных летучих исходных…

5.2. Диэлектрики

В 1880 г. французские учёные-физики Пьер и Жак Кюри открыли пьезоэлектрический эффект.

Пьезоэлектрический эффект заключается в следующем. Если из кристалла кварца (кварц-диэлектрик) вырезать определённым образом пластинку и поместить её между двумя электродами, то при сжатии кварцевой пластинки на электродах появятся равные по величине, но различные по знаку заряды.

Если изменить направление силы, действующей на пластинку (вместо того чтоб сдавить кварц его будут растягивать), то изменяются и знаки зарядов на электродах: на том электроде, где при сжатии возникал положительный заряд, при растяжении появится отрицательный. При этом, чем больше сила, сжимающая или растягивающая пластинку, тем больше и величина зарядов, возникающая на электродах.

В середине XIX в. были также обнаружены диэлектрики, которые подобно остаточной поляризацией. Такие диэлектрики по аналогии с термином «магнит» назвали электретами.

Самое характерное свойство электретов - способность нести на своих противоположных сторонах заряды различного знака, которые могут сохраняться в течение весьма длительного времени. Так, для электретов из карнаубского воска и его смесей это время составляет годы, керамические электреты сохраняют заряд в течение двух лет, электреты из полимеров имеют время жизни месяцы.

Объяснить этот обширный экспериментальный материал об электрических свойствах диэлектриков стало возможным тогда, когда появилась теория, объясняющая строение твёрдых тел, связи между их структурными частицами.

Есть такие твёрдые тела, у которых центры положительных и отрицательных зарядов отдельных атомов или молекул совпадают.

Если такие вещества поместить в электрическое поле, то возникает «электрическая деформация» структурных частиц, т.е. электрическое поле смещает электрические заряды, входящие в состав диэлектрика, от тех положений, которые они занимали в отсутствие поля. Так, например, если диэлектрик состоит из нейтральных атомов, то в присутствии поля их электронные оболочки смещаются относительно положительно заряжённых ядер. Если кристаллическая решётка твёрдого тела состоит из положительно и отрицательно заряжённых ионов, например, решетка NaCl, то в электрическом поле ионы равных знаков смещаются относительно друг друга. В результате упругого смещения каждой пары зарядов образуется система, обладающая некоторым дополнительным моментом p=ql, а весь диэлектрик поляризуется.

Поляризация диэлектрика численно характеризуется дипольным моментом единицы объёма Р, который равен произведению числа элементарных диполей N, содержащих в единице объёма вещества, на величину момента элементарного диполя.Что дипольный момент единицы объёма диэлектрика пропорционален напряжённости электрического поля внутри диэлектрика.

Помимо неполярных диэлектриков, существует большой класс диэлектриков, молекула которых и при отсутствии внешнего электрического поля обладают дипольным моментом. Постоянный дипольный момент могут иметь многие молекулы, у которых центры симметрии составляющих их положительных и отрицательных зарядов не совпадают друг с другом. Типичными представителями полярного твёрдого диэлектрика служат лед, твердая соляная кислота, органическое стекло и др.

При помещении полярного диэлектрика в электрическое поле происходит ориентация полярных молекул так, чтобы их оси совпадали с направлением линий напряжённости электрического поля. Однако тепловое движение частиц вещества препятствует такой ориентации. В результате действия поля и теплового движения устанавливается равновесное состояние, при котором полярные молекулы приобретают в среднем некоторую направленную ориентацию, а весь диэлектрик благодаря этому приобретает дипольный момент в направлении поля, т.е. поляризуется.

Рассмотренный вид поляризации называют ориентационной или дипольной. В этом виде поляризации, в отличие от поляризации смещения, существенную роль играет температура диэлектрика.

Диэлектрическая проницаемость полярных диэлектриков больше, чем у неполярных, так как у них по существу наблюдаются оба вида поляризации: ориентационная и упругая поляризация смещения.

Если внешнее поле убрать, то полярные и неполярные диэлектрики деполяризуются, т.е. поляризация их практически исчезает.

Существует третий тип диэлектриков, у которых наблюдается самопроизвольная поляризация. В этом случае внутри диэлектрика, без какого бы то ни было воздействия внешнего поля, самопроизвольно возникают однородно поляризованные области, так называемые домены. В отсутствии внешнего поля направления дипольных моментов областей различны. При наложении поля происходит «ориентация» доменов и весь диэлектрик поляризуется. Так как каждый домен имеет большой дипольный момент, то диэлектрическая проницаемость таких диэлектриков обычно очень велика, порядка 10 4 . диэлектрики такого типа называют сегнетоэлектриками.

Сегнетоэлектрики отличаются от других диэлектриков рядом специфических свойств.

Если у полярных и неполярных диэлектриков дипольный момент единицы объёма вещества пропорционален напряжённости электрического поля Е, то у сегнетоэлектриков такая линейная зависимость между Р и Е существует только в слабых полях (рис 30). При увеличении напряжённости поля дипольный момент Р возрастает в соответствии с кривой АВ, а при некотором значении Е изменение дипольного момента прекращается. Это состояние называют насыщением. В состоянии насыщения все домены сегнетоэлектрика располагаются вдоль поля, и дальнейшее увеличение поля Е уже не приводит к увеличению поляризации. Если после этого начать уменьшать величину напряжённости поля до нуля, то поляризация кристалла будет изменяться не по начальной кривой ОВ, а по кривой ВD и при напряжённости поля, равной нулю, кристалл останется поляризованным.

Такое явление называется диэлектрическим гистерезисом. Величину поляризации, определяемую отрезком ОD при Е=0, называют остаточной поляризацией.

Таким образом, зависимость поляризации от напряжённости переменного электрического поля для сегнетоэлектриков описывается кривой BDFLHB, называемой петлей гистерезиса. По петле гистерезиса можно определить величину спонтанной поляризации.

Однако при увеличении температуры свойства сегнетоэлектриков изменяются и при некоторой температуре, называемой температурой Кюри, происходит исчезновение спонтанной поляризации.

Сегнетоэлектрики применяют при изготовлении лазеров и в запоминающих устройствах электронно-вычислительных машин.


И турмалина. Из многочисленных кристаллографических модификаций кварца в качестве пьезо-электрика используется чаще всего низкотемпературный а-кварц, устойчивый до температуры 573°С. Пьезоэлектрические и пироэлектрические свойства кристаллов используются в технике уже много лет. Одно из применений пьезо-электриков известно буквально каждому. Это звукосниматели в наших проигрывателях, которые...

Только если, например, нагреть кристалл так, чтобы он начал плавится. Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен...

Температурные колебания, либо с повышением концентрации вещества в растворе или газе, что приводит к увеличению вероятности встречи частиц друг с другом, то есть к возникновению зародышей. Таким образом, рост кристаллов можно рассматривать как процесс, посредством которого мельчайшие кристаллические частицы – зародыши – достигают макроскопических размеров. Причем кристаллизация протекает не во...

Из этого можно заключить, что факт наличия коллоидных выделений в синей соли и их размеры, полученные методом оптической спектроскопии, подтверждены прямым наблюдением поверхности сколов в атомно-силовом микроскопе. Таким образом в результате изучения оптического поглощения галитов можно сделать следующие выводы. В бесцветных образцах какие-либо центры окраски отсутствуют. В синих окрашенных...