Превращение любого газа в жидкость - сжижение газа - возможно лишь при температуре ниже критической (см. § 62). При ранних попытках сжижения газов оказалось, что некоторые газы (С1 2 , СО 2 , NH 3) легко сжижались изотермическим сжатием, а целый ряд газов (О 2 , N2, hz, Не) сжижению не поддавался. Подобные неудачные попытки объяснил Д. И. Менделеев, показавший, что сжижение этих газов производилось при температуре, большей критической, и поэтому заранее было обречено на неудачу. Впоследствии удалось получить жидкий кислород, азот и водород (их критические температуры равны соответственно 154,4, 126,1 и 33 К), а в 1908 г. нидерландский физик Г. Камерлинг-Оннес (1853-1926) добился сжижения гелия, имеющего самую низкую критическую температуру (5,3 К).

Для сжижения газов чаще применяются два промышленных метода, в основе которых используется либо эффект Джоуля - Томсона, либо охлаждение газа при совершении им работы.

Схема одной из установок, в которой используется эффект Джоуля-Томсона, - машины Линде* - представлена на рис. 95. Воздух в компрессоре (К) сжимается до давления в десятки мегапаскаль и охлаждается в холодильнике (X) до температуры ниже температуры инверсии, в результате чего при дальнейшем расширении газа наблюдается положительный эффект Джоуля - Томсона (охлаждение газа при его расширении). Затем сжатый воздух проходит по внутренней трубе теплообменника (ТО) и пропускается через дроссель (Др), при этом он сильно расширяется и охлаждается. Расширившийся воздух вновь засасывается по внешней трубе теплообменника, охлаждая вторую порцию сжатого воздуха, текущего по внутренней трубе. Так как каждая следующая порция воздуха предварительно охлаждается, а затем пропускается через дроссель, то температура понижается все больше. В результате 6-8-часового цикла часть воздуха (» 5%), охлаждаясь до температуры ниже критической, сжижается и поступает в дьюаровский сосуд (ДС) (см. § 49), а остальная его часть возвращается в теплообменник.

Второй метод сжижения газов основан на охлаждении газа при совершении им работы. Сжатый газ, поступая в поршневую машину (детандер), расширяется и совершает при этом работу по передвижению поршня. Так как работа совершается за счет внутренней энергии газа, то его температура при этом понижается.

Академик П. Л. Капица предложил вместо детандера применять турбодетандер, в котором газ, сжатый всего лишь до 500-600 кПа, охлаждается, совершая работу по вращению турбины. Этот метод успешно применен Капицей для сжижения гелия, предварительное охлаждение которого производилось жидким азотом. Современные мощные холодильные установки работают по принципу турбодетандера.

Когда было установлено, что газ можно перевести в жидкое состояние, если его температура ниже критической, то, применяя все более низкие температуры, постепенно получили все газы в жидком состоянии. Последним в 1908 г. был получен жидкий гелий.

В машинах для сжижения газов используется охлаждение газа в процессе его адиабатического расширения. Предварительно газ сильно сжимается компрессором. Выделяющееся при этом тепло отводится водяным охлаждением. Когда затем газ в процессе адиабатического расширения сам выполняет работу (за счет своей внутренней энергии), его температура сильно понижается. Та часть машины, в которой газ расширяется, выполняя внешнюю работу (например, перемещая поршень), называется детандером .

Большой вклад в разработку методов сжижения газов внес советский физик П. Л. Капица. В одной из его машин с турбодетандером струя сжатого газа направляется на лопасти турбины; приводя ее во вращение, газ совершает работу и охлаждается.

Заметим, что, в отличие от идеального газа, при расширении сильно сжатого реального газа его температура понижается, если даже он и не совершает внешней работы, а просто вытекает через узкое сопло. Объясняется это следующим. У сильно сжатого газа множество молекул находится в пределах сфер взаимодействия с другими молекулами. При расширении газа расстояния между молекулами увеличиваются, и при этом совершается «внутренняя» работа против сил взаимодействия между молекулами за счет их кинетической энергии. В результате этого и падает температура. Этот метод охлаждения также используется при сжижении газов.

Когда температура газа падает ниже критической, он переходит в жидкое состояние. Сжиженный газ сливают и хранят в специальных сосудах Дьюара с двойными стенками, между которыми имеется высокий вакуум для уменьшения теплопроводности (рис. 8.11). Чтобы уменьшить нагревание жидкости лучеиспусканием, стенки сосуда Дьюара покрывают ртутной амальгамой (как у зеркал). (Подумайте, почему сосуд с сжиженным газом нельзя плотно закрывать).

Сжижение воздуха широко используется для разделения составляющих его газов. При кипении жидкого воздуха в первую очередь из него улетучиваются газы с более низкой температурой кипения (табл. 8.4). Азот выкипает раньше кислорода, поэтому через некоторое время в сосуде Дьюара остается почти чистый жидкий кислород. Его используют в металлургии, для взрывных работ, для сжигания топлива в ракетах и т. д.

В воздухе имеется небольшое количество аргона, гелия и других инертных газов. Поскольку температуры их кипения различны, то с помощью специального аппарата - ректификационной колонки - их можно раздельно выделить из жидкого воздуха.

Жидкие газы широко используются в промышленности и при научных исследованиях для глубокого охлаждения различных веществ. Многие свойства вещества при низких температурах сильно изменяются, например, свинец становится упругим, а резина - хрупкой. Для получения очень низких температур применяют жидкий водород или гелий, кипящий при пониженном давлении. В последнем случае можно поддерживать температуру около 1 К. Изучение свойств вещества при сверхнизких температурах привело к открытию сверхпроводимости.

Инструкция

На вид сжиженный природный газ (СПГ) - это бесцветная жидкость без и запаха, на 75-90% состоящая и обладающая очень важными свойствами: в жидком состоянии он не горюч, не и не агрессивен, что крайне важно при транспортировке. Процесс сжижения СПГ имеет характер, где каждая новая ступень означает сжатие в 5-12 раз, после чего следует охлаждение и переход на следующую ступень. СПГ становится жидким по завершению последней стадии сжатия.

Если же газ необходимо транспортировать на очень большие расстояния, то гораздо выгоднее использовать специальные суда – танкеры-газовозы. От места газа до ближайшего подходящего места на морском побережье протягивают трубопровод, а на берегу строят терминал. Там газ сильно сжимают и охлаждают, переводя в жидкое состояние, и закачивают в изотермические емкости танкеров (при температурах порядка -150оС).

Этот способ транспортировки имеет ряд преимуществ перед трубопроводным. Во-первых, один подобный за один рейс может перевезти громадное количество газа, ведь плотность вещества, находящегося в жидком состоянии, гораздо выше. Во-вторых, основные расходы приходятся не на транспортировку, а на погрузку-разгрузку продукта. В-третьих, хранение и перевозка сжиженного газа гораздо безопаснее, чем сжатого. Можно не сомневаться, что доля природного газа, транспортируемого в сжиженном виде, будет неуклонно возрастать по сравнению с газопроводными поставками.

Сжиженный природный газ востребован в различных областях деятельности человека - в промышленности, в автомобильном транспорте, в медицине, в сельском хозяйстве, в науке и пр. Немалую популярность сжиженные газ ы завоевали за счет удобства их использования и транспортировки, а также экологической чистоты и невысокой стоимости.

Инструкция

Перед сжижением углеводородного газ а его необходимо предварительно очистить и удалить водяной пар. Углекислый газ удаляют, используя систему трехступенчатых молекулярных фильтров. Очищенный таким образом газ в небольших количествах используется в качестве регенерационного. Восстанавливаемый газ либо сжигается, либо применяется для получения в генераторах мощности.

Просушивание происходит с помощью 3-х молекулярных фильтров. Один фильтр поглощает водяной пар. Другой сушит газ , который далее и проходит через третий фильтр. Для понижения температуры газ пропускается через водяной охладитель.

Азотный способ подразумевает производство сжиженного углеводородного газ а из любых газ овых источников. К преимуществам этого метода можно отнести простоту технологии, уровень безопасности, гибкость , легкость и малозатратность эксплуатации. Ограничения этого метода - необходимость источника электроэнергии и высоких капитальных затрат.

При смешанном способе производства сжиженного газ а в качестве хладагента используют смесь азота и . Получают газ также из любых источников. Этот метод отличается гибкостью производственного цикла и небольшими переменными затратами на производство. Если сравнивать с азотным способом сжижения, здесь капитальные затраты более существенны. Также необходим источник электроэнергии.

Источники:

  • Что такое сжижение газов?
  • Сжиженный газ: получение, хранение и транспортировка
  • что такое сжиженный газ

Природный газ добывается из недр Земли. Это полезное ископаемое состоит из смеси газообразных углеводородов, которая образуется в результате разложения органических веществ в осадочных породах земной коры.

Какие вещества входят в состав природного газа

На 80-98% природный газ состоит (CH4). Именно физико-химические свойства метана определяют характеристики природного газа. Наряду с метаном в составе природного газа присутствуют соединения такого же структурного типа – этан (C2H6), пропан (C3H8) и бутан (C4H10). В некоторых случаях в небольших количествах, от 0,5 до 1%, в природном газе обнаруживаются: (С5Н12), (С6Н14), гептан (С7Н16), (С8Н18) и нонан (С9Н20).

Также природный газ включает в себя соединения сероводорода (H2S), углекислого газа (CO2), азот (N2), гелий (He), водяные пары. Состав природного газа зависит от характеристик месторождений, где он добывается. Природный газ, добываемый в чисто газовых месторождениях, состоит в основном из метана.

Характеристики составляющих природного газа

Все химические соединения, входящие в состав природного газа, обладают рядом свойств, полезных в различных сферах промышленности и в быту.

Метан – горючий газ без цвета и запаха, он легче воздуха. Используется в промышленности и быту в качестве горючего. Этан – горючий газ без цвета и запаха, он немного тяжелее воздуха. В основном, из получают этилен. Пропан – ядовитый газ без цвета и запаха. Ему по свойствам близок бутан. Пропан используется, например, при сварочных работах, при переработке металлолома. Сжиженным и бутаном заправляют зажигалки и газовые баллоны. Бутан используют в холодильных установках.

Пентан, гексан, гептан, октан и нонан – . Пентан в небольших количествах входят в состав моторных топлив. Гексан также используется при экстрагировании растительных масел. Гептан, гексан, октан и нонан являются хорошими органическими растворителями.

Сероводород – ядовитый бесцветный тяжелый газ, тухлых яиц. Этот газ даже в маленькой концентрации вызывает паралич обонятельного нерва. Но в силу того, что сероводород обладает хорошими антисептическими свойствами, его в малых дозах применяют в медицине для сероводородных ванн.

Углекислый газ – негорючий бесцветный газ без запаха с кислым вкусом. Углекислый газ используют в пищевой промышленности: в производстве газированных напитков для насыщения их углекислотой, для заморозки продуктов, для охлаждения грузов при транспортировке и т.п.

Азот – безвредный бесцветный газ, без вкуса и запаха. Применяют его в производстве минеральных удобрений, используют в медицине и т.п.

Гелий – один из самых легких газов. Он не имеет цвета и запаха, не горит, не токсичен. Гелий используют в различных областях промышленности – , для охлаждения атомных реакторов, наполнения стратостатов.

СЖИЖЕНИЕ ГАЗОВ - производят при охлаждении их ниже критич. темп-ры Т к (см. Критическая точка ).С. г. с критич. темп-рой выше темп-ры окружающей среды (С1 2 , NH 3 , CO 2 и др.) производится сжатием их в компрессорах и последующей конденсацией в теплообменниках, охлаждаемых водой или холодильным рассолом. Для С. г. с критич. темп-рой ниже темп-ры окружающей среды их предварительно охлаждают с помощью соответствующих холодильных (криогенных) циклов.

Идеальный цикл С. г. приведён на рис. 1: 1 - 2 - изобарич. охлаждение газа от темп-ры Т 0 до темп-ры Т 2 начала конденсации (T 2 ниже Т к) , изотерма 2-0 - конденсация газа; 1-3 - изотермич. сжатие газа, 3-0 - адиабатич. его расширение. Площадь под 1 -2 -0 соответствует отводимой при С. г. теплоте, площадь внутри 1 - 2 - 0- 3 - мин. работе A мин С. г.: где S Г, S Ж - энтропия, Н Г, Н Ж - энтальпия газа и жидкости соответственно.

Рис. 1. Т - S-диаграм-ма идеального цикла сжижения газов (р - давление, Н - энтальпия) .

Давления, необходимые для идеального цикла С. г., составляют сотни тысяч атм, поэтому на практике цикл неосуществим. Реальные затраты энергии при С. г. обычно превышают А мин в 5-10 и более раз.

Совр. методы С. г. основаны на охлаждении предварительно сжатого газа при Джоуля - Томсона эффекте (т. е. при дросселировании - пропускании газа через пористую перегородку, кран, вентиль), изоэнтропич. расширении газа с совершением внеш. работы в детандере и при выпуске газа из сосуда пост. объёма (выхлоп). Процесс дросселирования необратим, идёт с возрастанием энтропии по закону: Н = const. Инверсионная темп-pa всех газов (темп-pa, при к-рой положит. становится отрицательным и газ начинает нагреваться), кроме Н 2 , Не и Ne, на сотни градусов выше темп-ры окружающей среды, и поэтому они могут быть охлаждены и сжижены простым дросселированием. Инверсионные темп-ры Н 2 , Не и Ne значительно ниже комнатных, поэтому их предварительно охлаждают (Н 2 и Ne - жидким азотом, Не - жидким водородом).

Термодинамически наиб. эффективен метод С. г. с помощью детандера; этот метод в пром. установках является основным. В поршневых детандерах сжатый газ движет поршень и охлаждается, в турбодетандерах - вращает турбину. В большинстве случаев после детандера газ дополнительно охлаждают дросселированием. Процесс расширения газа в детандере: S = const.

Рис. 2. Схема установки сжижения газов (а) и её Т - S-диаграмма (б); К - компрессор, Д - детандер, Т/о - теплообменники, Др - дроссель, Сб - сборник .

На рис. 2 приведены типовая схема установки для С. г. (а Т - S -диаграмма (б )термодинамич. процессов в ней. После сжатия в компрессоре (1-2 )и предварит. охлаждения в теплообменнике (2-3 )поток сжатого газа делится на два: поток М отводится в детандер, где, расширяясь, производит работу, охлаждается (3-7 )и охлаждает вторую часть сжатого газа 1 - М , к-рый затем дросселируется и сжижается. Теоретически расширение газа в детандере должно протекать при пост. энтропии (3-6) , однако в результате разл. потерь реально идёт процесс 3-7 . В крупных установках С. г. применяют неск. детандеров, работающих в разных температурных интервалах. Спец. устройство позволяет получать сжиженный газ непосредственно в самом детандере и обходиться без дроссельной ступени. Для сжижения небольших кол-в газа используются криогенно-газовые машины, представляющие собой комбинацию компрессора, теплообменного аппарата и детандера. С помощью таких машин получают темп-ры до 10 К, т. е. достаточно низкие для сжижения всех газов, кроме гелия (для сжижения гелия пристраивается дополнит. дроссельная ступень). В небольшом объёме С. г. может производиться при охлаждении испаряющейся жидкостью с более низкой (чем получаемая) темп-рой кипения. Так, с помощью жидкого азота можно сжижать кислород, аргон, метан и др. газы, с помощью жидкого водорода - неон. Такой процесс энергетически невыгоден и применяется только в лаб. условиях.

Подвергаемые сжижению газы должны быть очищены от примесей, к-рые имеют тем-ру замерзания более высокую, чем в цикле сжижения данного газа, и, затвердевая, могут закупорить теплообменную аппаратуру. Сжижение газов (N, О 2 , Н 2 , природного газа и др.) - крупная отрасль хим. пром-сти.

Лит.: Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985; Фрадков А. Б., Что такое криогеника, М., 1991. А. Б. Фрадков .