Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла, которая позволяет находить любую из данных функций при условии, что будет известна какая-либо другая.

tg \alpha = \frac{\sin \alpha}{\cos \alpha}, \enspace ctg \alpha = \frac{\cos \alpha}{\sin \alpha}

tg \alpha \cdot ctg \alpha = 1

Данное тождество говорит о том, что сумма квадрата синуса одного угла и квадрата косинуса одного угла равна единице, что на практике дает возможность вычислить синус одного угла, когда известен его косинус и наоборот.

При преобразовании тригонометрических выражений очень часто используют данное тождество, которое позволяет заменять единицей сумму квадратов косинуса и синуса одного угла и также производить операцию замены в обратном порядке.

Нахождение тангенса и котангенса через синус и косинус

tg \alpha = \frac{\sin \alpha}{\cos \alpha},\enspace

Данные тождества образуются из определений синуса, косинуса, тангенса и котангенса. Ведь если разобраться, то по определению ординатой y является синус, а абсциссой x — косинус. Тогда тангенс будет равен отношению \frac{y}{x}=\frac{\sin \alpha}{\cos \alpha} , а отношение \frac{x}{y}=\frac{\cos \alpha}{\sin \alpha} — будет являться котангенсом.

Добавим, что только для таких углов \alpha , при которых входящие в них тригонометрические функции имеют смысл, будут иметь место тождества , ctg \alpha=\frac{\cos \alpha}{\sin \alpha} .

Например: tg \alpha = \frac{\sin \alpha}{\cos \alpha} является справедливой для углов \alpha , которые отличны от \frac{\pi}{2}+\pi z , а ctg \alpha=\frac{\cos \alpha}{\sin \alpha} — для угла \alpha , отличного от \pi z , z — является целым числом.

Зависимость между тангенсом и котангенсом

tg \alpha \cdot ctg \alpha=1

Данное тождество справедливо только для таких углов \alpha , которые отличны от \frac{\pi}{2} z . Иначе или котангенс или тангенс не будут определены.

Опираясь на вышеизложенные пункты, получаем, что tg \alpha = \frac{y}{x} , а ctg \alpha=\frac{x}{y} . Отсюда следует, что tg \alpha \cdot ctg \alpha = \frac{y}{x} \cdot \frac{x}{y}=1 . Таким образом, тангенс и котангенс одного угла, при котором они имеют смысл, являются взаимно обратными числами.

Зависимости между тангенсом и косинусом, котангенсом и синусом

tg^{2} \alpha + 1=\frac{1}{\cos^{2} \alpha} — сумма квадрата тангенса угла \alpha и 1 , равна обратному квадрату косинуса этого угла. Данное тождество справедливо для всех \alpha , отличных от \frac{\pi}{2}+ \pi z .

1+ctg^{2} \alpha=\frac{1}{\sin^{2}\alpha} — сумма 1 и квадрат котангенса угла \alpha , равняется обратному квадрату синуса данного угла. Данное тождество справедливо для любого \alpha , отличного от \pi z .

Примеры с решениями задач на использование тригонометрических тождеств

Пример 1

Найдите \sin \alpha и tg \alpha , если \cos \alpha=-\frac12 и \frac{\pi}{2} < \alpha < \pi ;

Показать решение

Решение

Функции \sin \alpha и \cos \alpha связывает формула \sin^{2}\alpha + \cos^{2} \alpha = 1 . Подставив в эту формулу \cos \alpha = -\frac12 , получим:

\sin^{2}\alpha + \left (-\frac12 \right)^2 = 1

Это уравнение имеет 2 решения:

\sin \alpha = \pm \sqrt{1-\frac14} = \pm \frac{\sqrt 3}{2}

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти синус положителен, поэтому \sin \alpha = \frac{\sqrt 3}{2} .

Для того, чтобы найти tg \alpha , воспользуемся формулой tg \alpha = \frac{\sin \alpha}{\cos \alpha}

tg \alpha = \frac{\sqrt 3}{2} : \frac12 = \sqrt 3

Пример 2

Найдите \cos \alpha и ctg \alpha , если и \frac{\pi}{2} < \alpha < \pi .

Показать решение

Решение

Подставив в формулу \sin^{2}\alpha + \cos^{2} \alpha = 1 данное по условию число \sin \alpha=\frac{\sqrt3}{2} , получаем \left (\frac{\sqrt3}{2}\right)^{2} + \cos^{2} \alpha = 1 . Это уравнение имеет два решения \cos \alpha = \pm \sqrt{1-\frac34}=\pm\sqrt\frac14 .

По условию \frac{\pi}{2} < \alpha < \pi . Во второй четверти косинус отрицателен, поэтому \cos \alpha = -\sqrt\frac14=-\frac12 .

Для того, чтобы найти ctg \alpha , воспользуемся формулой ctg \alpha = \frac{\cos \alpha}{\sin \alpha} . Соответствующие величины нам известны.

ctg \alpha = -\frac12: \frac{\sqrt3}{2} = -\frac{1}{\sqrt 3} .

– уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля .

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности : sin (a-b) = sin a cos (-b) +cos a sin (-b) = sin a cos b -cos a sin b
  2. Косинус разности : cos (a-b) = cos a cos (-b) -sin a sin (-b) = cos a cos b +sin a sin b

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла : sin 2a = sin (a+a) = sin a cos a +cos a sin a = 2sin a cos a
  2. Косинус двойного угла : cos 2a = cos (a+a) = cos a cos a -sin a sin a = cos 2 a -sin 2 a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла : sin 3a = sin (2a+a) = sin 2a cos a +cos 2a sin a = (2sin a cos a )cos a +(cos 2 a -sin 2 a )sin a = 2sin a cos 2 a +sin a cos 2 a -sin 3 a = 3sin a cos 2 a -sin 3 a = 3sin a (1-sin 2 a )-sin 3 a = 3sin a -4sin 3 a
  2. Косинус тройного угла : cos 3a = cos (2a+a) = cos 2a cos a -sin 2a sin a = (cos 2 a -sin 2 a )cos a -(2sin a cos a )sin a = cos 3 a-sin 2 a cos a -2sin 2 a cos a = cos 3 a-3sin 2 a cos a = cos 3 a-3(1-cos 2 a )cos a = 4cos 3 a-3cos a

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол - острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sin a = 3,а cos a = 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin 2 a +cos 2 a = 1 и разделим его на cos 2 a . Получим:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

Сразу выводится и

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:
cos 2 a = cos 2 a -sin 2 a
прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos 2a +1 = cos 2 a -sin 2 a +cos 2 a +sin 2 a
2cos 2 a = cos 2 a +1
Выражая cos a через cos 2 a и выполняя замену переменных, получаем:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой - сумму квадратов синуса и косинуса, получим:
cos 2a -1 = cos 2 a -sin 2 a -cos 2 a -sin 2 a
2sin 2 a = 1-cos 2 a

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sin a +sin b . Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sin a +sin b = sin (x+y)+sin (x-y) = sin xcos y+cos xsin y+sin xcos y-cos xsin y = 2sin xcos y. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса в сумму : sin a cos b = 0.5(sin (a+b) +sin (a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

Я не буду убеждать вас не писать шпаргалки. Пишите! В том числе, и шпаргалки по тригонометрии. Позже я планирую объяснить, зачем нужны шпаргалки и чем шпаргалки полезны. А здесь — информация, как не учить, но запомнить некоторые тригонометрические формулы. Итак — тригонометрия без шпаргалки!Используем ассоциации для запоминания.

1. Формулы сложения:

косинусы всегда «ходят парами»: косинус-косинус, синус-синус. И еще: косинусы — «неадекватны». Им «все не так», поэтому они знаки меняют: «-» на «+», и наоборот.

Синусы — «смешиваются» : синус-косинус, косинус-синус.

2. Формулы суммы и разности:

косинусы всегда «ходят парами». Сложив два косинуса — «колобка», получаем пару косинусов- «колобков». А вычитая, колобков точно не получим. Получаем пару синусов. Еще и с минусом впереди.

Синусы — «смешиваются» :

3. Формулы преобразования произведения в сумму и разность.

Когда мы получаем пару косинусов? Когда складываем косинусы. Поэтому

Когда мы получаем пару синусов? При вычитании косинусов. Отсюда:

«Смешение» получаем как при сложении, так и при вычитании синусов. Что приятнее: складывать или вычитать? Правильно, складывать. И для формулы берут сложение:

В первой и в третьей формуле в скобках — сумма. От перестановки мест слагаемых сумма не меняется. Принципиален порядок только для второй формулы. Но, чтобы не путаться, для простоты запоминания мы во всех трех формулах в первых скобках берем разность

а во вторых — сумму

Шпаргалки в кармане дают спокойствие: если забыл формулу, можно списать. А дают уверенность: если воспользоваться шпаргалкой не удастся, формулы можно легко вспомнить.