Треугольник представляет собой многоугольник, имеющий три стороны (три угла). Чаще всего стороны обозначают маленькими буквами, соответствующими заглавным буквам, которыми обозначают противоположные вершины. В данной статье мы ознакомимся с видами этих геометрических фигур, теоремой, которая определяет, чему равняется сумма углов треугольника.

Виды по величине углов

Различают следующие виды многоугольника с тремя вершинами:

  • остроугольный, у которого все углы острые;
  • прямоугольный, имеющий один прямой угол, при его образующие, называют катетами, а сторона, которая размещена противоположно прямому углу, именуется гипотенузой;
  • тупоугольный, когда один ;
  • равнобедренный, у которого две стороны равные, и называются они боковыми, а третья - основанием треугольника;
  • равносторонний, имеющий все три равные стороны.

Свойства

Выделяют основные свойства, которые характерны для каждого вида треугольника:

  • напротив большей стороны всегда располагается больший угол, и наоборот;
  • напротив равных по величине сторон находятся равные углы, и наоборот;
  • у любого треугольника есть два острых угла;
  • внешний угол больше по сравнению с любым внутренним углом, не смежным с ним;
  • сумма каких-либо двух углов всегда меньше 180 градусов;
  • внешний угол равняется сумме остальных двух углов, которые не межуют с ним.

Теорема о сумме углов треугольника

Теорема утверждает, что если сложить все углы данной геометрической фигуры, которая расположена на евклидовой плоскости, то их сумма будет составлять 180 градусов. Попробуем доказать данную теорему.

Пускай у нас есть произвольный треугольник с вершинами КМН.

Через вершину М проведем КН (еще эту прямую называют прямой Евклида). На ней отметим точку А таким образом, чтоб точки К и А были расположены с разных сторон прямой МН. Мы получаем равные углы АМН и КНМ, которые, как и внутренние, лежат накрест и образовываются секущей МН совместно с прямыми КН и МА, которые являются параллельными. Из этого следует, что сумма углов треугольника, расположенных при вершинах М и Н, равняется размеру угла КМА. Все три угла составляют сумму, которая равна сумме углов КМА и МКН. Поскольку данные углы являются внутренними односторонними относительно параллельных прямых КН и МА при секущей КМ, их сумма составляет 180 градусов. Теорема доказана.

Следствие

Из выше доказанной теоремы вытекает следующее следствие: любой треугольник имеет два острых угла. Чтобы это доказать, допустим, что данная геометрическая фигура имеет всего один острый угол. Также можно предположить, что ни один из углов не является острым. В этом случае должно быть как минимум два угла, величина которых равна или больше 90 градусов. Но тогда сумма углов будет больше, чем 180 градусов. А такого быть не может, поскольку согласно теореме сумма углов треугольника равна 180° - не больше и не меньше. Вот это и нужно было доказать.

Свойство внешних углов

Чему равна сумма углов треугольника, которые являются внешними? Ответ на этот вопрос можно получить, применив один из двух способов. Первый заключается в том, что необходимо найти сумму углов, которые взяты по одному при каждой вершине, то есть трех углов. Второй подразумевает, что нужно найти сумму всех шести углов при вершинах. Для начала разберемся с первым вариантом. Итак, треугольник содержит шесть внешних углов - при каждой вершине по два.

Каждая пара имеет равные между собой углы, поскольку они являются вертикальными:

∟1 = ∟4, ∟2 = ∟5, ∟3 = ∟6.

Кроме этого, известно, что внешний угол у треугольника равняется сумме двух внутренних, которые не межуются с ним. Следовательно,

∟1 = ∟А + ∟С, ∟2 = ∟А + ∟В, ∟3 = ∟В + ∟С.

Из этого получается, что сумма внешних углов, которые взяты по одному возле каждой вершины, будет равна:

∟1 + ∟2 + ∟3 = ∟А + ∟С + ∟А + ∟В + ∟В + ∟С = 2 х (∟А + ∟В + ∟С).

С учетом того, что сумма углов равняется 180 градусам, можно утверждать, что ∟А + ∟В + ∟С = 180°. А это значит, что ∟1 + ∟2 + ∟3 = 2 х 180° = 360°. Если же применяется второй вариант, то сумма шести углов будет, соответственно, большей в два раза. То есть сумма внешних углов треугольника будет составлять:

∟1 + ∟2 + ∟3 + ∟4 + ∟5 + ∟6 = 2 х (∟1 + ∟2 + ∟2) = 720°.

Прямоугольный треугольник

Чему равняется сумма углов прямоугольного треугольника, являющихся острыми? Ответ на этот вопрос, опять же, вытекает из теоремы, которая утверждает, что углы в треугольнике в сумме составляют 180 градусов. А звучит наше утверждение (свойство) так: в прямоугольном треугольнике острые углы в сумме дают 90 градусов. Докажем его правдивость.

Пускай нам дан треугольник КМН, у которого ∟Н = 90°. Необходимо доказать, что ∟К + ∟М = 90°.

Итак, согласно теореме о сумме углов ∟К + ∟М + ∟Н = 180°. В нашем условии сказано, что ∟Н = 90°. Вот и получается, ∟К + ∟М + 90° = 180°. То есть ∟К + ∟М = 180° - 90° = 90°. Именно это нам и следовало доказать.

В дополнение к вышеописанным свойствам прямоугольного треугольника, можно добавить и такие:

  • углы, которые лежат против катетов, являются острыми;
  • гипотенуза треугольна больше любого из катетов;
  • сумма катетов больше гипотенузы;
  • катет треугольника, который лежит напротив угла 30 градусов, в два раза меньше гипотенузы, то есть равняется ее половине.

Как еще одно свойство данной геометрической фигуры можно выделить теорему Пифагора. Она утверждает, что в треугольнике с углом 90 градусов (прямоугольном) сумма квадратов катетов равняется квадрату гипотенузы.

Сумма углов равнобедренного треугольника

Ранее мы говорили, что равнобедренным называют многоугольник с тремя вершинами, содержащий две равные стороны. Известно такое свойство данной геометрической фигуры: углы при его основании равны. Докажем это.

Возьмем треугольник КМН, который является равнобедренным, КН - его основание.

От нас требуется доказать, что ∟К = ∟Н. Итак, допустим, что МА - это биссектриса нашего треугольника КМН. Треугольник МКА с учетом первого признака равенства равен треугольнику МНА. А именно по условию дано, что КМ = НМ, МА является общей стороной, ∟1 = ∟2, поскольку МА - это биссектриса. Используя факт равенства этих двух треугольников, можно утверждать, что ∟К = ∟Н. Значит, теорема доказана.

Но нас интересует, какова сумма углов треугольника (равнобедренного). Поскольку в этом отношении у него нет своих особенностей, будем отталкиваться от теоремы, рассмотренной ранее. То есть мы можем утверждать, что ∟К + ∟М + ∟Н = 180°, или 2 х ∟К + ∟М = 180° (поскольку ∟К = ∟Н). Данное свойство доказывать не будем, поскольку сама теорема о сумме углов треугольника была доказана ранее.

Кроме рассмотренных свойств об углах треугольника, имеют место и такие немаловажные утверждения:

  • в которая была опущена на основание, является одновременно медианой, биссектрисой угла, который находится между равными сторонами, а также его основания;
  • медианы (биссектрисы, высоты), которые проведены к боковым сторонам такой геометрической фигуры, равны.

Равносторонний треугольник

Его еще называют правильным, это тот треугольник, у которого равны все стороны. А поэтому равны также и углы. Каждый из них составляет 60 градусов. Докажем это свойство.

Допустим, что у нас есть треугольник КМН. Нам известно, что КМ = НМ = КН. А это значит, что согласно свойству углов, расположенных при основании в равнобедренном треугольнике, ∟К = ∟М = ∟Н. Поскольку согласно теореме сумма углов треугольника ∟К + ∟М + ∟Н = 180°, то 3 х ∟К = 180° или ∟К = 60°, ∟М = 60°, ∟Н = 60°. Таким образом, утверждение доказано.

Как видно из выше приведенного доказательства на основании теоремы, сумма углов как и сумма углов любого другого треугольника, составляет 180 градусов. Снова доказывать эту теорему нет необходимости.

Существуют еще такие свойства, характерные для равностороннего треугольника:

  • медиана, биссектриса, высота в такой геометрической фигуре совпадают, а их длина вычисляется как (а х √3) : 2;
  • если описать вокруг данного многоугольника окружность, то ее радиус будет равен (а х √3) : 3;
  • если вписать в равносторонний треугольник окружность, то ее радиус будет составлять (а х √3) : 6;
  • площадь этой геометрической фигуры вычисляется по формуле: (а2 х √3) : 4.

Тупоугольный треугольник

Согласно определению один из его углов находится в промежутке от 90 до 180 градусов. Но учитывая то, что два остальных угла данной геометрической фигуры острые, можно сделать вывод, что они не превышают 90 градусов. Следовательно, теорема о сумме углов треугольника работает при расчете суммы углов в тупоугольном треугольнике. Получается, мы смело можем утверждать, опираясь на вышеупомянутую теорему, что сумма углов тупоугольного треугольника равна 180 градусам. Опять-таки, данная теорема не нуждается в повторном доказательстве.

Теорема о сумме внутренних углов треугольника

Сумма углов треугольника равна 180°.

Доказательство:

  • Дан треугольник АВС.
  • Через вершину B проведем прямую DK параллельно основанию AC.
  • \angle CBK= \angle C как внутренние накрест лежащие при параллельных DK и AC, и секущей BC.
  • \angle DBA = \angle A внутренние накрест лежащие при DK \parallel AC и секущей AB. Угол DBK развернутый и равен
  • \angle DBK = \angle DBA + \angle B + \angle CBK
  • Так как развернутый угол равен 180 ^\circ , а \angle CBK = \angle C и \angle DBA = \angle A , то получим 180 ^\circ = \angle A + \angle B + \angle C.

Теорема доказана

Следствия из теоремы о сумме углов треугольника:

  1. Сумма острых углов прямоугольного треугольника равна 90° .
  2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45° .
  3. В равностороннем треугольнике каждый угол равен 60° .
  4. В любом треугольнике либо все углы острые, либо два угла острые, а третий - тупой или прямой.
  5. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Теорема о внешнем угле треугольника

Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом

Доказательство:

  • Дан треугольник АВС, где ВСD - внешний угол.
  • \angle BAC + \angle ABC +\angle BCA = 180^0
  • Из равенств угол \angle BCD + \angle BCA = 180^0
  • Получаем \angle BCD = \angle BAC+\angle ABC.

То, что «Сумма углов любого треугольника в Эвклидовой геометрии равна 180 градусов» можно просто запомнить. Если запомнить не просто, можно провести парочку экспериментов для лучшего запоминания.

Эксперимент первый

Начертите на листе бумаги несколько произвольных треугольников, например:

  • с произвольными сторонами;
  • равнобедренный треугольник;
  • прямоугольный треугольник.

Обязательно пользуйтесь линейкой. Теперь нужно вырезать полученные треугольники, делая это ровно по начерченным линиям. Закрасьте углы каждого треугольника цветным карандашом или фломастером. Например, в первом треугольники все углы будут красными, во втором - синими, третьем – зелеными. http://bit.ly/2gY4Yfz

От первого треугольника отрежьте все 3 угла и вершинами соедините их в одно точке, так, чтобы ближайшие стороны каждого угла соединялись. Как видно, три угла треугольника образовали развернутый угол, который равен 180 градусов. То же самое проделайте с двумя другими треугольниками – результат будет тот же. http://bit.ly/2zurCrd

Эксперимент второй

Чертим произвольный треугольник ABC. Выбираем любую вершину (например, C) и через нее проводим прямую DE, параллельную противоположной стороне (AB). http://bit.ly/2zbYNzq

Получаем следующее:

  1. Углы BAC и ACD равны, как внутренние накрестлежащие относительно AC;
  2. Углы ABC и BCE равны, как внутренние накрестлежащие относительно BC;
  3. Видим, что углы 1, 2 и 3 – углы треугольника, соединенные в одной точке образовали развернутый угол DCE, который равен 180 градусов.

Теорема о сумме углов треугольника гласит, что сумма всех внутренних углов любого треугольника равна 180°.

Пусть внутренние углы треугольника равны a, b и c, тогда:

a + b + c = 180°.

Из данной теории можно сделать вывод, что сумма всех внешних углов любого треугольника равна 360°. Так как внешний угол является смежным углом с внутренним, то их сумма равна 180°. Пусть внутренние углы треугольника равны a, b и c, тогда внешние углы при этих углах равна 180° - a, 180° - b и 180° - c.

Найдем сумму внешних углов треугольника:

180° - a + 180° - b + 180° - c = 540° - (a + b + c) = 540° - 180° = 360°.

Ответ: сумма внутренних углов треугольника равна 180°; сумма внешних углов треугольника равна 360°.

“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица

Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.

Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.

ХОД УРОКА

1. Организационный момент.

Отметьте на ленте настроения свое состояние на начало урока.

2. Повторение.

Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.

3. Новый материал.

3.1. Практическая работа.

У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.

Давайте попробуем получить сумму углов треугольника используя оригами.

Историческая справка

Оригами (яп., букв.: “сложенная бумага”) - древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.

3.2. Доказательство теоремы из учебника Атанасяна Л.С.

Теорема о сумме углов треугольника.

Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 - накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.

Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.

3.3. Доказательство теоремы из учебника Погорелова А. В.

Доказать: A + B + C = 180 °

Доказательство:

1. Проведем через вершину B прямую BD // AC

2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.

3. ABD =ACB +CBD

Отсюда, A + B+C = ABD+BAC

4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180 ° , т.е. А+B + C=180 ° , что и требовалось доказать.

3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.

Дано: АВС

Доказать: А+B +C=180 °

Доказательство:

1. Продолжим сторону АС. Проведем СЕ//АВ

2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей

3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.

4. ЕСД+ВСЕ+С=180 ° , значит А + В + С = 180 ° , что и требовалось доказать.

3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.

Следствие 2.

Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.

3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.

Вид треугольника Равнобедренный Равносторонний Разносторонний
прямоугольный
тупоугольный
остроугольный

4. Закрепление.

4.1. Решение задач по готовым чертежам.

Найти неизвестные углы треугольника.

4.2. Проверка знаний.

1. В завершении нашего урока, ответьте на вопросы:

Существуют ли треугольники с углами:

а) 30, 60, 90 градусов,

b) 46, 4, 140 градусов,

с) 56, 46, 72 градуса?

2. Может ли в треугольнике быть:

а) два тупых угла,

b) тупой и прямой углы,

с) два прямых угла?

3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.

4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?

5. Можно ли измерить углы любого треугольника?

Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)

5. Итог урока.

Отметьте на ленте настроения свое состояние на конец урока.

Домашнее задание.

П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.

1) Сумма углов треугольника равна 180°.

Доказательство

Пусть ABC" - произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
2) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине.

Теорема: Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним

Доказательство. Пусть ABC – данный треугольник. По теореме о сумме углов в треугольнике
∠ ABС + ∠ BCA + ∠ CAB = 180 º.
Отсюда следует
∠ ABС + ∠ CAB = 180 º - ∠ BCA = ∠ BCD
Теорема доказана.

Из теоремы следует:
Внешний угол треугольника больше любого угла треугольника, не смежного с ним.
3)
Сумма углов треугольника = 180 градусов. Если один из углов прямой (90 градусов) на два остальных приходится тоже 90. значит, каждый из них - меньше 90 то есть они - острые. если один из углов - тупой, то на два остальных приходится менее 90 то есть они явно острые.
4)
тупоугольный - больше 90 градусов
остроугольный - меньше 90 градусов
5) а. Треугольник, у которого один из углов равен 90 градусов.
б. Катеты и гипотенуза
6)
6°. В каждом треугольнике против большей стороны лежит больший угол и обратно: против большего угла лежит большая сторона. Любой отрезок имеет одну и только одну середину.
7)
По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов, значит гипотенуза больше каждого из катетов
8) --- тоже самое, что и 7
9)
сумма углов треугольника равно 180 градусов. а если бы аждая сторона треугольника была бы больше суммы двух других сторонон, то сумма углов была бы больше 180, что невозможно. следовательно - каждая сторона треугольника меньше суммы двух других сторон.
10)
Сумма углов любого треугольника равна 180 градусам.
Т. к. этот треугольник прямоугольный, то один из углов у него прямой, т. е. равен 90 градусам.
Следовательно, сумма двух других острых углов равна 180-90=90 градусов.
11)
1. рассмотрим прямоугольный треугольник ABC в которм угол А - прямой, угол В = 30 градусам а угол С = 60.Приложим к треугольнику АВС равный ему треугольник АВD. Получим треугольни BCD в котором угол B = углу D = 60 градусов, следовательно DC = BC. Но по построению АС 1/2 ВС, что и требовалось доказать.2. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета равен 30 градусам.докажем это.рассмотрим прямоугольный треугольник АВC, у которого катет АС равен половине гипотенузы АС.Приложим к треугольнику АВС равный ему треугольник ABD. Получит равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу(т.к. против равных строн лежат равные углы), поэтому каждый из них = 60 градусам. Но угол DBC = 2 угла ABC, следовательно угол АВС = 30 градусов,что и требовалось доказать.