«Спортивная метрология»

    Предмет, задачи и содержание «Спортивной метрологии», её место среди других учебных дисциплин.

Спортивная метрология - это наука об измерениях в физическом воспитании и спорте. Ее нужно рассматривать как конкретное приложение к о б щ е й м е т р о л о г и и, основной задачей которой, как известно, является обеспечение точности и единства измерений.

Таким образом, предметом спортивной метрологии является комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физкультурников. Слово "метрология" в переводе с древнегреческого означает "наука об измерениях" (метрон - мера, логос - слово, наука).

Основной задачей общей метрологии является обеспечение единства и точности измерений. Спортивная метрология как научная дисциплина представляет собой часть общей метрологии. К ее основным задачам относятся:

1. Разработка новых средств и методов измерений.

2. Регистрация изменений в состоянии занимающихся под влиянием различных физических нагрузок.

3. Сбор массовых данных, формирование систем оценок и норм.

4. Обработка полученных результатов измерений с целью организации эффективного контроля и управления учебно-тренировочным процессом.

Однако как учебная дисциплина спортивная метрология выходит за рамки общей метрологии. Так, в физическом воспитании и спорте помимо обеспечения измерения физических величин, таких как длина, масса и т.д., подлежат измерению педагогические, психологические, биологические и социальные показатели, которые по своему содержанию нельзя назвать физическими. Методикой их измерений общая метрология не занимается и, поэтому, были разработаны специальные измерения, результаты которых всесторонне характеризуют подготовленность физкультурников и спортсменов.

Использование методов математической статистики в спортивной метрологии дало возможность получить более точное представление об измеряемых объектах, сравнить их и оценить результаты измерений.

В практике физического воспитания и спорта проводят измерения в процессе систематического контроля (фр. проверка чего-либо), в ходе которого регистрируются различные показатели соревновательной и тренировочной деятельности, а также состояние спортсменов. Такой контроль называют комплексным.

Это дает возможность установить причинно-следственные связи между нагрузками и результатами в соревнованиях. А после сопоставления и анализа разработать программу и план подготовки спортсменов.

Таким образом, предметом спортивной метрологии является комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физкультурников.

Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.

2.Шкалы и единицы измерений. Система СИ.

Шкала наименований

Собственно измерений, отвечающих определению этого действия, в шкале наименований не производится. Здесь речь идет о группировке объектов, идентичных по определенному признаку,и о присвоении им обозначений. Не случайно, что другое название этой шкалы-номинальное (от латинского слова nome - имя).

Обозначениями, присваиваемыми объектам, являются числа. Например, легкоатлеты-прыгуны в длину в этой шкале могут обозначаться номером 1, прыгуны в высоту - 2, прыгуны тройным - 3,прыгуны с шестом - 4.

При номинальных измерениях вводимая символика означает,что объект 1 только отличается от объектов 2, 3 или 4. Однако насколько отличается и в чем именно, по этой шкале измерить нельзя.

Шкала порядка

Если какие-то объекты обладают определенным качеством, то порядковые измерения позволяют ответить на вопрос о различиях в этом качестве. Например, соревнования в беге на 100 м - это

определение уровня развития скоростно-силовых качеств. У спортсмена, выигравшего забег, уровень этих качеств в данный момент выше, чем у пришедшего вторым. У второго, в свою очередь, выше, чем у третьего, и т. д.

Но чаще всего шкала порядка используется там, где невозможны качественные измерения в принятой системе единиц.

При использовании этой шкалы можно складывать и вычитать ранги или производить над ними какие-либо другие математические действия.

Шкала интервалов

Измерения в этой шкале не только упорядочены по рангу, но и разделены определенными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит.

Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.

Шкала отношений

В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое качество может быть равно нулю. В связи с этим при оценке результатов измерений в этой шкале возможно определить «во сколько раз» один объект больше другого.

В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.

Основные единицы СИ Единица

Величина Размерность Название Обозначение

русское международное

Длина L Метр м m

Масса M Килограмм кг kg

Время T Секунда с S

Сила эл. тока Ампер А A

Температура Кельвин К K

Кол-во вещ-ва Моль моль mol

Сила света Канделла Кд cd

3.Точность измерений. Погрешности и их разновидности и методы устранения.

Никакое измерение не может быть выполнено абсолютно точно. Результат измерения неизбежно содержит погрешность, величина которой тем меньше, чем точнее метод измерения и измерительный прибор.

Основная погрешность - это погрешность метода измерения или измерительного прибора, которая имеет место в нормальных условиях их применения.

Дополнительная погрешность - это погрешность измерительного прибора, вызванная отклонением условий его работы от нормальных.

Величина D А=А-А0, равная разности между показанием измерительного прибора (А) и истинным значением измеряемой величины (А0), называется абсолютной погрешностью измерения. Она измеряется в тех же единицах, что и сама измеряемая величина.

Относительная погрешность - это отношение абсолютной погрешности к значению измеряемой величины:

Систематической называется погрешность, величина которой не меняется от измерения к измерению. В силу этой своей особенности систематическая погрешность часто может быть предсказана заранее или в крайнем случае обнаружена и устранена по окончании процесса измерения.

Тарированием (от нем. tarieren) называется проверка показаний измерительных приборов путем сравнения с показаниями образцовых значений мер (эталонов*) во всем диапазоне возможных значений измеряемой величины.

Калибровкой называется определение погрешностей или поправка для совокупности мер (например, набора динамометров). И при тарировании, и при калибровке к входу измерительной системы вместо спортсмена подключается источник эталонного сигнала известной величины.

Рандомизацией (от англ. random - случайный) называется превращение систематической погрешности в случайную. Этот прием направлен на устранение неизвестных систематических погрешностей. По методу рандомизации измерение изучаемой величины производится несколько раз. При этом измерения организуют так, чтобы постоянный фактор, влияющий на их результат, действовал в каждом случае по-разному. Скажем, при исследовании физической работоспособности можно рекомендовать измерять ее многократно, всякий раз меняя способ задания нагрузки. По окончании всех измерений их результаты усредняются по правилам математической статистики.

Случайные погрешности возникают под действием разнообразных факторов, которые ни предсказать заранее, ни точно учесть не удается.

4.Основы теории вероятностей. Случайное событие, случайная величина, вероятность.

Теория вероятностей - теорию вероятностей можно определить как раздел математики, в котором изучаются закономерности, присущие массовым случайным явлениям.

Условная вероятность - условной вероятностью РА(В) события В называется вероятность события В, найденная в предположении, что событие А уже наступило.

Элементарное событие - события U1, U2, ..., Un, образующие полную группу попарно несовместимых и равновозможных событий, будем называть элементарными событиями.

Случайное событие - событие называется случайным, если оно объективно может наступить или не наступить в данном испытании.

Событие - результат (исход) испытания называется событием.

Любое случайное событие обладает какой-то степенью воз-можности, которую в принципе можно измерить численно. Что-бы сравнивать события по степени их возможности, нужно связать с каждым из них какое-то число, которое тем боль-ше, чем больше возможность события. Это число мы и назовем вероятностью события.

Характеризуя вероятности событий числами, нужно устано-вить какую-то единицу измерения. В качестве такой единицы естественно взять вероятность достоверного события, т.е. такого события, которое в результате опыта неизбежно долж-но произойти.

Вероятность какого либо события – численное выражение возможности его наступления.

В некоторых простейших случаях вероятности событий могут быть легко определены непосредственно исходя из условий испытаний.

Случайная величина - это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.

5.Генеральная и выборочная совокупности. Объем выборки. Неупорядоченная и ранжированная выборки .

В выборочном наблюдении используются понятия «генеральная совокупность» -- изучаемая совокупность единиц, подлежащая изучению по интересующим исследователя признакам, и «выборочная совокупность» -- случайно выбранная из генеральной совокупности некоторая ее часть. К данной выборке предъявляется требование репрезентативности, т.е. при изучении лишь части генеральной совокупности полученные выводы можно применять ко всей совокупности.

Характеристиками генеральной и выборочной совокупностей могут служить средние значения изучаемых признаков, их дисперсии и средние квадратические отклонения, мода и медиана и др. Исследователя могут интересовать и распределение единиц по изучаемым признакам в генеральной и выборочной совокупностях. В этом случае частоты называются соответственно генеральными и выборочными.

Система правил отбора и способов характеристики единиц изучаемой совокупности составляет содержание выборочного метода, суть которого состоит в получении первичных данных при наблюдении выборки с последующим обобщением, анализом и их распространением на всю генеральную совокупность с целью получения достоверной информации об исследуемом явлении.

Репрезентативность выборки обеспечивается соблюдением принципа случайности отбора объектов совокупности в выборку. Если совокупность является качественно однородной, то принцип случайности реализуется простым случайным отбором объектов выборки. Простым случайным отбором называют такую процедуру образования выборки, которая обеспечивает для каждой единицы совокупности одинаковую вероятность быть выбранной для наблюдения для любой выборки заданного объема. Таким образом, цель выборочного метода -- сделать вывод о значении признаков генеральной совокупности на основе информации случайной выборки из этой совокупности.

Объем выборки - в аудите - количество единиц, отбираемых аудитором из проверяемой совокупности. Выборка называетсянеупорядоченной , если порядок следования элементов в ней не существенен.

6.Основные статистические характеристики положения центра ряда.

Показатели положения центра распределения. К ним относятсястепенная средняя в виде средней арифметической и структурные средние – мода и медиана.

Средняя арфметическая для дискретного ряда распределения рассчитывается по формуле:

В отличие от средней арифметической, рассчитываемой на основе всех вариант, мода и медиана характеризует значение признака у статистической единице, занимающей определенное положение в вариационном ряду.

Медиана ( Me ) -значение признака у статистической единицы, стоящей в середине ранжированного ряда и делящей совокупность на две равные по численности части.

Мода (Mo) - наиболее часто встречаемое значение признак в совокупности. Мода широко используется в статистической практике при изучении покупательского спроса, регистрации цен и др.

Для дискретных вариационных рядов Mo иMe выбираются в соответствии с определениями: мода - как значение признака с наибольшей частотой : положение медианы при нечетном объеме совокупности определяется ее номером, где N – объем статистической совокупности. При четном объеме ряда медиана равна средней из двух вариантов, находящихся в середине ряда.

Медиану используют как наиболее надежный показатель типичного значения неоднородной совокупности, так как она нечувствительна к крайним значениям признака, которые могут значительно отличаться от основного массива его значений. Кроме этого, медиана находит практическое применение вследствие особого математического свойства: Рассмотрим определение моды и медианы на следующем примере: имеется ряд распределения рабочих участка по уровню квалификации.

7.Основные статистические характеристики рассеивания (вариации).

Однородность статистических совокупностей характеризуется величиной вариации (рассеяния) признака, т.е. несовпадением его значений у разных статистических единиц. Для измерения вариации в статистике используются абсолютные и относительные показатели.

К абсолютным показателям вариации относятся:

Размах вариации R является наиболее простым показателем вариации:

Этот показатель представляет собой разность между максимальным и минимальным значениями признаков и характеризует разброс элементов совокупности. Размах улавливает только крайние значения признака в совокупности, не учитывает повторяемость его промежуточных значений, а также не отражает отклонений всех вариантов значений признака.

Размах часто используется в практической деятельности, например, различие между max и min пенсией, заработной платой в различных отраслях и т.д.

Среднее линейное отклонение d является более строгой характеристикой вариации признака, учитывающей различия всех единиц изучаемой совокупности.Среднее линейное отклонение представляет собойсреднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической. Этот показатель рассчитывается по формулам простой и взвешенной средней арифметической:

В практических расчетах среднее линейное отклонение используется для оценки ритмичности производства, равномерности поставок. Так как модули обладают плохими математическими свойствами, то на практике часто применяют другие показатели среднего отклонения от средней – дисперсию и среднее квадратическое отклонение.

Среднее квадратическое отклонение представляет собой среднюю квадратическую из отклонений отдельных значений признака от их средней арифметической:

8.Достоверность различий статистических показателей.

В статистике величину называютстатисти́чески зна́чимой , если вероятность её случайного возникновения мала, то естьнулевая гипотеза может быть отклонена. Разница называется «статистически значимой», если имеются данные, появление которых было бы маловероятно, если предположить, что эта разница отсутствует; это выражение не означает, что данная разница должна быть велика, важна, или значима в общем смысле этого слова.

9.Графическое изображение вариационных рядов. Полигон и гистограмма распределения.

Графики являются наглядной формой отображения рядов распределения. Для изображения рядов применяются линейные графики и плоскостные диаграммы, построенные в прямоугольной системе координат.

Для графического представления атрибутивных рядов распределения используются различные диаграммы: столбиковые, линейные, круговые, фигурные, секторные и т. д.

Для дискретных вариационных рядов графиком является полигон распределения.

Полигоном распределения называется ломаная линия, соединяющая точки с координатами или где - дискретное значение признака, - частота, - частость. Полигон применяют для графического изображения дискретного вариационного ряда, и этот график является разновидностью статистических ломаных. В прямоугольной системе координат по оси абсцисс откладываются варианты признака, а по оси ординат – частости каждого варианта. На пересечении абсциссы и ординаты фиксируют точки, соответствующие данному ряду распределения. Соединив эти точки прямыми, получим ломаную, которая и является полигоном, или эмпирической кривой распределения. Для замыкания полигона крайние вершины соединяют с точками на оси абсцисс, отстоящими на одно деление в принятом масштабе, или с серединами предыдущего (перед начальным) и последующим (за последним) интервалов.

Для изображения интервальных вариационных рядов применяют гистограммы, представляющие собой ступенчатые фигуры, состоящие из прямоугольников, основания которых равны ширине интервала, а высота - частоте (частости) равноинтервального ряда или плотности распределения неравноинтервального Построение диаграммы аналогично построению столбиковой диаграммы Гистограмма применяется для графического изображения непрерывных (интервальных) вариационных рядов. При этом на оси абсцисс откладывают интервалы ряда. На этих отрезках строят прямоугольники, высота которых по оси ординат в принятом масштабе соответствует частотам. При равных интервалах по оси абсцисс откладывают прямоугольники, сомкнутые друг с другом, с равными основаниями и ординатами, пропорциональными весам. Данный ступенчатый многоугольник и называется гистограммой. Его построение аналогично построению столбиковых диаграмм. Гистограмма может быть преобразована в полигон распределения, для чего середины верхних сторон прямоугольников соединяют отрезками прямых. Две крайние точки прямоугольников замыкают по оси абсцисс на середине интервалов аналогично замыканию полигона. В случае неравенства интервалов график строится не по частотам или частостям, а по плотности распределения (отношению частот или частостей к величине интервала), и тогда высоты прямоугольников графика будут соответствовать величинам этой плотности.

При построении графиков рядов распределения большое значение имеет соотношение масштабов по оси абсцисс и оси ординат. В этом случае и необходимо руководствоваться «правилом золотого сечения», в соответствии с которым высота графика должна быть примерно в два раза меньше его основания

10.Нормальный закон распределения (сущность, значение). Кривая нормального распределения и ее свойства. http://igriki.narod.ru/index.files/16001.GIF

Непрерывная случайная величина Х называется распределенной по нормальному закону, если ее плотность распределения равна

где m - математическое ожидание случайной величины;

σ2 - дисперсия случайной величины, характеристика рассеяния значений случайной величины около математического ожидания.

Условием возникновения нормального распределения являются формирование признака как суммы большого числа взаимно независимых слагаемых, ни одно из которых не характеризуется исключительно большой по сравнению с другими дисперсиями.

Нормальное распределение является предельным, к нему приближаются другие распределения.

Математическое ожидание случайной величины Х. распределено по нормальному закону, равно

mx = m, а дисперсия Dx = σ2.

Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервале (α, β) выражается формулой

где - табулированная функция

11.Правило трех сигм и его практическое применение.

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм.

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

12.Виды статистической взаимосвязи.

Качественный анализ изучаемого явления позволяет выделить основные причинно-следственные связи данного явления, установить факторные и результативные признаки.

Взаимосвязи, изучаемые в статистике, могут быть классифицированы по ряду признаков:

1)По характеру зависимости: функциональные (жесткие), корреляционные (вероятностные) Функциональные связи – это связи, при которых каждому значению факторного признака соответствует единственное значение результативного признака.

При корреляционных связях отдельному значению факторного признака могут соответствовать разные значения результативного признака.

Такие связи проявляются при большом количестве наблюдений, через изменение средней величины результативного признака под воздействием факторных признаков.

2) По аналитическому выражению: прямолинейные, криволинейные.

3) По направлению: прямые, обратные.

4) По числу факторных признаков, которые оказывают влияние на результативный признак: однофакторные, многофакторные.

Задачи статистического изучения взаимосвязей:

Установление наличия направления связи;

Количественное измерение влияния факторов;

Измерение тесноты связи;

Оценка достоверности полученных данных.

13.Основные задачи корреляционного анализа.

1. Измерение степени связности двух и более переменных . Наши общие знания об объективно существующих причинных связях должны дополняться научно обоснованными знаниями о количественной мере зависимости между переменными. Данный пункт подразумевает верификацию уже известных связей.

2. Обнаружение неизвестных причинных связей . Корреляционный анализ непосредственно не выявляет причинных связей между переменными, но устанавливает силу этих связей и их значимость. Причинный характер выясняют с помощью логических рассуждений, раскрывающих механизм связей.

3. Отбор факторов, существенно влияющих на признак . Самые важные те факторы, которые сильнее всего коррелируют с изучаемыми признаками.

14.Корреляционное поле. Формы взаимосвязи.

Вспомогательное средство анализа выборочных данных. Если даны значения двух признаков xl. . . хn и yl. . . уn, то при составлении К. п. точки с координатами (xl, yl) (хn. . . уn) наносят на плоскость. Расположение точек позволяет сделать предварительное заключение о характере и форме зависимости.

Для описания причинно-следственной связи между явлениями и процессами используется деление статистических признаков, отражающих отдельные стороны взаимосвязанных явлений,на факторные и результативные. Факторными считаются признаки, обуславливающие изменение других, связанных с ними признаков , являющихся причинами и условиями таких изменений.Результативными являются признаки, изменяющимися под воздействием факторных .

Формы проявления существующих взаимосвязей весьма разнообразны. В качестве самых общих их видов выделяют функциональную и статистическую связи .

Функциональной называют такую связь, при которой определённому значению факторного признака соответствует одно и только одно значение результативного . Такая связь возможна при условии, что на поведение одного признака (результативного) влияет только второй признак (факторный) и никакие другие. Такие связи являются абстракциями, в реальной жизни они встречаются редко, но находят широкое применение в точных науках и в первую очередь, в математике. Например: зависимость площади круга от радиуса: S=π∙r 2

Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы изучаемой совокупности. В массовых явлениях проявляютсястатистические связи, при которых строго определённому значению факторного признака ставится в соответствие множество значений результативного . Такие связи имеют место, если на результативный признак действуют несколько факторных, а для описания связи используется один или несколько определяющих (учтённых) факторов.

Строгое различие между функциональной и статистической связью можно получить при их математической формулировке.

Функциональную связь можно представить уравнением:
вследствие действия неконтролируемых факторов или ошибок измерения.

Примером статистической связи может служить зависимость себестоимости единицы продукции от уровня производительности труда: чем выше производительность труда, тем ниже себестоимость. Но на себестоимость единицы продукции помимо производительности труда влияют и другие факторы: стоимость сырья, материалов, топлива, общепроизводственные и общехозяйственные расходы и т.д. Поэтому нельзя утверждать, что изменение производительности труда на 5% (повышение) приведет к аналогичному снижению себестоимости. Может наблюдаться и обратная картина, если на себестоимость будут влиять в бóльшей степени другие факторы, - например, резко возрастут цены на сырье и материалы.

В повседневной практике человечества и каждого индивида измерение - вполне обычная процедура. Измерение наряду с вычислением непосредственно связано с материальной жиз­нью общества, так как оно получило развитие в процессе прак­тического освоения мира человеком. Измерение, так же как счет и вычисление, стало неотъемлемой частью общественно­го производства и распределения, объективной отправной точ­кой для появления математических дисциплин, и в первую очередь геометрии, а отсюда и необходимой предпосылкой развития науки и техники.

В самом начале, в момент своего возникновения, измере­ния, сколь бы различными они ни были, носили, естествен­но, элементарный характер. Так, исчисление множества пред­метов определенного вида основывалось на сравнении с числом пальцев. Измерение длины тех или иных предметов строилось на сравнении с длиной пальца руки, стопы или шага. Этот доступный способ являлся изначально в буквальном смысле «экспериментальной вычислительной и измерительной тех­никой». Он уходит своими корнями в далекую эпоху «дет­ства» человечества. Прошли целые столетия, прежде чем раз­витие математики и других наук, появление измерительной техники, вызванное потребностями производства и торгов­ли, коммуникациями между отдельными людьми и народа­ми, привело к появлению хорошо разработанных и диффе­ренцированных методов и технических средств в самых различных областях знания.

Сейчас трудно себе представить какую-либо деятельность человека, в которой не использовались бы измерения. Изме­рения ведутся в науке, промышленности, сельском хозяйстве, медицине, торговле, военном деле, при охране труда и окру­жающей среды, в быту, спорте и т.д. Благодаря измерениям возможно управление технологическими процессами, промыш­ленными предприятиями, подготовкой спортсменов и народ­ным хозяйством в целом. Резко возросли и продолжают расти требования к точности измерений, быстроте получения изме­рительной информации, измерению комплекса физических величин. Увеличивается число сложных измерительных систем и измерительно-вычислительных комплексов.

Измерения на определенном этапе своего развития приве­ли к возникновению метрологии, которая в настоящее время определяется как «наука об измерениях, методах и средствах обеспечения их единства и требуемой точности». Это опреде­ление свидетельствует о практической направленности мет­рологии, которая изучает измерения физических величин и образующие эти измерения элементы и разрабатывает необ­ходимые правила и нормы. Слово «метрология» составлено из двух древнегреческих: «метро» - мера и «логос» - учение, или наука. Современная метрология включает три составляющие: за­конодательную метрологию, фундаментальную (научную) и практическую (прикладную) метрологию.



Спортивная метрология - это наука об измерениях в физи­ческом воспитании и спорте. Ее следует рассматривать как кон­кретное приложение к общей метрологии, как одну из состав­ляющих практической (прикладной) метрологии. Однако как учебная дисциплина спортивная метрология выходит за рам­ки общей метрологии по следующим обстоятельствам. В физи­ческом воспитании и спорте некоторые из физических вели­чин (время, масса, длина, сила), на проблемах единства и точности, которых сосредоточивают основное внимание спе­циалисты-метрологи, также подлежат измерению. Но более все­го специалистов нашей отрасли интересуют педагогические, психологические, социальные, биологические показатели, которые по своему содержанию нельзя назвать физическими. Методикой их измерений общая метрология практически не занимается, и поэтому возникла необходимость разработки специальных измерений, результаты которых всесторонне ха­рактеризуют подготовленность физкультурников и спортсме­нов. Особенностью спортивной метрологии является то, что в ней термин «измерение» трактуется в самом широком смыс­ле, так как в спортивной практике недостаточно измерять толь­ко физические величины. В физической культуре и спорте кро­ме измерений длины, высоты, времени, массы и других физических величин приходится оценивать техническое мас­терство, выразительность и артистичность движений и тому подобные нефизические величины. Предметом спортивной метрологии являются комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физ­культурников. Вместе с развитием фундаментальной и практической метро­логии происходило становление законодательной метрологии.

Законодательная метрология - это раздел метрологии, включающий комплексы взаимосвязанных и взаимообуслов­ленных общих правил, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направ­ленные на обеспечение единства измерений и единообразия средств измерений.

Законодательная метрология служит средством государствен­ного регулирования метрологической деятельности посредством законов и законодательных положений, которые вводятся в практику через Государственную метрологическую службу и метрологические службы государственных органов управления и юридических лиц. К области законодательной метрологии относятся испытания и утверждение типа средств измерений и их проверка и калибровка, сертификация средств измерений, государственный метрологический контроль и надзор за сред­ствами измерений.

Метрологические правила и нормы законодательной метро­логии гармонизированы с рекомендациями и документами со­ответствующих международных организаций. Тем самым зако­нодательная метрология способствует развитию международных экономических и торговых связей и содействует взаимопони­манию в международном метрологическом сотрудничестве.

Использованная литература

1. Бабенкова, Р. Д. Внеклассная работа по физическому воспитанию во вспомогательной школе: пособие для учителей / Р. Д. Бабенкова. - М.: Просвещение, 1977. - 72 с.

2. Барчуков, И. С. Физическая культура: учебное пособие для вузов / И. С. Барчуков. - М. : ЮНИТИ-ДАНА, 2003. - 256 с.

3. Булгакова Н. Ж. Игры у воды, на воде, под водой.- М.: Физкультура и спорт, 2000. – 34 с.

4. Бутин, И. М. Физическая культура в начальных классах: методический материал / И. М. Бутин, И. А. Бутина, Т. Н. Леонтьева. - М.: ВЛАДОС-ПРЕСС, 2001. – 176 с.

5. Былеева, Л. В. Подвижные игры: учебное пособие для институтов физической культуры /Л. В. Былеева, И. М. Коротков. – 5 –е изд., перераб. и доп. – М.: ФиС, 1988.

6. Вайнбаум, Я. С., Гигиена физического воспитания и спорта: Учеб. пособие для студ. высш. пед. учеб. заведений. /Я. С. Вайнбаум, В. И. Коваль, Т. А. Родионова. – М.: Издательский центр «Академия», 2002. – 58 с.

7. Викулов, А. Д. Водные виды спорта: учебник для вузов. – М.: Академия, 2003. – 56 с.

8. Викулов, А. Д. Плавание: учебное пособие для вузов.- М.: ВЛАДОС - Пресс, 2002 – 154 с.

9. Внеклассные мероприятия по физкультуре в средней школе / сост. М. В. Видякин. - Волгоград: Учитель, 2004. – 54 с.

10. Гимнастика / под ред. М. Л. Журавина, Н. К. Меньшикова. – М.: Академия, 2005. – 448 с.

11. Гогунов, Е. Н. Психология физического воспитания и спорта: учебное пособие / Е. Н. Гогунов, Б. И. Мартьянов. – М.: Академия, 2002. – 267 с.

12. Железняк, Ю. Д. Основы научно – методической деятельности в физической культуре и спорте: Учеб. пособие для студ. высш.пед.учеб.заведений /Ю. Д. Железняк, П. К. Петров. – М.: Издательский центр «Академия», 2002. – 264 с.

13. Кожухова, Н. Н. Воспитатель по физической культуре в дошкольных учреждениях: учебное пособие / Н. Н. Кожухова, Л. А. Рыжкова, М. М. Самодурова; ред. С. А. Козлова. - М. : Академия, 2002. - 320 с.

14. Коротков, И. М. Подвижные игры: учебное пособие / И. М.Коротков, Л. В. Былеева, Р. В. Климкова. – М.: СпортАкадемПресс, 2002. – 176 с.

15. Лазарев, И. В. Практикум по легкой атлетике: учебное пособие / И. В. Лазарев, В. С. Кузнецов, Г. А. Орлов. - М. : Академия, 1999. - 160 с.

16. Лыжный спорт: учеб. пособие / И. М. Бутин. – М.: Академия, 2000.

17. Макарова, Г. А. Спортивная медицина: учебник / Г. А.Макарова. – М.: Советский спорт, 2002. – 564 с.

18. Максименко, А. М. Основы теории и методики физической культуры: учеб. пособие для студ. высш.пед.учеб.заведений /М. А. Максименко. - М., 2001.- 318 с.

19. Методика физического воспитания учащихся 10-11 классов: пособие для учителя / А. В. Березин, А. А. Зданевич, Б. Д. Ионов; под ред. В. И. Ляха. - 3-е изд. - М. : Просвещение, 2002. - 126 с.

20. Научно-методическое обеспечение физического воспитания, спортивной тренировки и оздоровительной физической культуры: сборник научных трудов / под ред. В. Н. Медведева, А.И. Федорова, С.Б. Шармановой. - Челябинск: УралГАФК, 2001.

21. Педагогическое физкультурно-спортивное совершенствование: учеб. пособие для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, В. А. Кашкаров, И. П. Крацевич и др.; /под ред. Ю. Д. Железняка. – М.: Издательский центр «Академия», 2002.

22. Плавание: учебник для студентов высших учеб, заведений / под ред. В. Н. Платонова. - Киев: Олимпийская литература, 2000. – 231 с.

23. Протченко, Т. А. Обучение плаванию дошкольников и младших школьников: метод. пособие / Т. А. Протченко, Ю. А. Семенов. - М. : Айрис-пресс, 2003.

24. Спортивные игры: техника, тактика, методика обучения: учеб. для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, Ю. М. Портнов, В. П. Савин, А. В. Лексаков; под ред. Ю.Д.Железняка, Ю. М. Портнова. – М.: Издательский центр «Академия», 2002. – 224 с.

25. Урок физкультуры в современной школе: метод. рекомендации для учителей. Вып. 5. Ручной мяч / метод. рек. Г. А. Баландин. - М.: Советский спорт, 2005.

26. Физическое воспитание детей дошкольного возраста: теория и практика: сборник научных трудов / Ред. С. Б. Шарманова, А. И. Федоров. – Вып. 2.- Челябинск: УралГАФК, 2002. – 68 с.

27. Холодов, Ж. К. Теория и методика физического воспитания и спорта: учебное пособие / Ж. К. Холодов, В. С. Кузнецов. - 2-е изд., испр. и доп. - М. : Академия, 2001. - 480 с. : ил.

28. Холодов, Ж.К. Теория и методика физического воспитания и спорта: учебное пособие для студ.высш.учеб.заведений. /Ж. К. Холодов, В. С. Кузнецов. – М.: Издательский центр «Академия», 2000. – 480 с.

29. Чаленко, И. А. Современные уроки физкультуры в начальной школе: научно-популярная литература / И. А. Чаленко. - Ростов н/Д: Феникс, 2003. - 256 с.

30. Шарманова, С. Б. Методические особенности использования общеразвивающих упражнений в физическом воспитании детей младшего дошкольного возраста: учебно-методическое пособие / С. Б. Шарманова. - Челябинск: УралГАФК, 2001. – 87 с.

31. Яковлева, Л. В. Физическое развитие и здоровье детей 3-7 лет: пособие для педагогов дошкольных учреждений. В 3 ч. / Л.В. Яковлева, Р.А. Юдина. - М.: ВЛАДОС. – Ч. 3.

1. Былеева, Л. В. Подвижные игры: учебное пособие для институтов физической культуры /Л. В. Былеева, И. М. Коротков. – 5 –е изд., перераб. и доп. – М.: ФиС, 1988.

2. Вайнбаум, Я. С., Гигиена физического воспитания и спорта: Учеб. пособие для студ. высш. пед. учеб. заведений. /Я. С. Вайнбаум, В. И. Коваль, Т. А. Родионова. – М.: Издательский центр «Академия», 2002. – 58 с.

3. Викулов, А. Д. Водные виды спорта: учебник для вузов. – М.: Академия, 2003. – 56 с.

4. Викулов, А. Д. Плавание: учебное пособие для вузов.- М.: ВЛАДОС - Пресс, 2002 – 154 с.

5. Гимнастика / под ред. М. Л. Журавина, Н. К. Меньшикова. – М.: Академия, 2005. – 448 с.

6. Гогунов, Е. Н. Психология физического воспитания и спорта: учебное пособие / Е. Н. Гогунов, Б. И. Мартьянов. – М.: Академия, 2002. – 267 с.

7. Железняк, Ю. Д. Основы научно – методической деятельности в физической культуре и спорте: Учеб. пособие для студ. высш.пед.учеб.заведений /Ю. Д. Железняк, П. К. Петров. – М.: Издательский центр «Академия», 2002. – 264 с.

8. Кожухова, Н. Н. Воспитатель по физической культуре в дошкольных учреждениях: учебное пособие / Н. Н. Кожухова, Л. А. Рыжкова, М. М. Самодурова; ред. С. А. Козлова. - М. : Академия, 2002. - 320 с.

9. Коротков, И. М. Подвижные игры: учебное пособие / И. М.Коротков, Л. В. Былеева, Р. В. Климкова. – М.: СпортАкадемПресс, 2002. – 176 с.

10. Лыжный спорт: учеб. пособие / И. М. Бутин. – М.: Академия, 2000.

11. Макарова, Г. А. Спортивная медицина: учебник / Г. А.Макарова. – М.: Советский спорт, 2002. – 564 с.

12. Максименко, А. М. Основы теории и методики физической культуры: учеб. пособие для студ. высш.пед.учеб.заведений /М. А. Максименко. - М., 2001.- 318 с.

13. Научно-методическое обеспечение физического воспитания, спортивной тренировки и оздоровительной физической культуры: сборник научных трудов / под ред. В. Н. Медведева, А.И. Федорова, С.Б. Шармановой. - Челябинск: УралГАФК, 2001.

14. Педагогическое физкультурно-спортивное совершенствование: учеб. пособие для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, В. А. Кашкаров, И. П. Крацевич и др.; /под ред. Ю. Д. Железняка. – М.: Издательский центр «Академия», 2002.

15. Плавание: учебник для студентов высших учеб, заведений / под ред. В. Н. Платонова. - Киев: Олимпийская литература, 2000. – 231 с.

16. Спортивные игры: техника, тактика, методика обучения: учеб. для студ. высш. пед. учеб. заведений / Ю. Д. Железняк, Ю. М. Портнов, В. П. Савин, А. В. Лексаков; под ред. Ю.Д.Железняка, Ю. М. Портнова. – М.: Издательский центр «Академия», 2002. – 224 с.

17. Холодов, Ж. К. Теория и методика физического воспитания и спорта: учебное пособие / Ж. К. Холодов, В. С. Кузнецов. - 2-е изд., испр. и доп. - М. : Академия, 2001. - 480 с. : ил.

18. Холодов, Ж.К. Теория и методика физического воспитания и спорта: учебное пособие для студ.высш.учеб.заведений. /Ж. К. Холодов, В. С. Кузнецов. – М.: Издательский центр «Академия», 2000. – 480 с.

19. Чаленко, И. А. Современные уроки физкультуры в начальной школе: научно-популярная литература / И. А. Чаленко. - Ростов н/Д: Феникс, 2003. - 256 с.

20. Шарманова, С. Б. Методические особенности использования общеразвивающих упражнений в физическом воспитании детей младшего дошкольного возраста: учебно-методическое пособие / С. Б. Шарманова. - Челябинск: УралГАФК, 2001. – 87 с.

Основной задачей общей метрологии является обеспечение единства и точности измерений. Спортметрология – это часть общей метрологии. Предметом спортивной метрологии являются контроль и измерения в спорте.

В содержание ее, в частности, входит:

Скачать:


Предварительный просмотр:

Кучковский Руслан Владимирович

учитель физической культуры

МОУ «Харпская СОШ»

Спортивная метрология как способ контроля и измерения в спорте.

Введение

Слово "метрология" в переводе с древнегреческого – "наука об измерениях" (метрон – мера, логос – слово, наука).

Основной задачей общей метрологии является обеспечение единства и точности измерений. Спортметрология – это часть общей метрологии. Предметом спортивной метрологии являются контроль и измерения в спорте.

1) контроль за состоянием спортсмена, нагрузками, техникой выполнения движений, спортивными результатами и поведением спортсмена на соревнованиях;

2) сопоставление данных, полученных в каждом из этих направлений контроля, их оценка и анализ.

Традиционно метрология занималась измерением только физических величин (время, масса, длина, сила). Но специалистов по физической культуре более всего интересуют педагогические, психологические, социальные, биологические показатели, которые не являются физическими по своему содержанию. В спортивной метрологии созданы методы, позволяющие измерять подобные показатели.

Таким образом, предметом спортивной метрологии является комплексный контроль в физическом воспитании и спорте и использование его результатов в планировании подготовки спортсменов и физкультурников.

1. Основы теории измерений

Измерением какой-либо физической величины называется операция, в результате которой определяется, во сколько раз эта величина больше (или меньше) другой величины, принятой за эталон.

Измерением в широком смысле слова называют установление соответствия между изучаемыми явлениями – с одной стороны – и числами – с другой.

Всем известны и понятны наиболее простые разновидности измерений, например, измерение длины прыжка или веса тела. Однако как измерить (и можно ли измерить?) уровень знаний, степень утомления, выразительность движений, техническое мастерство? Кажется, что это не измеряемые явления. Но ведь в каждом из этих случаев можно установить отношения "больше – равно – меньше" и говорить, что спортсмен А владеет техникой лучше спортсмена Б, а техника у Б лучше, чем у В и т.д. Можно использовать вместо слов числа. Например, вместо слов "удовлетворительно", "хорошо", "отлично" – числа "З", "4", "5". В спорте довольно часто приходится выражать в числах, казалось бы, не измеряемые показатели. Например, на соревнованиях по фигурному катанию на коньках техническое мастерство и артистичность выражаются в числах судейских оценок. В широком смысле слова это все случаи измерения.

1.1. Метрологическое обеспечение измерений в спорте

Метрологическое обеспечение – это применение научных и организационных основ, технических средств, правил и норм, необходимых для достижения единства и точности измерений в физическом воспитании и спорте.

Научной основой этого обеспечения является метрология, организационной – метрологическая служба Спорткомитета России. Техническая основа включает в себя:

1) систему государственных эталонов;

2) систему разработки и выпуска средств измерений;

3) метрологическую аттестацию и проверку средств и методов измерений;

4) систему стандартных данных о показателях, подлежащих контролю в процессе подготовки спортсменов.

Метрологическое обеспечение направлено на то, чтобы обеспечить единство и точность измерений.

Единство измерений достигается тем, что их результаты должны быть представлены в узаконенных единицах и с известной вероятностью погрешностей. В настоящее время используется международная система единиц (СИ). Основными единицами физических величин в СИ являются:

единица длины - метр (м);

массы - килограмм (кг);

времени - секунда (с);

силы тока - ампер (А);

термодинамической температуры - кельвин (К);

силы света - кандела (кд);

количество вещества - моль (моль).

Кроме того, в спортивно-педагогических измерениях используются следующие единицы:

силы - ньютон (Н);

температуры градусы Цельсия ( С);

частоты - герц (Гц);

давления - паскаль (Па);

объема - литр, миллилитр (л, мл).

Достаточно широко используются в практике внесистемные единицы. Например, мощность измеряется в лошадиных силах (л.с.), энергия - в калориях, давление - в миллиметрах ртутного столба.

1.2. Шкалы измерений

Существует 4 основные шкалы измерений.

а ) Шкала наименований.

Собственно измерений, отвечающих определению этого действия, в шкале наименований не производится. Здесь речь идет о группировке объектов, идентичных по определенному признаку, и о присвоении им обозначений. Не случайно, что другое название этой шкалы – номинальная (от латинского слова nome - имя).

Обозначениями, присваиваемыми объектам, являются числа. Например, легкоатлеты в этой шкале могут обозначаться номером 1, лыжники - 2, пловцы - 3 и т.д.

При номинальных измерениях вводимая символика означает, что объект 1 только отличается от объектов 2, 3 или 4. Однако насколько отличается и в чем именно, по этой шкале измерить нельзя.

Каков же смысл в присвоении конкретным объектам (например, прыгунам) чисел? Делают это потому, что результаты измерений нужно обрабатывать. А математическая статистика имеет дело с числами, и группировать объекты лучше не по словесным характеристикам, а по числам. (Приложение 1).

б) Шкала порядка.

Иначе эту шкалу называют ранговая, поскольку в ней объекты распределяются согласно занятых мест (рангов).

Порядковые измерения позволяют ответить на вопрос о различиях в каком - либо качестве. Например, у спортсмена, выигравшего забег на 100 метров уровень развития скоростно-силовых качеств, очевидно, выше, чем у пришедшего вторым.

Но чаще эта шкала используется там, где невозможны качественные измерения в принятой системе единиц. Например, в художественной гимнастике нужно измерить артистизм разных спортсменок. Он устанавливается в виде рангов: ранг победителя – 1, второе место – 2 и т.д.

При использовании этой шкалы можно складывать и вычитать ранги или производить над ними какие-либо другие математические действия. Однако необходимо помнить, что если между второй и четвертой спортсменками два ранга, то это вовсе не означает, что вторая вдвое артистичнее четвертой.

Если два или несколько результатов измерения совпадают, то в ранговой шкале они будут иметь одинаковый номер, равный среднему арифметическому занятых мест.

в) Шкала интервалов .

Измерения в этой шкале не только упорядочены по рангу, но и разделены определенными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда и т.д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. С помощью этой шкалы измеряется, например, температура тела. Обработка результатов измерений в интервальной шкале позволяет определить "на сколько больше" один объект по отношению к другому. Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.

В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое качество может быть равно нулю. Соответственно, в этой шкале возможно определить «во сколько раз» один объект больше другого. Примером таких шкал являются ростомер, весы медицинские, секундомер, рулетка и т.д. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.

1.3. Точность измерений

В спортивной практике наибольшее распространение получили два вида измерений: прямые и косвенные. Прямые измерения позволяют найти искомое значение непосредственно из опытных данных. Например, регистрация скорости бега, дальности метаний, величины усилий и т.п. – это все прямые измерения.

Косвенными называются измерения, когда искомое значение определяется по формуле. При этом используются данные прямых измерений. Например, между скоростью ведения мяча футболистом (V) и затратами энергии (Е) существует зависимость типа у = 1,683 + 1,322х, где у - затраты энергии в ккал., x – скорость ведения мяча.

Прямым способом измерить МПК сложно, а время бега - легко. Поэтому время бега измеряют, а МПК - рассчитывают.

Следует помнить, что никакое измерение не может быть выполнено абсолютно точно и результат измерения всегда содержит в себе ошибку. Необходимо стремиться к тому, чтобы эта ошибка была разумно минимальна.

Ошибки измерений подразделяются на систематические и случайные.

Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают 4 группы систематических ошибок:

1) ошибки, причина возникновения которых известна и величина может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение ее длины за счет различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;

2) ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3% , во второй - 2%, в третьей - 0,7% и т.д. При этом точно определить ее значения для каждого из измерений нельзя;

3) ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удается учесть все источники возможных погрешностей;

4) ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т.п. показатели. Измерения такого типа характеризуются определенной вариативностью. Рассмотрим пример. Предположим, что при измерении времени сложной реакции хоккеистов используется методика, суммарная систематическая погрешность которой по первым трем группам не превышает 1%. Но в серии повторных измерений конкретного спортсмена получаются такие значения времени реакции (ВР): 0,653с; 0,526с; 0,755с и т.д. Различия в результатах измерений обусловлены внутренними свойствами спортсменов: один из них стабилен и реагирует практически одинаково быстро во всех попытках, другой – нестабилен. Однако и эта стабильность (или нестабильность) может измениться в зависимости от утомления, эмоционального возбуждения, повышения уровня подготовленности.

Систематический контроль за спортсменами позволяет определить, меру их стабильности и учитывать возможные погрешности измерений.

В некоторых случаях ошибки возникают по причинам, предсказать которые заранее попросту невозможно. Такие ошибки называются случайными. Выявляют и учитывают их с помощью математического аппарата теории вероятностей.

2. Теория тестирования

2.1. Основные понятия и требования к тестам

Измерение или испытание, проводимое для определения состояния или способностей человека, называется тестом.

Не всякие измерения могут быть использованы как тесты, а только те, которые отвечают специальным требованиям:

1) должна быть определена цель применения любого теста;

2) следует разработать стандартизированную методику измерений результатов в тестах и процедуру тестирования;

3) необходимо определить их надежность и информативность;

4) должна быть разработана система оценок результатов в тестах;

5) необходимо указать вид контроля (оперативный, текущий или этапный).

Процесс испытаний называется тестированием, полученное в итоге измерения числовое значение - результатом тестирования (или результатом теста).

В зависимости от цели все тесты, подразделяются на несколько групп.

В первую из них входят показатели, измеряемые в покое. Это показатели физического развития (вес, рост, толщина жировой складки и т.д.); функционального состояния (ЧСС, АД, состав крови, мочи, слюны и т.д.). В эту же группу входят психические тесты.

Вторая группа - это стандартные тесты, когда всем испытуемым предлагается выполнить одинаковое задание (например, в течение минуты подтянуться на перекладине 10 раз).

Результат такого теста зависит от способа задания нагрузки. Если задается механическая нагрузка, то измеряются медико-биологические показатели (ЧСС, АД). Если же нагрузка теста задается по величине сдвигов медико-биологических показателей, то измеряются физические величины нагрузки (время, расстояние и т.д.).

Третья группа - это тесты, при выполнении которых нужно показать максимально возможный двигательный результат. Особенность таких тестов – высокий психологический настрой (мотивация) спортсмена на достижение предельных результатов.

Тесты, результаты которых зависят от двух и более факторов, называются гетерогенными. Таких тестов значительное большинство, в отличие от гомогенных тестов, результат которых зависит преимущественно от одного фактора.

Оценка подготовленности спортсменов по одному тесту проводится крайне редко. Как правило, используется несколько тестов (комплекс или батарея тестов).

Для точности измерения необходимо, чтобы процедура тестирования была стандартизирована.

Для этого необходимо соблюдать следующие требования:

1) режим дня, предшествующего тестированию, должен строиться по одной схеме. В нем исключаются средние и большие нагрузки, но могут проводиться занятия восстановительного характера;

2) разминка перед тестированием должна быть стандартной (по длительности, подбору упражнений, последовательности их выполнения);

3) тестирование по возможности должны проводить одни и те же люди, умеющие это делать;

4) схема выполнения теста не изменяется и остается постоянной от тестирования к тестированию;

5) интервалы между повторениями одного и то же теста должны ликвидировать утомление, возникшее после первой попытки;

6) спортсмен должен стремиться показать в тесте максимально возможный результат. Такая мотивация реальна, если в ходе тестирования создается соревновательная обстановка.

2.2. Надежность тестов

Надежностью теста называется степень совпадения результатов при повторном тестировании одних и тех же людей в одинаковых условиях.

Сразу отметим, что полное совпадение результатов тестирования практически невозможно.

Вариацию результатов измерения вызывают в основном 4 причины:

1. Измерение состояния испытуемых (утомление, вырабатывание, изменение мотивации, концентрации внимания и т.п.).

2. Неконтролируемые изменения внешних условий и аппаратуры (t, ветер, влажность, напряжение в сети, присутствие посторонних лиц и т.п.).

3. Изменение состояния человека, осуществляющего тестирование (и, конечно, замена одного экспериментатора или судьи другим).

4. Несовершенство теста (есть такие тесты, которые заведомо малонадежны, например, штрафные броски в баскетболе до первого промаха).

В большинстве случаев комплексный контроль проводится с помощью гестов, надежность которых была заранее определена специалистами в области спортметрологии.

Но у тренеров иногда возникает идея проверить подготовленность спортсмена с помощью созданного им самим теста. В этом случае, тест надо проверить на надежность. Самый простой способ для этого – визуальное сравнение значений 1 и 2 попыток в тесте для каждого спортсмена.

Контроль с помощью малонадежных тестов приводит к ошибкам в оценке состояния спортсменов. Поэтому необходимо стремиться повысить надежность теста. Для этого надо устранить причины, которые вызывают увеличение вариативности измерений. В некоторых случаях, помимо вышеуказанных требований к тестированию, полезно увеличить количество попыток в тесте и использовать больше экспертов (судей, оценщиков).

Надежность оценки контролируемых показателей повышается также и при применении большего количества эквивалентных тестов.

2.3. Стабильность тестов

Стабильность теста - это такая разновидность надежности, которая проявляется в степени совпадения результатов тестирования, когда первое и последующие измерения разделены определенным временным интервалом.

При этом повторное тестирование обычно называют ретестом.

Высокая стабильность теста свидетельствует о сохранении приобретенного в ходе тренировок технико-тактического мастерства, уровня развития двигательных и психических качеств.

Стабильность теста зависит прежде всего от содержания тренировочного процесса: при исключении (или уменьшении), например, силовых упражнений результаты ретеста, как правило, уменьшаются.

Кроме того, стабильность теста зависит от:

1) вида теста (его сложности);

2) контингента испытуемых;

3) временного интервала между тестом и ретестом.

Так, у взрослых результаты тестирования более стабильны, чем у не занимающихся спортом.

С увеличением временного интервала между тестом и ретестом стабильность теста снижается.

2.4. Согласованность тестов

Согласованность тестов характеризуется независимостью результатов тестирования от личных качеств лица, проводящего или оценивающего тест. Если результаты спортсменов в тесте совпадают, то это свидетельствует о высокой степени согласованности теста.

Когда создается новый тест, нужно обязательно проверить его на согласованность. Делается это так: разрабатывается унифицированная методика проведения теста, а потом два или более специалиста по очереди в стандартных условиях тестируют одних и тех же спортсменов.

Согласованность – это, по существу, надежность оценки результатов теста при проведении тестирования разными людьми.

При этом возможны два варианта:

1. Лицо, проводящее тестирование только оценивает его результаты, не влияя на них. Нередко различаются оценки судей в гимнастике, фигурном катании, боксе, показатели ручного хронометрирования, оценка ЭКГ и рентгенограмм разными врачами и т.п.

2. Лицо, проводящее тестирование, влияет на его результаты. Например, некоторые экспериментаторы, более настойчивы и требовательны, чем другие, лучше мотивируют испытуемых.

2.5. Эквивалентность тестов

Одно и то же двигательное качество можно измерить с помощью нескольких тестов, которые называются эквивалентными.

Эквивалентность тестов определяется так: спортсмены выполняют одну разновидность теста и затем, после небольшого отдыха, вторую и т.д. Если результаты оценок совпадают (например, лучшие в подтягивании окажутся лучшими и в отжимании), то это свидетельствует об эквивалентности тестов.

Коэффициент эквивалентности определяется с помощью корреляционного или дисперсионного анализа.

Применение эквивалентных тестов повышает надежность оценки контролируемых свойств моторики спортсменов. Поэтому, если нужно провести углубленное обследование, то лучше применить несколько эквивалентных тестов. Такой комплекс называется гомогенным. Во всех остальных случаях лучше использовать гетерогенные комплексы (состоящие из неэквивалентных тестов).

2.6. Информативность тестов

Информативность теста - это степень точности, с какой он измеряет свойство, для оценки которого используется. Информативность иногда называют валидностью (обоснованность, законность).

Вопрос об информативности теста распадается на два частных вопроса;

1. Что измеряет данный тест?

2. Как точно он измеряет?

Считается, что при оценке подготовленности спортсменов наиболее информативным тестом является результат в соревновательном упражнении.

Следует отметить, что не существует универсальных по своей информативности тестов. Утверждение, что такой тест, как бег на 100 метров, информативно отражает скоростные качества спортсмена и правильно, и неправильно. Правильно, если речь идет о спортсменах очень высокой квалификации (10 - 10,5с). Неправильно, если говорить о спортсменах, достижения которых на этой дистанции - 11,6 с и больше: для них этот тест на скоростную выносливость.

Информативность теста не всегда можно установить с помощью эксперимента и математической обработки его результатов. Часто опираются на логический анализ ситуации. Иногда бывает так, что информативность теста ясна без всяких экспериментов, особенно когда тест является просто частью тех действий, которые выполняет спортсмен на соревновании. Едва ли нужны эксперименты, чтобы доказать информативность таких показателей, как время выполнения поворотов в плавании, скорость на последних шагах разбега в прыжках в длину, процент попадания со штрафных бросков в баскетболе, качество выполнения подачи в теннисе или волейболе.

Однако не все подобные тесты в равной мере информативны. Например, выбрасывание из-за боковой линии в футболе, хотя и является элементом игры, едва ли может рассматриваться как один из самых важных показателей мастерства футболистов.

3. Основы математической статистики в спорте

3.1. Основные понятия

Математическая статистика – это раздел математики, посвященный методам сбора, анализа и обработки статистических данных для научных и практических целей.

Статистические данные получают в результате обследования большого числа объектов или явлений; следовательно, математическая статистика имеет дело с массовыми явлениями.

Современная математическая статистика подразделяется на две обширные области: описательную и аналитическую статистику. Описательная статистика охватывает методы описания статистических данных, представления их в форме таблиц и распределений и пр. Аналитическая статистика называется также теорией статистических выводов. Ее предметом является обработка данных, полученных в ходе эксперимента, и формулировка выводов, имеющих прикладное значение для самых различных областей человеческой деятельности. Аналитическая статистика тесно связана с другой математической наукой – теорией вероятности и базируется на ее математическом аппарате.

В последнее время методы математической статистики нашли широкое применение в медицине, биологии, социологии, физической культуре и спорте, т.е. в областях, сравнительно недавно считавшихся далекими от математики.

Для чего необходимо использовать методы математической статистики в области физической культуры и спорта? В самом общем виде это можно выразить так: для того, чтобы по результатам исследований на ограниченном контингенте можно было бы делать обобщающие выводы. Кроме того, часто возникает потребность убедиться в достоверности полученных результатов, выявить взаимосвязь изучаемых показателей. Сделать это "на глазок", без использования математического аппарата, невозможно.

Экспериментальные данные в области физической культуры и спорта обычно представляют собой результаты измерения некоторых признаков (спортивный результат, двигательные способности и пр.) объектов, выбранных из большой совокупности объектов.

Часть объектов исследования, определенным образом выбранная из более обширной совокупности, называется выборкой, а исходная совокупность, из которой взята выборка - генеральной (основной) совокупностью.

Состав и численность генеральной совокупности зависят от объектов и целей проводимого исследования.

Объектами исследования в спорте обычно являются отдельные спортсмены. Если, например, задачей является обследование лиц, поступающих в институт физической культуры в текущем году, то генеральная совокупность – все абитуриенты института этого года. Если мы хотим получить подобные данные для всех институтов физической культуры страны, то абитуриенты данного института – уже выборка из более широкой генеральной совокупности – всех абитуриентов физкультурных вузов этого года.

Исследования, в которых участвуют все без исключения объекты, составляющие генеральную совокупность, называются сплошными исследованиями.

Такие исследования нетипичны для физической культуры и спорта, где обычно используется выборочный метод.

Суть его в том, что для обследования привлекается лишь выборка из генеральной совокупности, но по результатам этого обследования судят о свойствах всей генеральной совокупности. Конечно, для этого к выборке должны предъявляться определенные требования.

Все объекты (элементы), составляющие генеральную совокупность, должны иметь хотя бы один общий признак, позволяющий классифицировать объекты, сравнивать их друг с другом (пол, возраст, спортивная подготовленность и т.п.).

Важнейшая характеристика выборки - объем выборки, т.е. число элементов в ней. Объем выборки принято обозначать символом n. При этом N – объем генеральной совокупности.

По одним признакам элементы генеральной совокупности могут полностью совпадать, значения же других признаков изменяются от одного элемента к другому. Например, объектами исследования могут быть представители одного вида спорта, одинаковой квалификации, одного пола и возраста, но различающиеся по силе мышц, быстроте реакции, показателям системы дыхания и т.д. Предметом изучения в статистике являются именно эти изменяющиеся (варьирующие) признаки, которые иногда называют статистическими признаками.

Отдельные числовые значения варьирующего признака называются вариантами. Их принято обозначать строчными буквами латинского алфавита: x, y, z.

На варьирование признаков влияют различные факторы:

1) контролируемые (пол, возраст, разряд, программа подготовки и т.д.);

2) неконтролируемые (погодные условия, мотивация, эмоциональное состояние);

3) ошибки измерения (погрешности приборов, личные ошибки - описки, пропуски и т.д.).

3.2. Числовые характеристики выборки

а) Среднее арифметическое или просто среднее - одна из основных характеристик выборки. Среднее принято обозначать той же буквой, что и варианты выборки, с той лишь разницей, что над буквой ставится символ усреднения – черта.

б) Медиана (Me). Это такое значение признака x, когда одна половина экспериментальных данных меньше ее, а вторая половина больше.

Если объем выборки невелик, то медиана вычисляется очень просто. Для этого выборку ранжируют, т.е. располагают данные в порядке возрастания или убывания, и в ранжированной выборке, содержащей n членов, ранг R (порядковый номер) медианы определяется так:

Если выборка содержит четное число членов, то медиана не может быть определена столь однозначно. Медианой в этом случае может быть любое число между двумя членами ряда. Для определенности принято считать в качестве медианы среднее арифметическое значений этих членов.

Медиана отличается от среднего арифметического, если выборка несимметрична. Если распределение оказывается сильно асимметричным, то среднее арифметическое теряет свою практическую ценность. В этой ситуации медиана представляет собой лучшую характеристику центра распределения.

3.3. Характеристики рассеяния

а) Размах вариации.

Эта характеристика вычисляется как разность между максимальной и минимальной вариантами выборки:

Размах вычисляется очень просто, и в этом его главное и единственное достоинство. Информативность этого показателя невелика.

Размах вариации используется иногда в практических исследованиях при малых (не более 10) объемах выборки. Например, по размаху вариации легко оценить, насколько различаются лучший и худший результаты в группе спортсменов. При больших объемах выборки к его использованию надо относиться с осторожностью.

б) Среднеквадратическое отклонение.

Эта характеристика наиболее точно отражает степень отклонения выборочных данных от средней величины. Она вычисляется по формуле:

в) Коэффициент вариации.

Среднеквадратическое (стандартное) отклонение выражается в тех же единицах измерения, что и характеризуемый им признак. Если требуется сравнить между собой степень варьирования признаков, выраженных в разных единицах измерения, возникают определенные неудобства. В этих случаях используется относительный показатель – коэффициент вариации:

г) Ошибка средней величины.

Этот показатель характеризует колеблемость средней величины.

Ошибка средней величины () находится по формуле:

З.4. Корреляционный анализ

В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости характеризует функциональную взаимосвязь, при которой каждому значению одного показателя соответствует строго определенное значение другого.

К другому виду взаимосвязи относят, например, зависимость веса от длины тела. Одному значению длины тела может соответствовать несколько значений веса и наоборот. В таких случаях, когда одному значению одного показателя соответствует несколько значений другого, взаимосвязь называют статистической. Среди статистических взаимосвязей наиболее важны корреляционные. Корреляция заключается в том, что средняя величина одного показателя изменяется в зависимости от значения другого.

Статистический метод, используемый при исследовании взаимосвязей, называется корреляционным анализом. Основной задачей его является определение формы, тесноты и направленности взаимосвязи изучаемых показателей. Корреляционный анализ позволяет исследовать только статистическую взаимосвязь, т.е. взаимосвязь между случайными величинами. Он широко используется в теории тестирования для оценки надежности и информативности тестов.

Для оценки тесноты взаимосвязи в корреляционном анализе используется коэффициент корреляции (r).

Абсолютное его значение лежит в пределах от 0 до 1 .

Если r=1, то это будет функциональная взаимосвязь.

При 0,7

При 0,5

При 0,2

При 0,09

Наконец, если r=0, то говорят, что корреляции (взаимосвязи) нет.

Направленность взаимосвязи определяется по знаку коэффициента корреляции. Если знак положительный, то и корреляция положительная, при знаке ""–"" корреляция является отрицательной.

Определение взаимосвязи показателей, измеренных в шкале порядка, производят с использованием ранговых коэффициентов (например, Спирмена):

где d=d x -d y – разность рангов данной пары показателей X и Y, n – объем выборки (число используемых). Достоинством ранговых коэффициентов корреляции является простота вычислений.

Список литературы

  1. Ашмарин Б. А. Теория и методика педагогических исследований в физическом воспитании. – М.: Физкультура и спорт, 1978. – 224с.
  1. Баландин В. И., Блудов Ю. М., Плахтиенко В. А. Прогнозирование в спорте. – М.: Физкультура и спорт, 1986. – 193с.
  1. Благуш П. К. Теория тестирования двигательных способностей. – М.: Физкультура и спорт, 1982. – 166с.
  1. Годик М. А. Спортивная метрология / Учебник для институтов физической культуры. – М.: Физкультура и спорт, 1988. – 192с.
  1. Иванов В. В. Комплексный контроль в подготовке спортсменов. – М.: Физкультура и спорт, 1987. – 256с.
  1. Карпман В. Л., Белоцерковский З. Б., Гудков И. А. Тестирование в спортивной медицине. – М.: Физкультура и спорт, 1988. – 208с.
  1. Мартиросов Э. Г. Методы исследования в спотривной антропологии. – М.: Физкультура и спорт, 1982. – 200с.
  1. Начинская С. В. Математическая статистика в спорте. – Киев: Здоровье, 1978г.. – 136с.
  1. Основы математической статистики / Под общей редакцией Иванова В. С. – М.: Физкультура и спорт, 1990. – 176с.
  1. Спортивная метрология / Под общей редакцией В. М. Зациорского. – М.: Физкультура и спорт, 1982. – 256с.

Слово «метрология» в переводе с греческого означает «наука об измерениях» (metro - мера, logos - учение, наука). Любая наука начинается с измерений, поэтому наука об измерениях, методах и средствах обеспечения их единства и требуемой точности является основополагающей в любой области деятельности.

Спортивная метрология - наука об измерениях в физическом воспитании и спорте. Специфика спортивной метрологии заключается в том, что объектом измерения является живая система - человек. В связи с этим спортивная метрология имеет ряд принципиальных отличий от области знаний, рассматривающей традиционные классические измерения физических величин. Специфику спортивной метрологии определяют следующие особенности объекта измерений:

  • Изменчивость - непостоянство переменных величин, характеризующих физиологическое состояние человека и результаты его спортивной деятельности. Все показатели (физиологические, морфо-анатомические, психофизиологические и т. п.) постоянно меняются, поэтому необходимы многократные измерения с последующей статистической обработкой полученной информации.
  • Многомерность - необходимость одновременного измерения большого числа переменных, характеризующих физическое состояние и результат спортивной деятельности.
  • Квалитативность - качественный характер ряда измерений при отсутствии точной количественной меры.
  • Адаптивность - способность приспосабливаться к новым условиям, что зачастую маскирует истинный результат измерения.
  • Подвижность - постоянное перемещение в пространстве, характерное для большинства видов спорта и существенно усложняющее процесс измерения.
  • Управляемость - возможность целенаправленного влияния на действия спортсмена в ходе тренировки, зависящего от объективных и субъективных факторов.

Таким образом, спортивная метрология не только занимается традиционными техническими измерениями физических величин, но и решает важные задачи управления тренировочным процессом:

  • используется как инструментарий для измерения биологических, психологических, педагогических, социологических и других показателей, характеризующих деятельность спортсмена;
  • представляет исходный материал для биомеханического анализа двигательных действий спортсмена.

Предмет спортивной метрологии - комплексный контроль в физическом воспитании и спорте, включающий в себя контроль за состоянием спортсмена, тренировочными нагрузками, техникой выполнения упражнений, спортивными результатами и поведением спортсмена на соревнованиях.

Цель спортивной метрологии - осуществление комплексного контроля для достижения максимальных спортивных результатов и сохранения здоровья спортсмена на фоне высоких нагрузок.

В ходе спортивно-педагогических исследований и при осуществлении тренировочного процесса измеряется множество различных параметров. Все они подразделяются на четыре уровня:

  1. Единичные - раскрывают одну величину отдельного свойства изучаемой биологической системы (например, время простой двигательной реакции).
  2. Дифференциальные - характеризуют одно свойство системы (например, быстрота).
  3. Комплексные - относятся к одной из систем (например, физическая подготовленность).
  4. Интегральные - отражают суммарный эффект функционирования различных систем (например, спортивное мастерство).

Основой для определения всех перечисленных параметров являются единичные параметры, которые сложным образом связаны с параметрами более высокого уровня. В спортивной практике наиболее распространены параметры, служащие для оценки основных физических качеств.

2. Структура спортивной метрологии

Разделы спортивной метрологии представлены на рис. 1. Каждый из них составляет самостоятельную область знаний. С другой стороны, они тесно связаны между собой. Например, чтобы оценить по принятой шкале уровень скоростно-силовой подготовленности легкоатлета-спринтера на определенном этапе тренировки, необходимо подобрать и провести соответствующие тесты (прыжок в высоту с места, тройной прыжок и т. д.). В ходе тестов нужно осуществить с требуемой точностью измерение физических величин (высоты и длины прыжка в метрах и сантиметрах). С этой целью могут быть использованы контактные или бесконтактные средства измерений

Рис. 1. Разделы спортивной метрологии

Для одних видов спорта в основе комплексного контроля лежит измерение физических величин (в легкой атлетике, тяжелой атлетике, плавании и т. п.), для других - качественных показателей (в художественной гимнастике, фигурном катании и т. п.). В том и другом случае для обработки результатов измерений используется соответствующий математический аппарат, позволяющий сделать на основе проведенных измерений и оценок корректные выводы.

Вопросы для самоконтроля

  1. Что такое спортивная метрология и в чем ее специфика?
  2. Каковы предмет, цель и задачи спортивной метрологии?
  3. Какие параметры измеряются в спортивной практике?
  4. Какие разделы включает в себя спортивная метрология?