В больших спиральных галактиках, наподобие той, в которой мы живем, полная масса звезд составляет около 100-200 млрд. масс Солнца. Если разделить это число на вероятный возраст галактик (10-20 млрд. лет), то мы получим среднюю скорость образования звезд из газа за всю историю галактики, которая рав­на 5-20 солнечных масс в год. Однако темп звездо­образования постепенно уменьшается со временем, по­этому сейчас в большинстве случаев он составляет для большинства спиральных галактик 1-5 массы Солнца в год. А несколько молодых звезд в год - это не так уж много.

Молодые звезды образуются неодинаково часто по всей галактике. Темпы звездообразования зависят от расстояния от центра галактики примерно так, как показана на рис. 6. Хотя молодые звезды могут присут­ствовать (в небольшом количестве) вблизи центра га­лактики, подавляющее большинство их связано со спи­ральными ветвями. Образования звезд за пределами оптически наблюдаемых ветвей практически не происходит, несмотря на то что в ряде галактик там найден межзвездный газ.

Темп звездообразования отличается и для различ­ных типов спиральных галактик. В галактиках Sa он, как правило, меньше, чем в галактиках Sc. Обычно в спиральных ветвях Sa-галактик не наблюдается отдель­ных голубых звезд или ярких областей Н II - они там не только реже встречаются, но и слабее по светимости (последнее пока представляет собой загадку).

Чтобы понять, как происходит рождение звезд в га­лактиках, важно выяснить, откуда же появляются спи­ральные ветви и почему звезды возникают преимущест­венно в них?

Если взглянуть на фотографии некоторых спираль­ных галактик, то может показаться, будто вся галакти­ка, кроме небольшой части в центре, состоит из спи­ралей. Но такое впечатление ошибочно. Проведя спе­циальные измерения, можно убедиться, что даже в га­лактиках с хорошо развитой структурой светимость спиральных ветвей (и в особенности масса) составляет небольшую часть от светимости (или массы) всей га­лактики. Выделяются же они на общем звездном фоне потому, что в спиралях собраны самые яркие объекты галактик: горячие звезды с температурой, на по­верхности 20-30 тыс. градусов, скопления молодых звезд, звездные ассоциации и массивные газовые обла­ка, ярко флюоресцирующие под действием ультрафио­летового излучения горячих звезд. Звезды с большой светимостью и высокой температурой живут гораздо меньше, чем «обычные» звезды типа нашего Солнца. Поэтому мы наблюдаем их только недалеко от мест, где они родились. Их концентрация в спиральных вет­вях говорит о том, что ветви в галактиках - это вы­тянувшиеся длинной цепочкой или полосой области, где происходит величественный процесс зарождения звезд. Правда, известны галактики, где мы видим молодые звезды, а спиральных ветвей у них нет. В таких га­лактиках, как правило, много межзвездного газа. По­хоже, что спиральные ветви просто облегчают и уско­ряют образование звезд, делая этот процесс эффектив­ным, даже когда остается мало необходимого для него «сырья» - межзвездного газа.

Спиральная форма ветвей может быть связана с вращением галактик. Это вращение таково, что его угловая скорость уменьшается с расстоянием от цент­ра галактики. Отсюда следует, что отдельные части га­лактики обегают вокруг галактического центра с раз­личными периодами, и если чем-нибудь выделить во вращающемся диске достаточно большую область, то уже меньше чем через один оборот она превратится в сегмент спирали.

Представим теперь себе, что в нескольких областях в плоскости галактики газ уплотнился и возникли оча­ги звездообразования. Тогда дифференциальное враще­ние галактики очень быстро (если можно назвать быст­рым процесс, идущий десятки миллионов лет) «разма­жет» каждую такую область в сегмент - «обрывок» спиральной ветви. И действительно, «обрывки» спи­ральных ветвей в некоторых галактиках наблюдаются. Наверное, они есть в каждой звездной системе, где оча­ги звездообразования могут растягиваться дифферен­циальным вращением. Но это не решение проблемы, по­скольку во многих галактиках спиральные ветви заве­домо не сегменты. Их удается проследить на протяже­нии одного и даже более оборотов вокруг ядра. Толь­ко процесс, охватывающий значительную часть всей галактики, способен привести к образованию спираль­ных ветвей.

Быть может, спиральные ветви - это просто выбро­сы вещества из центра галактики? Но, во-первых, спи­ральные ветви далеко не всегда «дотягиваются» до центра (в галактиках с перемычкой они, например, от­ходят от нее под прямым углом), а, во-вторых, вещест­во спиральных ветвей (звезды, межзвездный газ) вра­щается вокруг центра галактики по орбитам, близким к круговым, а не движется радиально, как можно было бы ожидать в случае выброса. К тому же, выбросы долж­ны происходить часто, чтобы можно было объяснить широкую распространенность спиральных галактик.

В таком случае спиральные ветви, может быть, представляют собой изогнутые трубки сравнительно плотного межзвездного газа, в котором образуются звезды? Наблюдения нейтрального межзвездного водо­рода не противоречат такому предположению, но что может удерживать газ в таких трубках, почему он не разлетится во все стороны? Собственное гравитацион­ное поле газа удержать его не может: действие грави­тации приведет лишь к тому, что газовая трубка ра­зобьется на отдельные конденсации и разрушится. Да и дифференциальное вращение галактики быстро растя­нет трубку, пока она через 1-2 оборота не «закрутит­ся» совсем. Так что таким путем спиральные ветви объяснить не удается.

Тогда, может быть, в состоянии спасти трубку газа от разрушения магнитное поле? Но и на этом пути встречаются большие трудности: чтобы спиральная ветвь-трубка вращалась как целое, необходимо иметь магнитное поле с плотностью энергии, в несколько сот раз большей соответствующей величины для поля в межзвездном газе нашей Галактики. Вряд ли это воз­можно: такое поле привело бы к легко обнаруживае­мым эффектам, и его присутствие тем или иным путем выдало бы себя.

Решение (единственное ли?) проблемы существова­ния спиральных ветвей удалось найти на ином пути, рас­сматривая их не как сплошные трубки, а как области, где особенно близко друг к другу располагаются орбиты звезд, вращающихся вокруг центра галактики (на­пример, так, как показано на рис. 7). Спиральные вет­ви с этой точки зрения являются лишь уплотнениями в звездном диске, которые не включают в себя все время одни и те же объекты, а перемещаются по диску га­лактики, не перенося с собой вещества, как не перено­сят его волны, распространяющиеся по поверхности воды.

Первым, кто начал разрабатывать подобный подход к объяснению природы спиральных ветвей, был швед­ский математик Б. Линблад. Начиная с 1960-х годов, теория спиральных ветвей как волн плотности стала быстро развиваться благодаря новому гидродинамиче­скому подходу к вопросу распространения волн плотно­сти, заимствованному из плазменной физики. Этот под­ход был применен к изучению волн сжатия со спираль­ным фронтом, распространяющихся в газо-звездном диске галактики. Согласно волновой теории образова­ния спиральных ветвей дифференциальное вращение галактики не должно разрушать спиральную структу­ру, так как в отличие от звездного диска спиральный узор вращается с постоянным периодом, подобно рисунку на твердой поверхности волчка. При этом и звез­ды, и газ движутся относительно спиральных ветвей, периодически проходя через фронт волны. На движе­ние звезд такое прохождение сказывается мало: их плотность в спиральной ветви становится лишь чуть-чуть (на несколько процентов) выше. Иное дело - меж­звездный газ. Его можно рассматривать как сплошную, легко сжимающуюся среду, плотность которой при про­хождении через «гребень» волны должна резко возра­стать. Здесь и кроется ответ на вопрос о том, почему спиральные ветви - место рождения звезд. Ведь сжа­тие межзвездного газа способствует его быстрой кон­денсации в облака, а затем и в звезды.

Процесс прохождения газа через спиральную ветвь неоднократно рассматривался теоретически. Результаты расчетов показывают, что, когда газ «входит» в спи­ральную ветвь, его плотность и давление резко возра­стают (в некоторых случаях возникает ударная волна), и происходит быстрое разбиение газа на две фазы: плотную, но холодную (облака) и разреженную, но с температурой 7-9 тыс. градусов (межоблачная среда). Если масса облаков велика - несколько сотен масс Солнца, то внешнее давление горячей среды может сжать их настолько, что облака станут гравитационно неустойчивыми и смогут сжиматься (до образования звезд). Одновременно и независимо действует и другой механизм увеличения плотности газа. Он связан с тем, что межзвездный газ в магнитном поле галактики об­разует неустойчивую систему. Газовые облака как бы «соскальзывают» по силовым линиям магнитного поля, опускаясь к самой плоскости звездного диска - в так называемые «потенциальные ямы». Там они скаплива­ются и сливаются в большие газовые комплексы, где и происходит образование звезд. Эти комплексы газа, нагретые звездами, и создают клочковатый вид спира­лей в галактиках, богатых межзвездным газом.

Появившиеся в результате этих процессов звезды продолжают свое движение по галактике с теми ско­ростями, которыми обладал породивший их газ, и по­степенно - за десятки миллионов лет - выходят из спиральной ветви. Но за это время самые яркие звез­ды уже успевают постареть и перестают излучать мно­го энергии («погаснут» и газовые облака, светившиеся благодаря этим звездам). Поэтому мы почти всегда наблюдаем яркие звезды и горячий межзвездный газ именно в спиральных ветвях, а не по всей галактике. Более того, эти объекты (а также темные «прожилки» пыли, появление которых, по-видимому, связано со сжа­тием газа) концентрируются не просто к спиральным ветвям, а к их внутренней стороне - как раз там, где, согласно волновой теории, ожидается «вхождение» газа в волну уплотнения и его сжатие.

После прохождения спиральной ветви межзвездный газ вновь становится разреженным - один атом на не­сколько кубических сантиметров пространства. Через фронт волны проходят новые массы газа, возникают новые очаги звездообразования.

Вывод о том, что спиральные ветви галактик мо­гут быть образованы волнами плотности, находит свое подтверждение и в расчетах (с помощью быстродейст­вующих ЭВМ) движения большого количества матери­альных точек, имитирующих звезды и газ галактиче­ского диска. Эти расчеты показали, что газ в своем движении действительно может образовывать ярко выраженную спиральную структуру.

При объяснении природы спиральных ветвей волно­вая теория встретилась с серьезной проблемой: волны плотности оказались не «вечными». Они должны мед­ленно затухать и исчезли бы, просуществовав не бо­лее 1 млрд. лет, если не возбуждались бы вновь или не поддерживались бы каким-либо источником энергии. Поэтому перед учеными встала еще одна задача: вы­яснить, каков источник или, лучше сказать, механизм возбуждения волн плотности?

Таких механизмов было предложено несколько, од­нако, какой из них играет основную роль в галактиках, пока неясно. Возбудить волны может и взаимодейст­вие двух звездных подсистем галактик, если одна вра­щается быстро, а другая - медленно (звездный диск и сфероидальная составляющая галактики), и гравитаци­онная неустойчивость межзвездной среды на периферии галактик, и неосесимметричное распределение масс, часто наблюдаемое вблизи центра галактик, а также, возможно, выбросы из ее центрального ядра.

Вообще говоря, как волны на воде или звуковые волны в воздухе можно возбуждать большим количе­ством способов, так и волны плотности в галактиках могут возбуждаться самыми различными путями - ре­зультат будет один: спиральная структура.

Окончательная проверка правильности волновой тео­рии происхождения спиральных ветвей галактик, види­мо, является делом недалекого будущего. Но пока еще наши знания о природе спиральных ветвей далеко не полны и все предположения и расчеты еще нуждаются в подтверждении. Да и форма спиральных ветвей ча­сто слишком сложна, чтобы считать их математически правильной спиралью. Ветви могут быть и широкими и узкими, отклоняться от формы спирали, сливаться, разветвляться, соединяться перемычками, образовывать несколько независимых «ярусов» и т. д. (Б. А. Ворон­цов-Вельяминов среди тысяч спиральных галактик об­наружил и ряд таких, две ветви которых словно бы закручиваются в разные стороны!). Объяснить это мно­гообразие форм пока не удается. Наконец, в некоторых звездных системах спиральные ветви имеют явно не­волновую природу, хотя их форма, видимо, все же связана с вращением галактики. Это относится не толь­ко к спиральным «обрывкам» внутри галактик. Извест­но немало случаев, когда спиральные ветви… выходят за пределы самих галактик! Широкие и неяркие, они тянутся неровной полосой, подчас на многие десятки тысяч световых лет через периферийные области звезд­ных систем, уходя в межгалактическое пространство. Наблюдаются они почти исключительно там, где есть две или несколько так называемых взаимодействующих галактик. Один из пионеров изучения взаимодейству­ющих галактик - Б. А. Воронцов-Вельяминов обнару­жил большое количество близких друг к другу галак­тик, одна или две из которых обладают странными меж­галактическими ветвями, не всегда спиральными по своему виду (рис 8). Подобные ветви в некоторых случаях могут появиться при действии на звезд­ную систему гравитационного поля соседней галактики. Внешнее гравитационное поле может изменить внут­реннюю структуру галактики (ведь все ее вещество движется под влиянием сил гравитации). Когда к га­лактике подходит другая массивная звездная система, возникают силы, стремящиеся разрушить галактику. Но чаще всего до полного разрушения дело не доходит. Часть звезд отрывается от основного тела галактики и при определенных условиях может образовать одну или две «струи», искривляющиеся из-за того, что звез­ды до этого вращались вокруг центра галактики. Получаются спирали из оторванных от галактики звезд. Если звездная система не окружена достаточно плот­ной газовой средой или не имеет размер, много боль­ший, чем предполагают сейчас, то судьба таких спира­лей проста - пройдут сотни миллионов лет и спирали исчезнут: входящие в них звезды «упадут» назад или навсегда покинут галактику. Правильность подобных представлений подтверждается расчетами взаимодейст­вия звездных систем, проводившимися на ЭВМ.

Но вот что удивительно: можно найти такие галак­тики, у которых внешние ветви «стыкуются» с обычны­ми спиральными ветвями. Значит, возбуждение волн плотности может быть связанным с внешним воздейст­вием. Получается, что одна галактика может на рас­стоянии влиять на образование звезд (а значит, и пла­нет) в другой, соседней галактике (Есть основания полагать, что наша Галактика также несет следы взаимодействия с соседними системами - БМО и ММО. Австралийские радиоастрономы обнаружили длинный и узкий, пе­ресекающий более чем полнеба «рукав» разреженного холодного нейтрального водорода, связанный с этими двумя соседними галак­тиками. Звезд в газовом рукаве пока не обнаружено, но они могут быть и слишком слабыми, чтобы их там можно было различить как отдельные точки.).

Подумайте о самых крупных объектах ночного неба, изображения которых вы видели. Да, конечно, они бывают совершенно разными – умирающие звёзды, остатки сверхновых, формирующие звёзды туманности и звёздные скопления, как старые, так и новые – но ничто не сравнится с красотой спиральных галактик. Содержащие от миллиардов до триллионов звёзд, эти «островные вселенные» демонстрируют уникальную структуру. Структуру довольно-таки загадочную, если задуматься об этом – как задумался читатель Грег Роджерс:

Что меня всегда удивляло по поводу спиральных галактик, так это их рукава, обёрнутые вокруг них не более чем на половину галактики. Поскольку внешняя часть вращается вокруг ядра медленнее, можно было бы ожидать встретить галактики, рукава которых обёрнуты множество раз вокруг ядра. Неужто Вселенная недостаточно старая для того, чтобы в ней появились так сильно закрученные галактики?

Рассматривайте какие угодно спиральные галактики, но у всех них будет схожая видимая структура.


Из центрального ядра наружу тянутся несколько спиральных рукавов – обычно от двух до четырёх – оборачивающихся вокруг галактики по мере удаления от центра. Одно из фантастических открытий 1970-х, вступившее в противоречие с ожиданиями, заключалось в том, что скорость движения звёзд по орбите вокруг галактики не уменьшается по мере отдаления от ядра – так, как это происходит с планетами в Солнечной системе, которые путешествуют по орбитам тем медленнее, чем дальше они расположены от центра. Скорость вращения звёзд остаётся постоянной – это ещё один из способов сказать, что у кривых вращения галактик плоский профиль.

Мы измеряли это, изучая галактики, расположенные к нам ребром, и подсчитывая, какое красное или синее смещение демонстрируют звёзды по отношению к их расстоянию от центра галактики. И хотя скорости отдельных звёзд практически не меняются, звезда, расположенная в два раза дальше от центра обращается вокруг него в два раза медленнее, а расположенная в десять раз дальше – в десять раз медленнее.

Вооружившись этим, можно подсчитать, что для галактики типа нашего Млечного пути Солнцу требуется 220 млн лет для завершения одного оборота вокруг галактики. Поскольку мы расположены примерно в 26000 световых годах от центра Галактики, наша позиция чуть ближе, чем половина пути от центра до самых окраин. Это значит, что поскольку нашей галактики около 12 млрд лет, внешние звёзды должны были совершить полный оборот всего 25 раз. Звёзды, расположенные так же, как Солнце, сделали 54 оборота. Звёзды внутри круга радиусом 10 000 световых лет совершили уже более 100 оборотов. Иначе говоря, можно ожидать, что галактики со временем закручиваются, как показано на видео ниже.

Но как показывают фотографии галактик, они не закручиваются многократно. В большинстве случаев рукава не обхватывают галактику даже единожды! Когда это свойство галактик выяснилось впервые, оно означало, по меньшей мере, следующее: эти спиральные рукава были нематериальны, это всего лишь видимость. И это так, вне зависимости от того, изолированы галактики или нет. Но есть ещё кое-что, если присмотреться.

Заметили розовые пятнышки, расположенные вдоль рукавов? Они появляются там, где присутствуют активные регионы формирования новых звёзд. Розовая точка – излишки излучаемого света на вполне определённой длине волны: 656,3 нм. Это излучение происходит, когда новые звёзды горят достаточно ярко для того, чтобы ионизировать газы, и затем, когда электроны воссоединяются с протонами, новообразованные атомы водорода испускают свет на определённой частоте, включая и ту, что делает эти регионы розовыми.

Нам это говорит о том, что эти спиральные рукава состоят из регионов, в которых плотность материала выше, чем в других частях галактики, и что звёзды свободно заходят и выходят из этих рукавов с течением времени.

Идея, объясняющая это, существует с 1964 года, и известна, как теория волн плотности . Теория утверждает, что рукава остаются на тех же самых местах с течением времени, так, как пробки на дороге остаются на тех же местах. Отдельные объекты (звёзды в галактике, автомобили на дороге) могут двигаться сквозь них, но примерно одно и то же количество объектов в любой момент всегда остаётся в «пробке». Из-за этого расположение уплотнённых участков остаётся неизменным.

Физика процесса проста: звёзды в определённых регионах создают привычные нам силы гравитации, и именно они и сохраняют спиральную форму. Иначе говоря, если мы начнём с региона с повышенной плотностью газа, и позволим нашему диску вращаться, то получим изначальный набор регионов, где впервые формируются звёзды: прото-рукава. С эволюцией галактики эти рукава – и регионы повышенной плотности – сохраняются только лишь благодаря эффектам гравитации.

Удивительно, что этот эффект так же хорошо работает как при наличии тёмной материи, окружающей галактику в виде гигантского гало, так и при её отсутствии.


Слева – галактика без тёмной материи, справа – с тёмной материей

И хотя предположения вопроса Грега были неверны, поскольку внешние звёзды галактики двигаются с такой же скоростью, как и внутренние, рукава и правда никогда не заворачиваются, вне зависимости от возраста галактики – просто из-за физики самой галактики. Как и пробки на дорогах, звёзды, газ и пыль, оказывающиеся в спиральных рукавах в любой момент времени, находятся в более плотном окружении, а когда они вырываются оттуда, расстояние от них до других звёзд увеличивается – в таком положении сегодня находится и наше Солнце.

Д-р. Дэнни Фолкнер

Со времени своего открытия галактики не перестают удивлять человеческий разум. Многие из них имеют форму прекрасных спиралей. Но если бы они вращались на протяжении миллиардов лет, разве не утратили бы они свои отчетливые формы рукавов спирали?

Огромные звездные острова, называемые «галактиками» парят в черном, как смоль, космосе. Предполагаемое количество видимых галактик составляет около 170 миллиардов, и каждая из них содержит в себе миллиарды или даже триллионы отдельных звезд. Созерцая это мерцающее чудо, мы задаемся вопросом: «Откуда взялись эти сияющие драгоценности?»

В первой главе книге Бытия нам дан безошибочный ответ: в четвертый день Создатель сотворил звезды (Бытие 1:16 ). Астрономы, отрицающие историю, данную нам Богом, не могут найти альтернативного объяснения происхождению звезд.

Одной из главных проблем для них являются прекрасные рукава спирали, украшающие многие галактики. Проще говоря, эти спирали должны были бы утратить свою форму, если бы они существовали в древней вселенной . Но на самом деле присутствие рукавов спиралей доказывает, что вселенная очень молода.

Строение галактик

Любое здравое толкование происхождения галактик требует длительного объяснения. Галактики расположены далеко друг от друга, и кажется, что между ними нет материи. Например, наша галактика, которая называется Млечный Путь, отделена от ближайшей галактики значительного размера - Андромеды (M 31)- расстоянием в два миллиона световых лет.

В каждой галактике присутствует огромное количество звезд. Млечный путь и M 31, которые являются обычными галактиками, состоят из около 200 миллиардов звезд каждая, и простираются от края до края на 100 000 световых лет. Довольно интересен тот факт, что другие галактики меньшего размера вращаются по орбите вокруг более крупных галактик, таких как наша и галактика M 31.

Галактики разделяются на два основных вида – спиральные и эллиптичные. Эллиптичные галактики, как следует из названия, имеют форму эллипса. Спиральные галактики, в свою очередь, имеют густую концентрацию звезд в центре, который называется ядром, и изящные рукава спирали, исходящие от ядра ко внешнему краю. Это придает галактике вид завихрения. Откуда же взялось такое расположение и многообразие?

Спирали порождают больше всего споров среди ученых-астрономов. Начиная с 30х годов предыдущего столетия, ученые начали спорить о строении и происхождении рукавов спирали и эти споры продолжаются и сегодня.

Открывая молодую вселенную

Прежде, чем разобраться с техническими трудностями, мы должны рассмотреть одно общепринятое заблуждение. Многие люди считают, что звезд много внутри рукава спирали, однако между рукавами они практически отсутствуют. На самом же деле, кучность звезд между рукавами и внутри рукава практически одинакова.

Если это так, то почему рукава спирали кажутся на вид такими яркими? Причина заключается в том, что в рукаве спирали находятся очень горячие и яркие синие звезды. Свет этих звезд доминирует в видимом спектре, поэтому рукава спирали так выделяются на фотографиях. Особенно это касается старых черно-белых фотографий, которые были очень чувствительны к синему цвету. На более современных цветных фотографиях в инфракрасной области спектра рукава спиралей не так сильно выделяются, так как более многочисленные красные звезды доминируют.

Кроме ярких синих звезд, в рукавах спирали присутствует также множество пыли и газа. Иногда пыль и газ концентрируются в «облака», которые называются «туманностями». Астрономы называют туманности и синие звезды «спутниками спирали», так как они вычерчивают местоположения рукавов спирали.

Однако еще в 1930-х годах астрономы столкнулись с одной проблемой. Внешним звездам требовалось больше времени, чтобы завершить движение по своей орбите, чем звездам, находящимся внутри спирали. Поскольку расстояние от центра галактики увеличивается, рукава спирали должны становиться нестабильными. То есть, после нескольких вращений, рукава спирали, должны были бы рассеяться.

Астрономы многие годы спорили о направлении движения рукавов спирали, пытаясь определить - они закручиваются или раскручиваются. Но не зависимо от того, какого взгляда они не придерживались, если бы возраст галактик составлял как минимум десять миллиардов лет, как обычно предполагается, то рукавов спиралей сейчас уже не должно было быть.

Неудачные предположения

К концу 1960-х годов астрономам показалось, что они нашли ответ на свой вопрос. Они разработали теорию волновой плотности спирали. Согласно этой концепции, рукава спирали ведут себя в межзвездном пространстве подобно звуковым волнам. Если некие внешние силы сжимают межзвездное пространство, в рукавах спирали возникают облака газа и пыли. Кроме того, из-за компрессии газа, предположительно, образовывались звезды.

В соответствии с этим мировоззрением, некоторые новые звезды должны были стать массивными синими звездами с очень коротким жизненным циклом (в лучшем случае, в несколько миллионов лет). Такие звезды были очень важны для подтверждения данной теории, однако, поскольку, предположительно, они существуют не долго, времени для того, чтобы «волна» перемещалась и оставляла после себя синие звезды, оказывается недостаточно. Поэтому в своей теории они предположили, что здесь на сцену выходила гравитация галактики и завершала процесс сбора материала и формирования звезд.

Детали теории волновой плотности спирали трудно доказать, однако у данного мировоззрения до сих пор есть непреклонные приверженцы. К 1990 годам ученые изучили небольшие галактики-спутники, и пришли к выводу, что они могут быть тем самым механизмом, который поддерживает форму спирали, однако и эту теорию доказать детально довольно сложно.

Темная материя?

За последнее десятилетие астрономы получили доказательства существования темной материи, что только усложняет общую картину. Темная материя интересна тем, что она не излучает света, однако ее общая масса намного превышает общую массу освещенной материи, а ее гравитация оказывает величайшее влияние на структуры тел внутри галактики, а также на весь космос.

Факты свидетельствуют о том, что темная материя находится во внешних слоях галактик. Большинство астрономов на сегодняшний день считают, что именно темная материя помогает спиралям галактик поддерживать жизнь. Однако даже самое лучшее доказательство существования темной материи – более высокая скорость обращения внешних слоев галактик, нежели предполагалось – может только усугубить, а не разрешить проблему существования спиралей.

Креационисты давно утверждают, что рукава спирали не должны существовать в древней вселенной, поэтому наличие рукавов спирали указывает на очень молодой возраст вселенной. Однако, поскольку большинство астрономов-эволюционистов начинают свои исследования с предположения о том, что возраст вселенной составляет миллиарды лет, они убеждены в существовании неких механизмов, которые продолжают поддерживать спиральную форму галактик. Если бы у них на самом деле были бы убедительные ответы на все эти вопросы, они перестали бы выдвигать все новые предположения. Их ошибки свидетельствуют о том, что аргументы креационистов не следует сбрасывать со счетов.

В недавние годы был разработан еще один метод. Астрономы фотографировали отдаленные галактики, находящиеся на расстоянии в 12 миллионов световых лет от Земли. Предположив, что примерно 13,7 миллиардов лет назад произошел «большой взрыв», они считают, что эти галактики являются самыми молодыми во вселенной. Они практически ничем не отличаются от соседних (и, предположительно, более старых) галактик, и практически идентичны на вид. Иначе говоря, и здесь мы не наблюдаем эволюционных процессов.

Опираясь на теорию недавнего сотворения, мы можем предполагать, что дальние галактики должны выглядеть практически так же, как и ближние, однако эволюционная модель этого не может допустить. Скажем еще раз: Божье Слово проливает незыблемый свет на происхождение и строение Его великой вселенной.

Доктор Дэнни Фолкнер является профессором физики и астрономии при Ланкастерском университете штата Южная Каролина. Он написал множество статей для астрономических журналов, а также является автором книги «Вселенная, созданная по разумному замыслу ».

Ядро - крайне малая область в центре галактики. Когда речь заходит о ядрах галактик, то чаще всего говорят об активных ядрах галактик, где процессы нельзя объяснить свойствами сконцентрированных в них звёзд.

Диск - относительно тонкий слой, в котором сконцентрировано большинство объектов галактики. Подразделяется на газопылевой диск и звёздный диск. галактика ядро межзвёздный гравитационный

Балдж (англ.. bulge - вздутие) - наиболее яркая внутренняя часть сфероидального компонента.

Гало -- внешний сфероидальный компонент. Граница между балджем и гало размыта и достаточно условна.

Другие возможные элементы.

Полярное кольцо - редкий компонент. В классическом случае галактика с полярным кольцом имеет два диска, вращающихся в перпендикулярных плоскостях. Центры этих дисков в классическом случае совпадают. Причина возникновения полярных колец до конца не ясна.

Сфероидальный компонент - сфероподобное распределение звёзд.

Спиральная ветвь (спиральный рукав) - уплотнение из межзвёздного газа и преимущественно молодых звёзд в виде спирали. Скорее всего, являются волнами плотности, вызванными различными причинами, однако вопрос об их происхождении до сих пор окончательно не решён.

Бар (перемычка) - выглядит как плотное вытянутое образование, состоящее из звёзд и межзвёздного газа. По расчётам, главный поставщик межзвёздного газа к центру галактики. Однако почти все теоретические построения основываются на факте, что толщина диска много меньше его размеров, иными словами, диск плоский, и почти все модели - упрощённые двумерные модели, расчётов трёхмерных моделей дисков крайне мало. А трёхмерный расчёт галактики с баром и газом в известной литературе всего один. По данным автора данного расчёта, газ не попадает в центр галактики, а проходит довольно далеко.

Эволюция галактик

Эволюцией галактики называется изменение её интегральных характеристик со временем: спектра, цвета, химического состава, поля скоростей. Описать жизнь галактики непросто: на эволюцию галактики влияют не только эволюция отдельных её частей, но также и её внешнее окружение. Вкратце процессы, влияющие на эволюцию галактики, можно представить следующей схемой.


Эволюция протекает на лет быстрее при протогалактическое сжатие, большом мёрджинге (слияние галактик), давлении горячего межгалактического газа.

Эволюция протекает медленнее на лет при продолжительности аккреции на диске, малом слиянии, приливном взаимодействии галактик. А также, если эволюция вызвана неустойчивостью бара, темным гало, черной дырой, спиральными ветвями, галактическими ветрами и фонтанами.

На протяжении эволюционного развития возникают другие процессы важные для галактики: формирование звезд, обогащение металлами, обратная связь через сверхновые и активные ядра, возобновление газа.

Которые характеризуются следующими физическими свойствами:

  • значительный суммарный вращательный момент ;
  • состоят из центрального балджа (почти сферического утолщения), окружённого диском:
    • балдж имеет сходство с эллиптической галактикой , содержащей множество старых звёзд - так называемое «Население II » - и нередко сверхмассивную чёрную дыру в центре;
    • диск является плоским вращающимся образованием, состоящим из межзвёздного вещества , молодых звёзд «Населения I » и рассеянных звёздных скоплений .

Спиральные галактики названы так, потому что имеют внутри диска яркие рукава звёздного происхождения, которые почти логарифмически простираются из балджа. Хотя иногда их нелегко различить (например, во флоккулентных спиралях), эти рукава служат основным признаком, по которому спиральные галактики отличаются от линзообразных галактик , для которых характерно дисковое строение и отсутствие ярко выраженной спирали. Спиральные рукава представляют собой области активного звездообразования и состоят по большей части из молодых горячих звёзд; именно поэтому рукава хорошо выделяются в видимой части спектра. Абсолютное большинство наблюдаемых спиральных галактик вращается в сторону закручивания спиральных ветвей .

Диск спиральной галактики обычно окружён большим сфероидальным гало , состоящим из старых звёзд «Населения II », большинство которых сосредоточено в шаровых скоплениях , вращающихся вокруг галактического центра. Таким образом, спиральная галактика состоит из плоского диска со спиральными рукавами, эллиптического балджа и сферического гало, диаметр которого близок к диаметру диска.

Многие (в среднем две из трёх) спиральные галактики имеют в центре перемычку («бар» ), от концов которой отходят спиральные рукава . В рукавах содержится значительная часть пыли и газа, также множество звёздных скоплений . Вещество в них вращается вокруг центра галактики под действием гравитации.

Масса спиральных галактик достигает 10 12 масс Солнца. Крупнейшей открытой на текущий момент спиральной галактикой является NGC 6872 , общая протяженность которой составляет 522 тысяч световых лет, что в пять раз больше, чем диаметр Млечного пути .

Спиральные рукава

Известен следующий парадокс: время обращения звёзд вокруг ядра галактики составляет порядка 100 миллионов лет; возраст самих галактик в несколько десятков раз больше. Между тем спирали закручены как правило на небольшое число оборотов. Парадокс объясняется тем, что принадлежность звёзд спиралям не постоянна: звёзды входят в область, занимаемую спиральным рукавом, на некоторое время замедляют своё движение в этой области, и покидают спираль. Между тем спираль, как область повышенной плотности вещества в диске спиральной галактики, может существовать неограниченно долго - спирали подобны стоячим волнам.

Спирали галактик могут несильно отличаться по количеству звёзд от окружающего их диска, но могут быть существенно ярче. Газовые облака , пересекая спираль, испытывают сжатие или расширение, порождающие ударные волны в газе. Всё это приводит к нарушению равновесия в облаках и интенсивному звёздообразованию в области спирали. А если учесть, что время жизни ярчайших гигантов и сверхгигантов в тысячи раз меньше, чем возраст Солнца, то получается что большинство ярких голубых звёзд собрано в небольшом объёме спирального рукава: сверхгиганты не успевают покинуть спираль за те несколько миллионов лет, которые существуют до взрыва сверхновой . Как следствие, большое количество голубых сверхгигантов придаёт спиралям галактик яркий голубоватый оттенок.

Расположение Солнца

Солнце интересно тем, что расположено между спиральными рукавами Галактики и делает оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава . Как следствие, Солнце не пересекает области активного звездообразования , в которых часто вспыхивают сверхновые - источники губительного для жизни излучения.

Спиральные галактики

  • Млечный Путь (наша галактика)