Разбираемся в том что такое окружность и круг. Формула площади круга и длины окружности.

Мы каждый день встречаем множество предметов, по форме которые образовывают круг или напротив окружность. Иногда возникает вопрос, что такое окружность и чем она отличается от круга. Конечно же, мы все проходили уроки геометрии, но иногда не помешает освежить знания весьма простыми объяснениями.

Что такое длина окружности и площадь круга: определение

Итак, окружность является замкнутой кривой линией, которая ограничивает или же напротив, образует круг. Обязательное условие окружности — у нее есть центр и все точки равноудалены от него. Проще говоря, окружность это гимнастический обруч (или как его часто называют хула-хуп) на плоской поверхности.

Длина окружности это общая длина той самой кривой, которая образует окружность. Как известно вне зависимости от размеров окружности соотношение ее диаметра и длины равно числу π = 3,141592653589793238462643.

Из этого следует, что π=L/D, где L — длина окружности, а D — диаметр окружности.

Если Вам известен диаметр, то длину можно найти по простой формуле: L= π* D

В случае если известен радиус: L=2 πR

Мы разобрались, что такое окружность и можем перейти к определению круга.

Круг — это геометрическая фигура, которая окружена окружностью. Или же, круг это фигура, рубеж которой состоит из большого количества точек равноудаленных от центра фигуры. Вся площадь, которая находится внутри окружности, включая ее центр, называется кругом.

Стоит заметить, что у окружности и круга, который находится в ней значения радиуса и диаметра одинаковые. А диаметр в свою очередь в два раза больше чем радиус.

Круг имеет площадь на плоскости, которую можно узнать при помощи простой формулы:

Где S — площадь круга, а R — радиус данного круга.

Чем круг отличается от окружности: объяснение

Основное отличие между кругом и окружностью — это то, что круг — геометрическая фигура, а окружность — замкнутая кривая. Также обратите внимание на отличия между окружностью и кругом:

  • Окружность это замкнутая линия, а круг — площадь внутри этой окружности;
  • Окружность это кривая линия на плоскости, а круг — пространство, сомкнутое в кольцо окружностью;
  • Сходство между окружностью и кругом: радиус и диаметр;
  • У круга и окружности единый центр;
  • В случае если заштриховывается пространство внутри окружности, оно превращается в круг;
  • У окружности есть длина, но ее нет у круга, и наоборот, у круга есть площадь, которой нет у окружности.

Круг и окружность: примеры, фото

Для наглядности предлагаем рассмотреть фото, на котором слева изображен круг, а справа окружность.

Формула длины окружности и площади круга: сравнение

Формула длины окружности L=2 πR

Формула площади круга S= πR²

Обратите внимание, что в обеих формулах присутствует радиус и число π. Данные формулы рекомендуется выучить наизусть, так как они простейшие и обязательно пригодятся в повседневной жизни и на работе.

Площадь круга по длине окружности: формула

S=π(L/2π)=L²/4π, где S — площадь круга, L — длина окружности.

Видео: Что такое круг, окружность и радиус

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой - кругом на плоскости - очень давно.

Кругом с центром и радиусом называется множество точек плоскости, удаленных от на расстояние, не большее . Круг ограничен окружностью, состоящей из точек, удаленных от центра в точности на расстояние . Отрезки, соединяющие центр с точками окружности, имеют длину и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда - отрезок, соединяющий две точки окружности, - делит круг на два сегмента, а окружность – на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит ее и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды - хорды, проходящие через центр, - называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние , то при она не пересекается с кругом, при пересекается с кругом по хорде и называется секущей, при имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают часть всей окружности. Центральный угол (рис. 3) измеряется тем же числом градусов, что и дуга , на которую он опирается; вписанный угол измеряется половиной дуги . Если вершина угла лежит внутри круга, то этот угол в градусной мере равен полусумме дуг и (рис. 4,а). Угол с вершиной вне круга (рис. 4,б), высекающий на окружности дуги и , измеряется полуразностью дуг и . Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4,в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка лежит внутри круга, то произведение длин отрезков проходящих через нее хорд постоянно. На рис. 5,a . Теорема о секущей и касательной (имеются в виду длины отрезков частей этих прямых) утверждает, что если точка лежит вне круга, то произведение секущей на ее внешнюю часть тоже неизменно и равно квадрату касательной (рис. 5,б).

Еще в древности пытались решить задачи, связанные с кругом, - измерить длину окружности или ее дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть ее и приложить к линейке или же отметить на окружности точку и «прокатить» ее вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой («пи» - начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность - это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую-нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг правильные -угольники , то при , стремящемся к бесконечности, в пределе стремятся к . Поэтому естественно ввести следующие, уже строгие, определения: длина окружности - это предел последовательности периметров правильных вписанных в окружность -угольников, а площадь круга - предел последовательности их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на равных частей, точки деления соединяются ломаной и длина дуги полагается равной пределу периметров таких ломаных при , стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела - оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа следует формула для длины окружности:

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг и с общим центральным углом из соображений подобия вытекает пропорция , а из нее - пропорция , после перехода к пределу мы получаем независимость (от радиуса дуги) отношения . Это отношение определяется только центральным углом и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в . Тем самым получается формула для длины дуги:

где - радианная мера дуги.

Записанные формулы для и - это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного -угольника:

По определению левая часть стремится к площади круга , а правая - к числу

и , основания его медиан и , середины и отрезков прямых от точки пересечения его высот до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек и называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.

Окружность – это плоская замкнутая линия, все точки которой находятся на одинаковом расстоянии от некоторой точки (точки О), которая называется центром окружности.
(Окружность - геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. )

Круг – это часть плоскости, ограниченная окружностью.Точка О также называется центром круга.

Расстояние от точки окружности до её центра, а также отрезок, соединяющий центр окружности с её точкой, называется радиусом окружности/круга.
Посмотрите, как используется круг и окружность в нашей жизни, искусстве, дизайне.

Хорда - греческое - струна, стягивающая что-то
Диаметр - "измерение через"

КРУГЛАЯ ФОРМА

Углы могут встречаться во все более возрастающем количестве, приобретать, соответственно, все больший разворот – пока не исчезнут окончательно и плоскость не станет кругом.
Это очень простой и одновременно очень сложный случай, о котором мне хотелось бы поговорить подробно. Здесь необходимо отметить, что как простота, так и сложность обусловлены отсутствием углов. Круг прост, поскольку давление его границ, в сравнении с прямоугольными формами, нивелировано – различия здесь не так велики. Он сложен, поскольку верх неощутимо перетекает в левое и правое, а левое и правое – в низ.

В. Кандинский

В Древней Греции круг и окружность считались венцом совершенства. Действительно, в каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе. Это свойство окружности сделало возможным возникновение колеса, поскольку ось и втулка колеса должны все время быть в соприкосновении.

В школе изучается много полезных свойств окружности. Одной из самых красивых теорем является следующая: проведем через заданную точку прямую, пересекающую заданную окружность, тогда произведение расстояний от этой точки до точек пересечения окружности с прямой не зависит от того, как именно была проведена прямая. Этой теореме около двух тысяч лет.


На рис. 2 изображены две окружности и цепочка окружностей, каждая из которых касается этих двух окружностей и двух соседей по цепочке. Швейцарский геометр Якоб Штейнер около 150 лет назад доказал следующее утверждение: если при некотором выборе третьей окружности цепочка замкнется, то она замкнется и при любом другом выборе третьей окружности. Отсюда следует, что если однажды цепочка не замкнулась, то она не замкнется при любом выборе третьей окружности. Художнику, рисовавшему изображенную цепочку, пришлось бы немало потрудиться, чтобы она получилась, или обратиться к математику для расчета расположения двух первых окружностей, при котором цепочка замыкается.

Вначале мы упомянули о колесе, но еще до колеса люди использовали круглые бревна
- катки для перевозки тяжестей.

А можно ли использовать катки не круглой, а какой-нибудь другой формы? Немецкий инженер Франц Рело обнаружил, что таким же свойством обладают катки, форма которых изображена на рис. 3. Эта фигура получается, если провести дуги окружностей с центрами в вершинах равностороннего треугольника, соединяющие две другие вершины. Если провести к этой фигуре две параллельные касательные, то расстояние между ними будет равно длине стороны исходного равностороннего треугольника, так что такие катки ничем не хуже круглых. В дальнейшем были придуманы и другие фигуры, способные выполнять роль катков.

Энц. "Я познаю мир. Математика", 2006

У каждого треугольника имеется, и притом единственная, окружность девяти точек . Это окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника: основания его высот D1 D2 и D3, основания его медиан D4, D5 и D6 середины D7, D8 и D9 отрезков прямых от точки пересечения его высот Н до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха).
Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это -точки ее касания с четырьмя окружностями специального вида. Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек D10, D11, D12 и D13 называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой Н- его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.


Энц. справочник юного математика, 1989

Это замкнутая плоская линия, всякая точки которой равноудалена от одной и той же точки (O ), называемой центром .

Прямые (OA , OB , OС. . .), соединяющие центр с точками окружности - это радиусы .

Из этого получаем:

1. Все радиусы одной окружности равны.

2. Два круга с одинаковыми радиусами будут равны.

3. Диаметр равен двум радиусам.

4. Точка , лежащая внутри круга, ближе к центру, а точка, лежащая вне круга, дальше от центра, чем точки окружности.

5. Диаметр , перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам.

6. Дуги , заключенные между параллельными хордами , равны.

При работе с окружностями применяют следующие теоремы:

1. Теорема . Прямая и окружность не могут иметь более двух общих точек.

Из этой теоремы получаем два логично вытекающих следствия:

Никакая часть окружности не может совместиться с прямой, потому что в противном случае окружность с прямой имела бы более двух общих точек.

Линия, никакая часть которой не может совместиться с прямой, называется кривой .

Из предыдущего следует, что окружность есть кривая линия .

2. Теорема . Через всякие три точки, не лежащие на одной прямой, можно провести окружность и только одну.

Как следствие данной теоремы получаем:

Три перпендикуляра к сторонам треугольника вписанного в окружность проведенные через их середины, пересекаются в одной точке, которая является центром окружности.

Решим задачу. Требуется найти центр предложенной окружности .

Отметим на предложенной три любые точки A, B и С, начертим через них две хорды , например, AB и СB, и из середины этих хорд укажем перпендикуляры MN и PQ. Искомый центр, будучи одинаково удален от A, B и С, должен лежать и на MN, и на PQ, следовательно, он находится на пересечении этих перпендикуляров, т.е. в точке O.

МБОУ Большекрупецкая СОШ

Окружность и круг – это одна и та же

фигура или нет?

Проект выполнен Матвеевым Владиславом, учеником 5 класса

Учитель:Сергачева К.В.

Д. Большой Крупец

План

1. Введение

2. Основная часть

1).Из истории

2).Понятия круга и окружности и их элементов

3).Круг и окружность в природе, повседневной жизни и стихах

3. Заключение

4. Литература

Введение

Многие предметы вокруг нас имеют форму, похожую на геометрические фигуры. Чтобы разобраться, что такое окружность и чем она отличается от круга, необходимо иметь чёткое представление об этих фигурах.

Данная работа посвящена геометрическим фигурам - кругу и окружности. Выбор темы не случаен. Люди встречаются с кругом и окружностью в жизни практически на каждом шагу. Однако не все могут отличить окружность от круга. Проведённый мною опрос учащихся школы и некоторых взрослых показал: что различают эти фигуры только 50% опрошенных.

Задача данного проекта: систематизировать сведения о круге и окружности.

Презентация по теме будет в помощь и ученикам и учителям.

Из истории

Еще в древности людям были известны многие геометрические фигуры, в том числе окружность и круг. Об этом свидетельствуют археологические раскопки. Еще тогда приходилось решать задачи на вычисление длины окружности.

Легенда гласит, что когда древнегреческий город Сиракузы, где жил в своё время Архимед, захватили римляне, учёный, занимаясь научными исследованиями, чертил окружности на песке. Солдату, который пришёл убить его, он воскликнул: “Убей меня, но не тронь моих кругов”.

В Древней Греции круг и окружность считались венцом совершенства. Действительно, в каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе. Это свойство окружности сделало возможным возникновение колеса, поскольку ось и втулка колеса должны все время быть в соприкосновении.

Но еще до колеса люди использовали круглые бревна - катки для перевозки тяжестей. Рисунки на стенах египетских пирамид рассказывают нам, что именно так доставлялись огромные камни на строительство этих пирамид.

Понятия круга и окружности и их элементов

Если поставить круглый стакан на лист бумаги и обвести его карандашом, получится линия, изображающая окружность. Если рассмотреть эту линию под микроскопом, то мы увидим толстую неровную че р ту. Геометрическая окружность не имеет ширины. Все её точки одинаково удалены от центра. Кольцо, обруч напоминают своей формой окружность. Окружность –самая простая кривая линия

Рис 1. Рис.2 Рис.3

Окружностью называется фигура, которая состоит из всех точек плоскости, находящихся на данном расстоянии от данной точки. Эта точка называется центром окружности и обычно обозначается О. (рис 1.,2.)

Что же такое круг ? Круг мы можем вырезать из бумаги. Арена цирка, дно стакана или тарелка имеют форму круга. Если окружность это «черта» (мы можем ниточкой выложить окружность), то круг это все, что находится внутри окружности.

Кругом называется фигура, которая состоит из всех точек плоскости, находящихся на расстоянии не большем данного, от данной точки. Эта точка называется центром круга, а данное расстояние – радиусом круга. Границей круга является окружность с теми же центром и радиусом.

Окружность и круг состоят из разнообразных частей.

Расстояние от точек окружности до её центра называется радиусом окружности и обычно обозначается R . Радиусом также называется любой отрезок, соединяющий точку окружности с её центром. Радиус – происходит от латинского слова «радиус» - «спица колеса».

Отрезок, соединяющий две точки окружности, называется хордой окружности, и хордой круга, ограниченного этой окружностью. (Рис.1.,3) Хорда – греческое слово и переводится – «струна».

Хорда, проходящая через центр окружности или круга, называется диаметром окружности или круга. Диаметр делит круг на два полукруга , а окружность – на две полуокружности . (Рис 3.) Диаметр – «диаметрос» - тоже греческое слово, переводится – «поперечник».

Диаметр делится центром окружности пополам, и поэтому он равен двум радиусам. Два радиуса разбивают круг на секторы . Хорда разбивает круг на сегменты .

Круг и окружность в природе, повседневной жизни, в стихах

1.В природе

6. Математика. 10-11 классы: рефераты. Сост. Видеман и др. – Волгоград: Учитель,2009