Атомная единица массы. Число Авогадро

Вещество состоит из молекул. Под молекулой мы будем понимать наименьшую частицу данного вещества, сохраняющую химические свойства данного вещества.

Читатель : А в каких единицах измеряется масса молекул?

Автор : Массу молекулы можно измерять в любых единицах массы, например в тоннах, но поскольку массы молекул очень малы: ~10 –23 г, то для удобства ввели специальную единицу – атомную единицу массы (а.е.м.).

Атомной единицей массы называется величина, равная -й массы атома углерода 6 С 12 .

Запись 6 С 12 означает: атом углерода, имеющий массу 12 а.е.м. и заряд ядра – 6 элементарных зарядов. Аналогично, 92 U 235 – атом урана массой 235 а.е.м. и зарядом ядра 92 элементарных заряда, 8 О 16 – атом кислорода массой 16 а.е.м и зарядом ядра 8 элементарных зарядов и т.д.

Читатель : Почему в качестве атомной единицы массывзяли именно (а не или ) часть массы атома и именно углерода, а не кислорода или плутония?

Экспериментально установлено, что 1 г » 6,02×10 23 а.е.м.

Число, показывающее, во сколько раз масса 1 г больше 1 а.е.м, называется числом Авогадро : N A = 6,02×10 23 .

Отсюда

N А × (1 а.е.м) = 1 г. (5.1)

Пренебрегая массой электронов и различием в массах протона и нейтрона, можно сказать, что число Авогадро приблизительно показывает, сколько надо взять протонов (или, что почти то же самое, атомов водорода), чтобы образовалась масса в 1 г (рис. 5.1).

Моль

Масса молекулы, выраженная в атомных единицах массы, называется относительной молекулярной массой .

Обозначается М r ­ (r – от relative – относительный), например:

12 а.е.м, = 235 а.е.м.

Порция вещества, которая содержит столько же граммов данного вещества, сколько атомных единиц массы содержит молекула данного вещества, называется молем (1 моль) .

Например: 1) относительная молекулярная масса водорода Н 2: , следовательно, 1 моль водорода имеет массу 2 г;

2) относительная молекулярная масса углекислого газа СО 2:

12 а.е.м. + 2×16 а.е.м. = 44 а.е.м.

следовательно, 1 моль СО 2 имеет массу 44 г.

Утверждение. Один моль любого вещества содержит одно и то же число молекул: N А = 6,02×10 23 шт.

Доказательство . Пусть относительная молекулярная масса вещества М r (а.е.м.) = М r × (1 а.е.м.). Тогда согласно определению 1 моль данного вещества имеет массу М r (г) = М r ×(1 г). Пусть N – число молекул в одном моле, тогда

N ×(масса одной молекулы) = (масса одного моля),

Моль – основная единица измерения в СИ.

Замечание . Моль можно определить иначе: 1 моль – это N А = = 6,02×10 23 молекул данного вещества. Тогда легко понять, что масса 1 моля равна М r (г). Действительно, одна молекула имеет массу М r (а.е.м.), т.е.

(масса одной молекулы) = М r × (1 а.е.м.),

(масса одного моля) = N А ×(масса одной молекулы) =

= N А × М r × (1 а.е.м.) = .

Масса 1 моля называется молярной массой данного вещества.

Читатель : Если взять массу т некоторого вещества, молярная масса которого равна m, то сколько это будет молей?

Запомним:

Читатель : А в каких единицах в системе СИ следует измерять m?

, [m] = кг/моль.

Например, молярная масса водорода

Моль – количество вещества, которое содержит столько же структурных элементов, сколько атомов содержится в 12 г 12 С, причем структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моль вещества, выраженная в граммах, численно равна его мол. массе. Так, 1 моль натрия имеет массу 22,9898 г и содержит 6,02·10 23 атомов; 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2·18,998) = 78,076 г и содержит 6,02·10 23 молекул, как и 1 моль тетрахлорида углерода CCl 4 , масса которого равна (12,011 + 4·35,453) = 153,823 г и т.п.

Закон Авогадро.

На заре развития атомной теории (1811) А.Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объемах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при стандартных температуре и давлении (0° С, 1,01Ч10 5 Па) равный 22,41383 л. Эта величина известна как молярный объем газа.

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в 1865 Й.Лошмидт; было установлено, что в 1 см 3 идеального газа при нормальных (стандартных) условиях содержится 2,68675Ч10 19 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта. С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Метод Лошмидта

представляет только исторический интерес. Он основан на предположении, что сжиженный газ состоит из плотноупакованных сферических молекул. Измеряя объем жидкости, которая образовалась из данного объема газа, и зная приблизительно объем молекул газа (этот объем можно было представить исходя из некоторых свойств газа, например вязкости), Лошмидт получил оценку числа Авогадро ~10 22 .

Определение, основанное на измерении заряда электрона.

Единица количества электричества, известная как число Фарадея F , – это заряд, переносимый одним молем электронов, т.е. F = Ne , где е – заряд электрона, N – число электронов в 1 моль электронов (т.е. число Авогадро). Число Фарадея можно определить, измеряя количество электричества, необходимое для растворения или осаждения 1 моль серебра. Тщательные измерения, выполненные Национальным бюро стандартов США, дали значение F = 96490,0 Кл, а заряд электрона, измеренный разными методами (в частности, в опытах Р.Милликена), равен 1,602Ч10 –19 Кл. Отсюда можно найти N . Этот метод определения числа Авогадро, по-видимому, является одним из самых точных.

Эксперименты Перрена.

Исходя из кинетической теории, было получено включающее число Авогадро выражение, описывающее уменьшение плотности газа (например, воздуха) с высотой столба этого газа. Если бы удалось подсчитать число молекул в 1 см 3 газа на двух разных высотах, то, воспользовавшись указанным выражением, мы могли бы найти N . К сожалению, сделать это невозможно, поскольку молекулы невидимы. Однако в 1910 Ж.Перрен показал, что упомянутое выражение справедливо и для суспензий коллоидных частиц, которые видны в микроскопе. Подсчет числа частиц, находящихся на разной высоте в столбе суспензии, дал число Авогадро 6,82Ч10 23 . Из другой серии экспериментов, в которых измерялось среднеквадратичное смещение коллоидных частиц в результате их броуновского движения, Перрен получил значение N = 6,86Ч10 23 . В дальнейшем другие исследователи повторили некоторые из экспериментов Перрена и получили значения, хорошо согласующиеся с ныне принятыми. Следует отметить, что эксперименты Перрена стали поворотным моментом в отношении ученых к атомной теории вещества – ранее некоторые ученые рассматривали ее как гипотезу. В.Оствальд, выдающийся химик того времени, так выразил это изменение во взглядах: «Соответствие броуновского движения требованиям кинетической гипотезы... заставило даже наиболее пессимистично настроенных ученых говорить об экспериментальном доказательстве атомной теории».

Расчеты с использованием числа Авогадро.

С помощью числа Авогадро были получены точные значения массы атомов и молекул многих веществ: натрия, 3,819Ч10 –23 г (22,9898 г/6,02Ч10 23), тетрахлорида углерода, 25,54Ч10 –23 г и т.д. Можно также показать, что в 1 г натрия должно содержаться примерно 3Ч10 22 атомов этого элемента.
См. также

Из школьного курса химии нам известно, что если взять один моль какого-нибудь вещества, то в нем будет 6.02214084(18).10^23 атомов или других структурных элементов (молекул, ионов и т.д.). Для удобства число Авогадро принято записывать в таком виде: 6.02 . 10^23.

Однако почему постоянная Авогадро (на украинском языке «стала Авогадро») равна именно такому значению? Ответ на этот вопрос в учебниках отсутствует, а историки от химии предлагают самые разные версии. Такое впечатление, что число Авогадро имеет некий тайный смысл. Ведь есть же магические числа, куда некоторые относят число «пи», числа фибоначчи, семерку (на востоке восьмерку), 13 и т.д. Будем бороться с информационным вакуумом. О том, кто такой Амедео Авогадро, и почему в честь этого ученого помимо сформулированного им закона, найденной константы был также назван кратер на Луне, мы говорить не будет. Об этом и без того написано множество статей.

Если быть точным, не занимался подсчетами молекул или атомов в каком-то определенном объеме. Первым, кто попытался выяснить, сколько молекул газа

содержится в заданном объеме при одинаковом давлении и температуре, был Йозеф Лошмидт, а было это в 1865 году. В результате своих экспериментов Лошмидт пришел к выводу, что в одном кубическом сантиметре любого газа в обычных условиях находится 2.68675 . 10^19 молекул.

Впоследствии было изобретено независимых способов того, как можно определить число Авогадро и поскольку результаты в большей части совпадали, то это лишний раз говорило в пользу действительного существования молекул. На данный момент число методов перевалило за 60, но в последние годы ученые стараются еще больше повысить точность оценки, чтобы ввести новое определение термина «килограмм». Пока что килограмм сопоставляется с выбранным материальным эталоном без какого-либо фундаментального определения.

Однако вернемся к нашему вопросу - почему данная константа равна 6.022 . 10^23?

В химии, в 1973 г., для удобства в расчетах было предложено ввести такое понятие как «количество вещества». Основной единицей для измерения количества стал моль. Согласно рекомендациям IUPAC, количество любого вещества пропорционально числу его конкретных элементарных частиц. Коэффициент пропорциональности не зависит от типа вещества, а число Авогадро является его обратной величиной.

Для наглядности возьмем какой-нибудь пример. Как известно из определения атомной единицы массы, 1 а.е.м. соответствует одной двенадцатой от массы одного атома углерода 12С и составляет 1.66053878.10^(−24) грамма. Если умножить 1 а.е.м. на константу Авогадро, то получится 1.000 г/моль. Теперь возьмем какой-нибудь скажем, бериллий. Согласно таблице масса одного атома бериллия составляет 9.01 а.е.м. Посчитаем чему равен один моль атомов этого элемента:

6.02 х 10^23 моль-1 * 1.66053878х10^(−24) грамм * 9.01 = 9,01 грамм/моль.

Таким образом, получается, что численно совпадает с атомной.

Постоянная Авогадро была специально выбрана так, чтобы молярная масса соответствовала атомной либо безразмерной величине - относительной молекулярной Можно сказать, что число Авогадро обязано своему появлению, с одной стороны, атомной единице массы, а с другой - общепринятой единице для сравнения массы - грамму.

АВОГАДРО ЧИСЛО, NA = (6,022045±0,000031)·1023, число молекул в моле любого вещества или число атомов в моле простого вещества. Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. 18 г H2O — то же число молекул H2O (Mr = 18) и т.д. С тех пор было разработано большое число независимых методов определения числа Авогадро. Один моль вещества содержит количество молекул или атомов, равное постоянной Авогадро.

В настоящее время (2016) число Авогадро пока является измеряемой (а не принимаемой по определению) величиной. Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро.

Расчеты с использованием числа Авогадро.

Подсчет числа частиц, находящихся на разной высоте в столбе суспензии, дал число Авогадро 6,82Ч1023. С помощью числа Авогадро были получены точные значения массы атомов и молекул многих веществ: натрия, 3,819Ч10–23 г (22,9898 г/6,02Ч1023), тетрахлорида углерода, 25,54Ч10–23 г и т.д. Авогадро) — число структурных элементов (атомов, молекул, ионов или др. частиц) в 1 моле. Назв. в честь А. Авогадро, обозначается. А. п.— одна из фундам.

Постоянная Авогадро - одна из фундаментальных физических констант. Названа по имени А. Авогадро. Во времена Авогадро его гипотезу невозможно было доказать теоретически. Так, из них следовало, что равные объемы водорода и хлора дают удвоенный объем хлороводорода. Авогадро со всеми экспериментальными данными. Число же молекул в одном моле стали называть постоянной Авогадро (ее обычно обозначают NА). Такое определение моля сохранялось в течение почти целого столетия.

Еще во времена Канниццаро было очевидно, что поскольку атомы и молекулы очень маленькие и никто их еще не видел, постоянная Авогадро должна быть очень велика. Прежде всего, им было понятно, что обе величины связаны друг с другом: чем меньше окажутся атомы и молекулы, тем больше получится число Авогадро. Постоянную Авогадро определяли многими методами. Измерив соотношение интенсивностей прямого солнечного света и рассеянного голубым небом, можно определить постоянную Авогадро.

Постоянная Авогадро настолько велика, что с трудом поддается воображению. N- число молекул в данном его образце. Другими словами, один моль вещества содержится в его массе, выраженной в граммах и равной относительной молекулярной (или атомной) массе этого вещества.

Найдём молярную массу воды (H2O). 1 моль воды содержится в её 0,018 кг, и значит, MH2O= 0,018 кг/моль. Знание числа Авогадро даёт также возможность оценить размер молекул или объём V0, приходящийся на одну молекулу.

Дополнительные материалы по теме: Молекулярная физика. Моль. Постоянная Авогадро. Количество вещества.

Первую попытку найти число молекул, занимающих данный объем, предпринял в 1865 годуЙ. Лошмидт. Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81·1018 см−3, что примерно в 15 раз меньше истинного значения. В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675·1019 молекул.

Количественные расчёты в химии

Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см. ниже), заряд электрона и т.д.

Калькуляторы по физике

Число Фарадея можно определить, измеряя количество электричества, необходимое для растворения или осаждения 1 моль серебра. Можно также показать, что в 1 г натрия должно содержаться примерно 3Ч1022 атомов этого элемента.См. Больцмана постоянной, Фарадея постоянной и др.). Один из лучших эксперим.

Определение, основанное на измерении заряда электрона.

В общем, я совсем запутался =) если кто-нибудь может мне это объяснить, буду очень благодарен! В химических процессах участвуют мельчайшие частицы – молекулы, атомы, ионы, электроны. Молярная масса вещества (M) – масса одного моля этого вещества.

Эксперименты Перрена.

Она входит в некоторые другие постоянные, например, в постоянную Больцмана. Значения относительной молекулярной массы рассчитываются из значений относительной атомной массы с учётом числа атомов каждого элемента в формульной единице сложного вещества. Атомы и молекулы — частицы чрезвычайно малые, поэтому порции веществ, которые берутся для химических реакций, характеризуются физическими величинами, соответствующими большому числу частиц.

Количество вещества — это физическая величина, прямо пропорциональная числу частиц, составляющих данное вещество и входящих во взятую порцию этого вещества. В химических расчетах массу газообразных реагентов и продуктов часто заменяют их объёмами. Эта физическая постоянная — молярный объём газа при нормальных условиях.

Именно закон Авогадро помог ученым правильно определить формулы многих молекул и рассчитать атомные массы различных элементов

Известно более 20 независимых методов определения Авогадро постоянной, напр. на основе измерения заряда электрона или кол-ва электричества, необходимого для электролитич. А когда войска Наполеона заняли Северную Италию, Авогадро стал секретарем новой французской провинции. Действительно, если в 1 л водорода содержится столько же молекул, что и в 1 л кислорода, то отношение плотностей этих газов равно отношение масс молекул.

Для этого надо было лишь проанализировать результаты и других аналогичных экспериментов. Отчасти это объясняется отсутствием в те времена простой и ясной записи формул и уравнений химических реакций. С точки зрения этой теории невозможно было представить молекулу кислорода, состоящую из двух одинаково заряженных атомов!

Авогадро особо отмечал, что молекулы в газах не обязательно должны состоять из одиночных атомов, а могут содержать несколько атомов – одинаковых или разных

Краеугольный камень современной атомной теории, – писал Канниццаро, – составляет теория Авогадро… Кто не увидит в этом длительном и неосознанном кружении науки вокруг и в направлении поставленной цели решительного доказательства в пользу теории Авогадро и Ампера?

Чем больше атомов или молекул в макроскопическом теле, тем, очевидно, больше вещества содержится в данном теле. Число молекул в макроскопических телах огромно. Эта величина была названа числом (или постоянной) Лошмидта. В равных объёмах различных газов при одинаковых условиях содержится одно и то же число молекул.

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.
ν = N / N A
где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело. N A – это постоянная Авогадро. Количество вещества измеряется в молях. Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856). В 1 моле любого вещества содержится одинаковое количество частиц.
N A = 6,02 * 10 23 моль -1 Молярная масса – это масса вещества, взятого в количестве одного моля:
μ = m 0 * N A
где m 0 – масса молекулы. Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1). Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]
Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:
m = m 0 N = m 0 N A ν = μν
Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ
Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:
m 0 = m / N = m / νN A = μ / N A

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др. }