При абсолютном нуле в каждом из состояний, энергия которых не превышает находится один электрон; в состояниях с электроны отсутствуют. Следовательно, функция распределения электронов по состояниям с различной энергией имеет при абсолютном нуле вид, показанный на рис. 52.1.

Найдем функцию распределения при температуре, отличной от абсолютного нуля.

Следуя Киттелю, рассмотрим неупругие столкновения равновесного электронного газа с атомом примеси, внедренным в кристаллическую решетку металла. Допустим, что атом примеси может находиться лишь в двух состояниях, энергию которых мы положим равной 0 и .

Из множества процессов столкновений рассмотрим тот, в результате которого электрон переходит из состояния к с энергией Е в состояние к с энергией . Атом примеси переходит при этом с уровня с энергией на уровень с энергией, равной нулю. Вероятность перехода к пропорциональна: 1) вероятности того, что состояние занято электроном, 2) вероятности того, что состояние свободно, 3) вероятности того, что атом примеси находится в состоянии с энергией е. Таким образом,

Вероятность обратного процесса пропорциональна выражению

где - вероятность того, что атом примеси находится в состоянии с энергией, равной нулю.

В силу принципа детального равновесия коэффициент пропорциональности в выражениях (52.1) и (52.2) одинаков.

В равновесном состоянии вероятности переходов должны быть одинаковыми. Следовательно,

(мы учли, что вероятности нахождения атома примеси на уровнях подчиняются закону распределения Больцмана).

Функциональное уравнение (52.3) должно выполняться при любой температуре Т. Это произойдет, если положить

где - величина, не зависящая от Е. Соответственно

Произведение этих двух выражений при любой температуре равно

Решив уравнение (52.4) относительно получим для функции распределения электронов по состояниям с различной энергией выражение

Это выражение называется функцией распределения Ферми - Дирака. Параметр носит название химического потенциала.

В соответствии со смыслом функции (52.5) величина представляет собой среднее число электронов, находящихся в состоянии с энергией Е. Поэтому формуле (52.5) можно придать вид

(ср. с (49.4)). В отличие от (49.4), параметр в распределении (52.6) имеет положительные значения (в данном случае это не приводит к отрицательным значениям чисел ). Распределение (52.6) лежит в основе статистики Ферми-Дирака.

Частицы, подчиняющиеся этой статистике, называются фермионами. К их числу относятся все частицы с полуцелым спином.

Для фермионов характерно то, что они никогда не занимают состояния, в котором уже находится одна частица. Таким образом, фермионы являются «индивидуалистами». Напомним, что бозоны, напротив, являются «коллективистами» (см. конец § 49).

Имеющий размерность энергии параметр часто обозначается через и называется уровнем Ферми или энергией Ферми. В этих обозначениях функция (52.5) имеет вид

Исследуем свойства функции (52.7). При абсолютном нуле

Таким образом, при 0 К уровень Ферми ЕР совпадает с верхним заполненным электронами уровнем (см. предыдущий параграф).

Независимо от значения температуры, при функция равна Следовательно, уровень Ферми совпадает с тем энергетическим уровнем, вероятность заполнения которого равна половине.

Значение ЕР можно найти из условия, что полное число электронов, заполняющих уровни, должно равняться числу свободных электронов в кристалле ( - плотность электронов, V - объем кристалла). Количество состояний, приходящееся на интервал энергий , равно где - плотность состояний. Среднее число электронов, находящихся в случае теплового равновесия в этих состояниях, определяется выражением Интеграл от этого выражения даст полное число свободных электронов в кристалле:

Это соотношение представляет собой по существу условие нормировки функции

Подстановка в (52.8) выражений (51.9) и (52.7) дает

Это соотношение позволяет в принципе найти как функцию . Интеграл в выражении (52.9) не берется. При условии, что удается найти приближенное значение интеграла. В результате для уровня Ферми получается выражение

(напомним, что ) зависит от ; см. (51.10)).

Из (52.10) следует, что при низких температурах (для которых только и справедливо это выражение) уровень Ферми хотя и зависит от температуры, но очень слабо. Поэтому во многих случаях можно полагать Однако для понимания, например, термоэлектрических явлений (см. § 63) зависимость от Т имеет принципиальное значение.

При температурах, отличных от абсолютного нуля, график функции (52.7) имеет вид, показанный на рис. 52.2. В случае больших энергий (т. е. при что выполняется в области «хвоста» кривой распределения) единицей в знаменателе функции можно пренебречь. Тогда распределение электронов по состояниям с различной энергией принимает вид

т. е. переходит в функцию распределения Больцмана.

Отметим, что заметное отличие кривой на рис. 52.2 от графика, изображенного на рис. 52.1, наблюдается лишь в области порядка Чем выше температура, тем более полого идет ниспадающий участок кривой.

Поведение электронного газа в сильной степени зависит от соотношения между температурой кристалла и температурой Ферми, равной Различают два предельных случая.

Поэтому уже при комнатной температуре электронный газ во многих полупроводниках является невырожденным и подчиняется классической статистике.

В качестве первого приближения рассмотрим решение уравнения Шредингера для частиц в бесконечно глубокой прямоугольной потенциальной яме. В этом случае решение у. Ш. удобно искать в виде произведения трех волновых функций:

() = (x)(y)(z) (6.2)

Решение у. Ш. внутри ямы имеет простой вид:

.
(x) = a sin k x x + b cos k x x,
(x) = 0 b = 0, (L) = 0 k x L = n x .
(6.3)

Здесь n - целое число. Последние условия являются следствием “сшивания” волновой функции внутри и извне ямы. Полная энергия частицы в яме:

Максимальная энергия частицы в яме называется энергией Ферми (см. рис.6.1) :

Число состояний частицы с энергиями E < E F равно интегралу от (6.6), причем лишь по положительным значениям волновых векторов (рис.6.2). Ограничение положительными значениями импульса уменьшит (6.6) в 8 раз. Чтобы получить число возможных состояний нуклона в потенциальной яме, нужно учесть две возможные проекции спина нуклона на ось и две проекции изоспина (т.е. протоны и нейтроны). Тогда число состояний должно равняться числу нуклонов А :

. (6.7)

Объем ямы V равен объему ядра: V = (4/3)R 3 = (4/3)r 0 3 A.
Оценим нуклонную плотность ядра . Используя равенство (6.7), одновременно найдем связь импульса Ферми с экспериментально измеряемым параметром r 0:

. (6.8)
; . (6.9)

Получаем, что нуклонная плотность ядра (6.8) приблизительно постоянна.
Нуклонная плотность ядер экспериментально определена в опытах по рассеянию электронов промежуточных энергий (Е > 100 МэВ) на ядрах. Дополнили эти эксперименты опыты по рассеянию протонов тех же энергий. Результатом этих опытов было представление о распределении плотности ядерной материи в виде распределения Ферми:

Нуклонная плотность ядер, согласно этим измерениям, близка к константе, для средних и тяжелых ядер почти на зависит от А и приближенно составляет 0 0.17 Фм -3 .
Из (6.9) получим значение импульса Ферми:

K F (1.25 - 1.35) Фм -1 (250 - 270) МэВ/c. (6.12)

Отсюда значение максимальной кинетической энергии частиц Ферми-газа (энергии Ферми) составляет E F (35 - 38) МэВ. Следует подчеркнуть, что эта величина в ФГМ не зависит от числа нуклонов в ядре. Отсюда можно получить и приближенную величину глубины ядерной потенциальной ямы. Поскольку средняя энергия отделения нуклона от ядра составляет около 8 МэВ, глубина потенциальной ямы V 0 = E F + (42 - 46) МэВ (cм. рис.6.1).
Оценку этой же величины можно получить из других соображений, например из решения задачи о потенциале дейтрона. Таким образом, простая модель Ферми-газа приводит к разумным оценкам глубины потенциальной ядерной ямы.

Тот факт, что нуклоны ядра находятся в движении, особенно наглядным образом проявляется в реакциях квазиупругого рассеяния электронов. Сечение этого процесса представляет собой широкий максимум, расположенный выше по энергии, чем область возбуждения мультипольных гигантских резонансов в ядрах (см. рис.6.3). Если бы рассеяние электрона происходило на неподвижном нуклоне, максимум находился бы при переданной ядру энергии, связанной с переданным ядру импульсом q простым нерелятивистским соотношением = q 2 /M*, где = 1 - 2 - переданный импульс, M* - “эффективная” масса нуклона в ядре. Но вместо узкого пика при этой энергии на кривой сечения наблюдается широкий максимум. Его ширина обусловлена именно фермиевским движением нуклонов ядра. Рассеяние электрона происходит – в предельных случаях – как на нуклоне, движущемся навстречу электрону, так и параллельно импульсу электрона. Поэтому измерение ширин пиков квазиупругого рассеяния является способом независимого определения величины импульса Ферми. В табл.1 для нескольких ядер приведены значения импульсов Ферми, рассчитанные из данных по квазиупругому рассеянию электронов.

Свободные электроны в металле можно рассматривать как своеобразный электронный газ. Первая попытка описать свойства металлов была предпринята Друде и Лоренцем в классической электронной теории металлов. Согласно этой теории электронный газ ведет себя подобно электронному газу, состоящему из молекул, и поэтому должен подчиняться статистике Максвелла-Больцмана. Но эта теория не смогла объяснить ряд явлений. Так, например, из опыта известно, что молярные теплоемкости всех твердых тел (и металлов, и диэлектриков) приблизительно одинаковы и равны 3R (закон Дюлонга и Пти). Отсюда следует, что теплоемкость электронного газа в металлах настолько мала, что ее вклад в общую теплоемкость не обнаруживается на опыте. По классической же теории теплоемкость электронного газа должна быть равна , а теплоемкость металла, равная сумме теплоемкости решетки и электронного газа, должна быть равна

C = 3R + =4,5 R (3.2.1)

Другим существенным затруднением классической теории является невозможность объяснения температурной зависимости сопротивления металлов. Опытным путем установлено, что удельное сопротивление практически всех металлов в достаточно широком температурном интервале линейно зависит от температуры

r = r 0 (1+at), (3.2.2)

где r- удельное сопротивление при температуре t, r 0 - удельное сопротивление при температуре 0°C, a - температурный коэффициент сопротивления при температуре 0°C.

Из классической же теории следует, что удельное сопротивление должно быть пропорционально корню квадратному из температуры.

Дальнейшее развитие физической науки привело к созданию квантовой механики и квантовой теории металлов, учитывающих волновые свойства электронов. Согласно квантовым представлениям электронный газ в металле подчиняется принципу Паули и описывается квантовой статистикой Ферми – Дирака

, (3.2.3)

где f F - функция распределения Ферми-Дирака, характеризующая вероятность заполнения квантового состояния (уровня) с энергией Е , и равнаясредней степени заселенности электронами квантового состояния, соответствующего энергии Е, m - химический потенциал электронного газа. При абсолютном нуле температуры (Т=0 К) химический потенциал называют также энергией Ферми и обозначают E F .



Найдем вид функции распределения f F при Т=0 К .

Рассмотрим состояния электронов с энергией E < E F . В этом cлучае показатель экспоненты в выражении (3.2.3) отрицателен;

при T → 0 → 0 f(E) → 1.

Для состояний электронов с энергией E > E F показатель экспоненты в выражении (2.4) положителен;

при T → 0 → ∞ f(E) → 0.

Из этого рассмотрения следует, что при Т=0 функция распределения f F принимает значения

(3.3.4)


Согласно зонной теории валентная зона, определяющая свойства металла, заполнена электронами частично. При абсолютном нуле температуры свободные электроны занимают все дозволенные энергетические уровни вплоть до уровня Ферми, при этом вероятность заполнения этих уровней равна 1. На каждом уровне согласно принципу Паули располагаются по 2 электрона с противоположными спинами (рис.3.4).

Уровни, энергия которых выше E F , остаются совершенно свободными (вероятность их заполнения равна 0). Следовательно, энергия Ферми E F представляет собой максимальную энергию, которую могут иметь электроны при абсолютном нуле температуры. Эта энергия не является тепловой (kТ=0 ), она имеет квантовую природу, обусловленную, в частности, принципом Паули, и зависит от концентрации свободных электронов в металле. Расчет дает для энергии Ферми следующее выражение

. (3.2.5)

Здесь h - постоянная Планка; n - концентрация электронов.

Наивысший энергетический уровень, занятый электронами при Т=0, называют уровнем Ферми. Уровень Ферми будет тем выше, чем больше концентрация n электронов. Как показывает расчет, средняя энергия электрона при Т=0 равна