Минералы этого класса насчитывают около 800 минеральных видов, т. е. более 33% всех известных в природе минералов, и составляют 75% от массы земной коры. Большинство силикатов имеет эндогенное происхождение. Для силикатов характерно явление изоморфизма - замена атомов и групп атомов на другие атомы и группы атомов. Эти атомы пишутся в формулах через запятую. Многие силикаты являются важнейшими породообразующими минералами и полезными ископаемыми.

Классификация силикатов даётся по кристаллохимическим признакам, точнее по структурным мотивам пространственной решётки. Основной структурной единицей всех силикатов является кремнекислородный тетраэдр 4- . Он состоит из четырёх больших ионов кислорода (ионный радиус 1,36Å), расположенных по вершинам тетраэдра и одного иона кремния в центре. Тетраэдр имеет четыре свободных валентных связи, которые связывают его с другими элементами через вершину в кристаллическую решётку.

Кремнекислородные тетраэдры в кристаллических решётках силикатов могут находиться либо в виде изолированных друг от друга структурных единиц 4- , либо сочленяться друг с другом разными способами, образуя сложные комплексные анионные радикалы.

Сочленение происходит через вершины тетраэдров. Когда кремнекислородные тетраэдры изолированы друг от друга и удерживаются в решётке с помощью катионов других металлов, возникают островные силикаты (оливин имеет островной тип кристаллической структуры).

Дальнейшее усложнение строения силикатов получается путём сдвоения кремнекислородных тетраэдров или путём сцепления их в более сложные комплексы. Возникают кольцевые (берилл – кольцевой мотив) и цепочные (авгит – цепочный мотив) силикаты.

Последующее усложнение цепочного типа путём присоединения цепочек приводит к образованию бесконечных лент – ленточных силикатов (амфиболы). Присоединение лент в одном слое даёт слоистые силикаты (тальк, слюда - слоистый мотив). Пространственное сцепление через все четыре вершины создаёт каркас с группами 4- . Возникают каркасные силикаты (ортоклаз – каркасный мотив).

7.1 Островные силикаты (радикал 4-)

Островными эти силикаты называются потому, что ион кремния находится в центре, «на острове», окруженный четырьмя кислородами, а четыре свободных валентности замещаются различными катионами металлов Са, Mg, К, Na, А1 и другими. Однако они могут иметь и другие радикалы, когда объединяются между собой через кислород несколько тетраэдров. Островные силикаты: оливин (Mg,Fe) 2 SiO 4 , дистен Al 2 O, топаз Al 2 (OН,F) 2 , гранаты – большая группа изоморфных минералов с формулой A 3 B 2 3 , где A=Mg 2+ , Fe 2+ , Mn 2+ , Ca 2+ ; B=Al 3+ , Fe 3+ , Cr 3+ , Mn 3+ . Наиболее распространённые разновидности: альмандрин Fe 3 Al 2 3 , пироп Mg 3 Al 2 3 , спессартин Mn 3 Al 2 3 , глоссуляр Ca 3 Al 2 3 , андрадит Ca 3 Fe 2 3 , уваровит Ca 3 Cr 2 3 , эпидот Ca 2 (Al,Fe) 3 (OH)O .

Оливин (Mg, Fe) 2 . Название происходит от оливково-зеленого цвета минерала. Синоним - перидот. Встречается в виде зернистых масс и в виде отдельных кристаллов, включенных в породу. Является самым распространенным островным силикатом. Цвет может изменяться в зависимости от состава от светло-желтого до темно-зеленого и черного; блеск стеклянный или жирный; твердость 6,5…7, хрупок; плотность 3,3…3,6. Происхождение эндогенное. В зоне окисления неустойчив и разлагается с образованием различных минералов: серпентина, асбеста, талька, окислов железа, гидрослюд, магнезита и др. Оливин является одним из главных минералов ультраосновных магматических горных пород (дуниты, перидотиты). Встречается также в основных магматических породах (габбро, диабазах и базальтах). Маложелезистые оливиновые породы используются как огнеупорное сырье.

Гранаты. Название происходит от латинского слова «гранум» - зерно, а также по сходству с зернышками плода граната. Под этим названием объединено значительное количество минералов, представляющих собой изоморфные смеси. Происхождение гранатов в основном метаморфическое, а также эндогенное. При выветривании гранаты, как химически стойкие минералы, переходят в россыпи. Особенно характерны гранаты для метаморфических пород - кристаллических сланцев и гнейсов. Встречаются в гранитах и в пегматитовых жилах. Применяется как абразивный (истирающий) материал. Прозрачные кристаллы используются в ювелирном деле как полудрагоценные камни. Наиболее распространенными гранатами являются альмандин и гроссуляр. Блеск гранатов на изломе жирный, на гранях кристаллов стеклянный; спайность отсутствует; излом неровный, раковистый; твёрдость 6,5…7,5; плотность 3,5…4,2. Химически устойчивы.

Альмандин Fе 3 А1 2 3 . Название произошло от искаженного названия места его гранения - Алабанда. Обычно встречается в хорошо выраженных кристаллах, образует также оплошные зернистые массы. Цвет красный, коричневый, фиолетовый, чёрный;

Гроссуляр Са 3 А1 2 3 . Гроссуляр - ботаническое название крыжовника, так как кристаллы формой и цветом (медово-жёлтый, светло-зеленый и зеленовато-бурый) напоминают ягоду крыжовника.

Топаз Al 2 (OH,F) 2 . Название минерала происходит от названия острова Топазос в Красном море. Кристаллы призматические, различной величины, встречаются микрозернистые массы. Цвет желтый, дымчатый, голубой, розовый, часто бесцветен; блеск стеклянный; прозрачный; твердость 8; спайность совершенная (в отличие от кварца, не имеющего спайности). Происхождение эндогенное. Породообразующего значения не имеет. Используется как полудрагоценный камень.

Сфен (титанит) CaTi О. По-гречески «сфен» - клин, так как кристаллы имеют клинообразную форму. Цвет коричневый, бурый, золотистый; блеск алмазный; твердость 5,5. Происхождение эндогенное и метаморфическое. Породообразующего значения не имеет. Используется как руда на титан.

7.2 Цепочечные силикаты (радикал 4-)

Эти минералы называются пироксенами и составляют важную группу породообразующих минералов. Цепочечные силикаты – авгит Ca(Mg,Fe,Al)[(Si,Al) 2 O 6 ], родонит (орлец) (Mn,Ca) - широко распространённая группа минералов моноклинной и ромбической сингонии, среди которых очень развит изоморфизм.

Авгит Ca (Mg, Fe, А1) [(Si, Al) 2 O 6 ]. Название происходит от греческого слова «авге» - блеск. Образует бочкообразные призматические кристаллы, вросшие в породу, таблитчатые агрегаты, сплошные зернистые массы. Цвет черный, зеленовато и буровато-черный; черта серая или серовато-зеленая; блеск стеклянный; твердость 5…6,5; плотность 3,1…3,6; спайность средняя по двум направления, пересекающимся под углом 88 о. Происхождение эндогенное. Является важным породообразующим минералом для основных и ультраосновных магматических горных пород. В зоне выветривания неустойчив. Продуктами разложения являются тальк, каолин, лимонит.

7.3 Ленточные силикаты (радикал 6-)

Ленточные силикаты называются амфиболами. К ним относится большая группа породообразующих минералов. Состав и строение их еще более сложное, чем у пироксенов. Важнейшими из них являются роговая обманка, тремолит, актинолит. Вместе с цепочечными силикатами (пироксенами) они составляют 15% от массы земной коры.

Роговая обманка Са 2 Na(Mg, Fe 2+) 4 ,(Al, Fe 3+) [(Si, А1) 4 O 11 ] 2 [ОН] 2 . Кристаллы призматические, удлиненные; иногда агрегаты волокнистого или игольчатого строения. Цвет зеленый разных оттенков, от буро-зеленого до черного; черта белая с зеленоватым оттенком; блеск стеклянный; твердость 5,5…6; плотность 3,1…3,3; спайность наблюдается по двум направлениям под углом 124 о. Происхождение эндогенное и метаморфическое. Входит в большинство магматических горных пород и во многие метаморфические (сланцы, гнейсы, амфиболиты). В зоне выветривания неустойчива. Разлагается, превращаясь в карбонаты, лимонит, опал.

7.4 Листовые (слоевые) силикаты (радикал 4-)

Минералы этой группы широко распространены и имеют большое значение в почвообразовании. Их кристаллическое строение обуславливает и их основные физические свойства: низкую твердость (от 1 до 3), способность легко расщепляться на тончайшие листочки, чешуйки, рыхлость, землистость строения. В состав листовых силикатов входят Si, O, Mg, Al, K, Na, а также вода в виде группы (ОН). В зависимости от химического состава, происхождения и строения они делятся на группы: тальк-серпентин, слюды, гидрослюды и глинные минералы.

Тальк-серпентин, тальк (жировик) Mg 3 (ОН) 2 . Название происходит от арабского слова «тальг» - жировик. Чаще всего образует сплошные плотные массы. Цвет зеленый, белый, желтоватый, голубоватый; твердость 1; плотность 2,6; блеск жирный, на плоскостях спайности перламутровый; цвет черты – белый; жирный на ощупь; спайность весьма совершенная в одном направлении. Происхождение метаморфическое. Применяется в куске как огнеупорный материал, а в молотом виде используется в бумажной, текстильной, резиновой, кожевенной и других отраслях промышленности.

Серпентин (змеевик) Mg 6 (ОН) 8 . Часть магния может быть замещена железом. Серпенс» в переводе с латинского – змея. Название «змеевик» дано по цвету, «Встречается в плотных скрытокристаллических агрегатах. Цвет желто-зеленый, темно-зеленый до буро-черного с желтыми пятнами, напоминающий цвет змеиной кожи. Блеск жирный, шелковистый, восковой; твердость 3…4; плотность 2,5…2,7; излом раковистый в сплошных массах и занозистый в волокнистых разновидностях. Очень вязкий, огнестоек. Горная порода, состоящая из серпентина, называется серпентинит. Происхождение метаморфическое. Образуется из оливина в результате воздействия гидротермальных растворов на ультраосновные и карбонатные горные породы (процесс серпентинизации). В зоне выветривания серпентин неустойчив, разлагается с образованием карбонатов и опала. Серпентизированные дуниты (оливиновые породы) используются для изготовления огнеупорного кирпича. Массивные серпентины употребляются как поделочный и облицовочный камень. Выветрелые рыхлые серпентины используются как агрономическая руда (магнезиальное удобрение).

Асбесты. Тонковолокнистый серпентин с шелковистым блеском называется асбестом (горный лен). «Асбест» по-гречески - негорючий. Встречается в виде прожилков, в которых волокна асбеста ориентированы строго перпендикулярно стенкам. Цвет желтовато-зелёный; блеск шелковистый; твёрдость 2…3. Огнестойкий, плохо проводит тепло, звук, электричество. Происхождение гидротермально-метаморфическое. Используется для изготовления теплоизоляционных материалов, тканей, шифера, фильтров.

7.5 Каркасные силикаты (радикал m -)

Каркасные силикаты являются алюмосиликатами, так как алюминий входит в радикал. Исключение составляет кварц, который по химическому составу относится к окислам, а по кристаллическому строению - к каркасным силикатам. Каркасные силикаты являются самыми распространенными минералами в земной коре, составляя 50% от ее массы. Отличительной особенностью этих минералов является высокая твердость (6…6,5), спайность в двух направлениях под прямым углом и близким к нему и стеклянный блеск. Среди каркасных силикатов выделяют две группы: 1)полевые шпаты; 2) фельдшпатиды, которые по химическому составу представляют собой калиево-натриевые полевые шпаты, обедненные кремнекислотой.

Полевые шпаты - самая распространённая группа минералов в земной коре, составляет около 55% от её массы (по А.Г. Бетехтину). В магматических горных породах их содержится около 60%, в метаморфических - 30%, остальные в осадочных. По химическому составу их разделяют на калиевые полевые шпаты (ортоклаз K и микроклин К) и натриево-кальциевые – плагиоклазы. Выделяют подкласс минералов, которые называют заместителями полевых шпатов, так как они сходны с ними по химическому составу, но обеднены кремнекислотой (фельдшпатиды – нефелин Na и лейцит K), а также подкласс цеолитов – алюмосиликаты кальция и натрия, реже калия и бария. Они содержат цеолитную воду, выделяемую без разрушения кристаллической решётки.

Плотная упаковка ионов в кристаллической решётке каркасового типа препятствует механическому раздроблению минералов, вследствие чего благодаря устойчивости кристаллов полевые шпаты в виде зёрен часто встречаются в россыпях и почвах.

Ортоклаз К. «Ортоклаз» по-гречески - прямоколющийся, так как имеет две плоскости спайности под прямым углом. Форма кристаллов призматическая, таблитчатая. Цвет розовый, красный, кремовый, голубовато-серый, белый; черта белая; блеск стеклянный, полупрозрачный; твердость 6…6,5; плотность 2,6; спайность совершенная по двум направлениям под углом 90 о. Происхождение эндогенное. При выветривании подвергается процессу каолинизации. Важный породообразующий минерал гранитов, сиенитов и других магматических пород. Входит в состав метаморфических пород – гнейсов и осадочных пород (аркозовые пески и песчаники).

Микроклин K. «Микроклин» в переводе с греческого - незначительно отклоненный, так как угол между плоскостями спайности отличается от прямого на 20 о. Твердость 6…6,5; плотность 2,5…2,6. Окраска как у ортоклаза, но иногда появляется зелёная (амазонский камень). По физическим свойствам неотличим от ортоклаза. Ортоклаз и микроклин, главным образом из пегматитовых жил, служат сырьем для керамической и стекольной промышленности.

Плагиоклазы составляют до 50% от массы всей земной коры. Их кристаллохимическая структура представляют собой изоморфные смеси натриевой – альбит Na и кальциевой – анортит Ca молекул, образующие соединения в любой пропорции этих компонентов, и обозначаются символами Ab, An. Например, олигоклаз имеет символ Ab 80 An 20 , что указывает на содержание в этом минерале 80 % альбита и 20 % анортита.

Плагиоклазы обозначаются номерами (по Е.С. Фёдорову), характеризующими весовое содержание в

них кальциевого компонента – анортита (Ан). Чистый анортит по этой номенклатуре называют плагиоклазом №100, чистый альбит (Аб) – плагиоклазом №0. По относительному содержанию альбита и анортита условно выделяют следующие разновидности плагиоклазов (табл. 6).

Плагиоклазы, богатые кремнезёмом (SiO 2 – 68%), имеют номера 0…30 (альбит, олигоклаз) и называются кислыми; под номерами 30…60 – средними (SiO 2 – 53…43%), 60…100 – основными (SiO 2 – 43%).

Таблица 6 - Разновидности плагиоклазов

Плагиоклазы наиболее распространены в кислых магматических породах и широко встречаются в почвах. В общем составе земной коры их около 40%. Кислые плагиоклазы являются основой гранитного слоя континентальной коры, а основные входят в состав пород базальтово-габброидного слоя астеносферы.

Самыми распространенными являются кислые плагиоклазы. Цвет плагиоклазов белый, зеленоватый, серый до чёрного, иногда с различными оттенками; блеск стеклянный; спайность совершенная; твердость 6…6,5. По внешним признакам удается распознать альбит, лабрадор и олигоклаз, а остальные - с помощью химического анализа и микроскопически. Плагиоклазы являются наиболее распространенными минералами магматических горных пород (от кислых до основных) и широко встречаются в почвах. Происхождение эндогенное и метаморфическое.

Альбит Nа[А1Si 3 O 8 ] (натриевый плагиоклаз). Название происходит от латинского слова «альбус», что означает белый. Образует пластинчатые, листоватые агрегаты и сахаровидные зернистые массы. Цвет белый, буровато-жёлтый; твёрдость 6; плотность 2,6; блеск стеклянный; излом неровный; спайность совершенная по двум направлениям под косым углом. Разновидности альбита – лунный камень (кислый плагиоклаз с нежно-синеватым отливом), авантюрин, или солнечный камень (кристалл с искристо-золотистым отливом). Происхождение магматическое, метаморфическое. Встречается в гранитах, кварцевых порфирах, пегматитах. Используется как облицовочный и поделочный камень.

Анортит Са[Аl 2 Si 2 O 8 ] (кациевый плагиоклаз). «Анортос» - по-гречески - косой, т.е. кристаллизация в триклинной сингонии. Цвет белый, сероватый, красноватый; твёрдость 6…6,5; плотность 2,7…2,76; блеск стеклянный; спайность совершенная в двух направлениях; черта бесцветная. Микроскопически анортит сходен с альбитом и отличается в шлифах под микроскопом. Породообразующий минерал основных пород (габбро).

Лабрадор (кальциево-натриевый плпгиоклаз). Назван по полуострову Лабрадор в Северной Америке, где встречаются породы, почти целиком состоящие из лабрадора - лабрадориты. В породах образует мелкие и крупные таблитчатые кристаллы. Цвет серый различных оттенков до зеленовато-чёрного, с характерной иризацией (характерны синие отливы на плоскостях спайности); твёрдость 6; плотность 2,7; блеск стеклянный, перламутровый; спайность совершенная в двух направлениях. Является породообразующим минералом основных магматических горных пород. Применяется как облицовочный материал.

Фельдшпатиды. Фельдшпатиды являются заменителями полевых шпатов в бедных кремнеземом щелочных магматических горных породах. К ним относятся нефелин и лейцит.

Нефелин Na. Название происходит от греческого слова «нефели» - облако, так как при разложении в крепких кислотах образует рыхлую массу аморфного кремнезема. Встречается в виде вкрапленников, а также сплошных масс с жирным блеском - элеолит, или масляный камень. Цвет серовато-белый, серый, красноватый, зеленоватый; блеск жирный на изломе, на гранях стеклянный; твердость 5,5…6, хрупок; плотность 2,6; спайность несовершенная; излом неровный. Происхождение эндогенное. Встречается в породах, бедных кремнекислотой и богатых натрием (в нефелиновых сиенитах и щелочных пегматитах). Не встречается в парагенезисе с кварцем. В зоне выветривания неустойчив. Применяется как агрономическая руда - калийное удобрение, так как нефелин содержит обычно в виде примесей до 20% К 2 О. Является сырьем для керамической и стекольной промышленности. Важная руда на алюминий.

Лейцит K. «Лейкос» по-гречески - светлый. Цвет белый с сероватым и желтоватым оттенком, пепельно-серый или бесцветный; блеск стеклянный, иногда жирный на изломе; твердость 5,5…6; плотность 2,5; спайность отсутствует; излом раковистый. Характерны белые, округлой формы кристаллы на темном фоне основной магматической горной породы. Происхождение эндогенное. Образуется в эффузивных породах, богатых калием и бедных кремнекислотой, поэтому вместе с кварцем не встречается. При значительном содержании лейцита в породе последняя может служить сырьем для получения алюминия и калийных удобрений.

СИЛИКАТЫ. ОБЩАЯ ХАРАКТЕРИСТИКА

На долю силикатов приходится примерно одна треть всего числа известных в природе минеральных видов. Силикаты являются породообразующими минералами всех магматических горных пород и подавляющего большинства метаморфических горных пород. Силикаты входят в состав осадочных горных пород, являясь для многих из них также породообразующими минералами, например, для различных глин.

Значительную роль силикаты играют в минеральном составе почти всех месторождений полезных ископаемых, в ряде случаев являясь носителями ценных металлов - Ni, Zn, Be, Zr, Li, Cs, Rb, U, TR и др. Силикаты широко представляют и неметаллические полезные ископаемые – асбест, каолин, отбеливающие глины, полевые шпаты (как сырье для огнеупоров), сырье для керамики, различные строительные материалы. Ряд силикатов - изумруд, аквамарин, турмалин, топаз, родонит, нефрит и др., издавна используется в качестве драгоценных и поделочных камней.

Главнейшие элементы, входящие в состав силикатов: Na, К, Li, Ca, Mg, Fe 2+ , Mn 2+ , Be, Si, Zr, Ti, Al, Fe 3+ , а также О 2 , F, H в виде H 1+ , [ОН] 1- и H 2 O.

Многие элементы, такие как Rb, Cs, Ba, Sr, Pb, Zn, Ni, Со, Cu, Bi, Sb, Cr, V, Sc, Y, TR, Th, Sn, U, Nb, S, Cl, С в виде 2- , P и др., присутствуют в силикатах в отдельных относительно редких минеральных видах.

Рентгенометрические исследования силикатов позволили установить особенности кристаллических структур этих соединений.

Рис. 1 Типы групп кремнекислородных тетраэдров (в двух изображениях): а - единичный изолированный тетраэдр 4- ; б - группа из двух связанных общей вершиной тетраэдров [ Si 2 O 7 ] 6- ; в - группа из трех тетраэдров, связанных в кольцо 6- ; г - группа из четырех тетраэдров, связанных в кольцо 8- ; д - группа из шести тетраэдров, связанных в кольцо 12-

Во всех силикатах каждый ион Si 4+ всегда находится в окружении четырех ионов

О 2- , располагающихся в углах по тетраэдру вокруг него (рис. 1). Химическая связь ионов кислорода с кремнием гораздо сильнее, чем связь кислорода с другими катионами в кристаллических структурах силикатов. Таким образом, кремнекислородный тетраэдр, т. е. группа 4- , является основной структурной единицей всех силикатов.

Кремнекислородные тетраэдры в кристаллических решетках силикатов могут находиться либо в виде изолированных друг от друга структурных единиц 4- , либо сочленяться друг с другом разными способами, образуя сложные комплексные анионные радикалы. При этом сочленение совершается только через углы тетраэдров с образованием общих вершин, но не через ребра или грани. Наиболее полный случай такого сочленения имеет место тогда, когда все четыре вершины каждого тетраэдра одновременно являются общими и для окружающих четырех тетраэдров SiO 4 . Такой случай процессами минералообразования реализован для кристаллических структур минералов группы кварца (класс минералов – окислы и гидроокислы - кварц, халцедон и т.д.) с общей химической формулой SiO 2 .

В зависимости от того как происходит сочленение кремнекислородных тетраэдров, образуются различные формы комплексных анионных радикалов:

Комплексный анион представлен изолированными тетраэдрами 4- (рис. 1,а), удерживаемыми в решетке с помощью катионов других металлов. Общий отрицательный заряд каждой такой группы равен четырем (каждый ион кислорода отдает кремнию лишь половину своего отрицательного заряда, равного двум). Этот тип структуры широко представлен в силикатах, например, цирконе Zr, форстерите Mg 2 , гранате Ca 3 Al 2 3 и т. д. В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к островным силикатам ;

Комплексный анионный радикал представлен изолированными группами 6- (рис. 1,б), состоящими из двух связанных друг с другом кремнекислородных тетраэдров SiO 4 с одной общей вершиной. Легко подсчитать, что общий отрицательный заряд этого комплекса равен шести. Кислородный ион, располагающийся в общей вершине, нейтрален. Следовательно, активные кислородные ионы, остаточные отрицательные заряды которых в кристаллической структуре нейтрализуются катионами металлов, располагаются на двух противоположных друг другу концах анионного комплекса. Силикаты, обладающие такими комплексными анионами, не многочисленны. Например, очень редкий минерал тортвейтит - Sc 2 ;

Комплексный анион состоит из трех, четырех, шести кремнекислородных тетраэдров, связанных друг с другом уже через две общие вершины в замкнутые плоские изолированные кольца (рис. 1в, г и д). Комплексные анионы в этих случаях представлены соответственно: 6- , 8- и 12- . Общая валентность каждого такого радикала определяется числом наружных кислородных ионов, каждый из которых обладает одной некомпенсированной отрицательной валентностью. Примерами являются минералы берилл - Be 3 Al 2 и турмалин (химический состав непостоянный, варьирует в зависимости от геохимических условий образования). В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к кольцевым силикатам ;

Комплексные анионы представлены одномерными непрерывными цепочками связанных друг с другом кремнекислородных тетраэдров. В верхней части рис. 2 изображена простая одинарная цепочка. В этой цепочке каждый тетраэдр связан с соседними тетраэдрами двумя углами с инертными ионами кислорода в этих углах. Два активных кислородных иона в каждом тетраэдре расположены таким образом, что один из них находится над ионом Si (в плоскости рисунка), а другой «откинут» попеременно то в верхнюю, то в нижнюю стороны. Между такими линейно-вытянутыми радикалами располагаются катионы металлов.

Рис. 2 Типы одномерных непрерывных цепочек кремнекислородных тетраэдров (в двух изображениях А и Б): а - одинарная цепочка; б - двойная цепочка (лента). Вершины тетраэдров, направленные к наблюдателю, утолщены

В каждом кремнекислородном тетраэдре два иона кислорода целиком принадлежат иону Si, а два остальных (инертные) как бы делятся пополам между соседними тетраэдрами. В сумме на каждый ион Si приходится три иона кислорода, из которых два имеют по одной свободной валентности. Таким образом, состав и валентность таких радикалов могут быть выражены в следующем виде: n 2- , где n = ∞, что означает полимеризацию. Такое строение кислотного радикала характерно для группы пироксенов с общей формулой R 2+ . Однако в природе кристаллических структур с изолированной группой SiO 3 не встречается. Природа реализует данную структуру в виде длины цепочки одного периода в 5,25 Å (рис. 2). Отсюда формула аниона пироксенов - . В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к цепочечным силикатам.

В нижней части (рис. 2,б) приведена лента непрерывно связанных кремнекислородных тетраэдров. Лента может быть получена из одинарной цепочки путем ее отражения в плоскости, перпендикулярной к чертежу и параллельной оси цепочки. Такие ленточные сочленения кремнекислородных тетраэдров характерны для группы амфиболов. Нетрудно подсчитать, что состав и валентность таких радикалов в пределах одного периода 5,25 Å, выражаются формулой 6- . В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к ленточным силикатам ;

Комплексные анионы представлены двумерными слоями кремнекислородных тетраэдров. Строение таких слоистых радикалов характеризуется тем, что тетраэдры соединяются друг с другом тремя общими вершинами и образуют плоский слой непрерывной протяженности в двух измерениях (рис. 3) наподобие гексагональной сетки. Активные ионы кислорода (по одному от каждого тетраэдра) направлены все в одну сторону (вверх или вниз от плоскости чертежа), образуя особый активный лист в слое тетраэдров. Химическая формула такого анионного слоя - 2- . Каждый такой слой активными ионами кислорода через катионы металлов связан с другими, совершенно аналогичными по строению слоями. Примерами кристаллических структур являются структуры пластинчатых минералов, обладающих весьма совершенной спайностью в одном направлении (слюды, тальк, хлориты и т. д.). В современной классификации минералы с охарактеризованным строением кристаллической структуры относятся к слоистым (слоевым, листовым) силикатам ;

Рис. 3 Лист кремнекислородных тетраэдров гексагонального строения (в двух изображениях А и Б)

Комплексные анионы образованы непрерывными трехмерными каркасами кремнекислородных тетраэдров, у которых каждый ион кислорода принадлежит одновременно двум тетраэдрам. Нет ни одного угла тетраэдра с активным кислородным ионом. Как уже указывалось, примером таких каркасов являются минералы группы кварца с формулой SiO 2 . Однако подобные же кристаллические решетки наблюдаются и в силикатах (рис. 4). При этом часть ионов Si 4+ всегда бывает заменена ионами Al 3+ с тем же координационным числом (роль алюминия в силикатах рассмотрим немного позднее). Химическая формула комплексных анионов каркасного строения в общем виде может быть выражена в виде радикала [(Si n-x Al x)O 2n ] x- . Вследствие того что какая-то часть ионов Si 4+ заменена ионами Al 3+ (при сохранении общего числа кислородных ионов), этот радикал обладает некоторым остаточным отрицательным зарядом. Примером могут служить полевые шпаты - Na, Ca и многие другие минералы. В современной классификации минералы с охарактеризованным строение кристаллической структуры относятся к каркасным силикатам .

Рис. 4 Алюмокремнекислородный каркас в кристаллической структуре каркасных силикатов

В кристаллической структуре силикатов часть ионов Si в кремнекислородных тетраэдрах нередко бывает заменена ионами Al с координационным числом 4.В этом случае образуются минералы, называемые алюмосиликатами . Алюмосиликаты встречаются в цепочечных, ленточных, слоистых и широко распространены в каркасных силикатах.

Al 3+ в конституции силикатов играет двоякую роль:

Как компонент комплексных анионных радикалов, находясь, так же как и Si 4+ , в четверном окружении ионов кислорода. В этом случае координационное число Al 3+ равно 4 ;

Как отдельный катион, один или вместе с катионами других металлов, нейтрализующими отрицательный заряд анионов. В этом случае координационное число Al 3+ равно 6. В терминологии следует различать образование алюмосиликатов и силикатов алюминия .

Известно немало случаев, когда в одном и том же силикате одни ионы Al входят в состав комплексного аниона, другие находятся среди катионов, занимающих промежутки между отрицательно заряженными комплексными анионными радикалами. Например, широко распространенный минерал роговая обманка (ленточные алюмосиликаты) (Ca,Na) 2-3 (Mg,Al) 5 [(Si,Al) 4 O 11 ] 2 [О,OH] 2 . В комплексном радикале этого минерала отношение Al: Si может меняться от 1: 3 до 0.

В состав многих силикатов входят дополнительные анионы: О 2- , [ОН] 1- , F 1- , Cl 1- , 2- и другие, нейтрализующие избыточный положительный заряд катионов.

В состав ряда силикатов входит H 2 O в большинстве случаев цеолитного характера. Молекулы H 2 O обычно весьма слабо удерживаются кристаллическими решетками в пустых промежутках или каналах.

Цеолитная вода - вода, входящая в состав минерала (внутри молекулы), но не входящая в химический состав минерала. Цеолитная вода удаляется из минерала постепенно (не при определенной температуре). Процесс удаления цеолитной воды обратим, т.е. минералы, при соответствующих условиях, восстанавливают ранее находившуюся в них, но утраченную цеолитную воду.

Среди силикатов и алюмосиликатов очень широко распространено явление изоморфизма , т.е. способности веществ различного химического состава образовывать одинаковые кристаллические структуры. Для изоморфных минералов в геологии часто употребляется термин «минералы образуют твердый раствор». При определенных условиях твердые растворы минералов распадаются на отдельные минеральные индивиды.

Для силикатов и алюмосиликатов наряду с изовалентным изоморфизмом широко распространен гетеровалентный изоморфизм . Классическим примером гетеровалентного изоморфизма является ряд плагиоклазов альбит Na - анортит Ca (каркасные алюмосиликаты). Здесь Na 1+ заменяется Ca 2+ . Происходящее при этом увеличение положительного заряда на единицу сопровождается соответствующей заменой в комплексном анионном радикале: один ион Si 4+ заменяется ионом Al 3+ , или, что тоже самое, анион 4- - анионом 5- , т. е. происходит увеличение отрицательного заряда на единицу. Валентность образующегося при гетеровалентном изоморфизме минерала не изменяется, минерал остается электрически нейтральным.

ОСТРОВНЫЕ СИЛИКАТЫ

Островные силикаты образуют, как правило, хорошо ограненные кристаллы, т.е. обладают высокой степенью идиоморфизма. Окраска островных силикатов обычно обусловлена присутствием в их составе элементов-хромофоров - Fe, Mn, Ti и Cr. Кроме того, атомы Fe 2+ , Fe 3+ , в зависимости от соотношения, обусловливают зелёные (гроссуляр, эпидот), коричневые (андрадит, ставролит, титанит) оттенки цвета. Лишь в редких случаях встречаются бесцветные, белые островные силикаты - это химически чистые гроссуляр, форстерит, топаз и др.

Твердость островных силикатов 6 – 8. Из-за большой твердости эти минералы черты не дают (они сами процарапывают фарфор); даже у густо окрашенных минералов черта чуть заметна.

В природе наибольшее распространение имеют минералы группы оливина – породообразующие минералы ультраосновных и основных пород.

КОЛЬЦЕВЫЕ СИЛИКАТЫ

Подкласс кольцевых силикатов объединяет сравнительно небольшое число редких в природе минералов. Среди кольцевых силикатов только два минерала - берилл и турмалин - играют в некоторых случаях роль второстепенных и, иногда, главных минералов месторождений.

Как было указано в общей характеристике силикатов, тип кристаллических структур рассматриваемого подкласса отличается особыми чертами: кристаллические решетки содержат изолированные группы тетраэдров SiO 4 , связанные в кольца, т. е. подкласс характеризуется комплексными радикалами 6- , 12- и др.

ЦЕПОЧЕЧНЫЕ И ЛЕНТОЧНЫЕ СИЛИКАТЫ

Общая характеристика

Главнейшими представителями силикатов данных подклассов являются пироксены (цепочечные) и амфиболы (ленточные). Несмотря на существенное различие в количественных соотношениях составляющих компонентов, пироксены и амфиболы имеют ряд общих характерных черт: аналогичный облик кристаллов, близкие кристаллические структуры, одинаковая степень проявления спайности, много общего в оптических свойствах, близкие плотности, близкая твердость и т. д. Среди катионов в пироксенах и амфиболах представлены главным образом следующие элементы: Mg 2+ , Fe 2+ , Ca 2+ , Na 1+ , иногда Li 1+ , а также Al 3+ , Fe 3+ , а среди анионов: 4- , иногда 5- , а в амфиболах также [ОН] 1- , F -1 и Cl 1- .

Наибольшим распространением в природе пользуются железо-магнезиальные пироксены и амфиболы, являющиеся важнейшими породообразующими минералами во многих магматических горных породах. Общее их количество по весу в земной коре достигает 16%.

От железо-магнезиальных породообразующих островных силикатов (минералов группы оливина) пироксены и амфиболы отличаются следующими химическими особенностями:

Кроме Mg и Fe, в пироксенах и амфиболах существенную роль играет Ca. В минералах группы оливина роль Са незначительна. В соответствии с близостью размеров ионных радиусов Са и Мg, в пироксенах и амфиболах широко представлены двойные соединения - диопсид CaMg , тремолит Ca 2 Mg 5 2 2 и др.;

Многие пироксены и амфиболы, особенно те, что представлены двойными соединениями, часто содержат примеси Al 2 O 3 , Na 2 O, иногда Fe 2 O 3 и др. Минералы группы оливина характеризуются сравнительной чистотой состава.

Физические свойства цепочечных и ленточных силикатов обусловлены особенностями их кристаллического строения. Кристаллическая структура представляет собой вытянутые в одном направлении (вдоль оси с) анионные комплексы непрерывно связанных друг с другом кремнекислородных тетраэдров (более подробно по данному вопросу – лекция «Силикаты. Общая характеристика»). Главнейшие физические особенности минералов рассматриваемых подклассов сводятся к следующим:

Кристаллические индивиды обычно вытянуты в одном направлении. В отличие от цепочечных и ленточных силикатов минералы группы оливина обладают изометрическим обликом;

По сравнению с минералами группы оливина в цепочечных и ленточных силикатах гораздо четче проявлена спайность. Характерно, что спайность устанавливается по призме согласно вытянутости индивидов;

Показатели преломления и двупреломление по сравнению с минералами группы оливина, как правило, ниже;

Плотность цепочечных и ленточных силикатов, благодаря относительно менее плотной упаковке ионов, несколько меньше, чем у минералов группы оливина.

Между цепочечными и ленточными силикатами, несмотря на многие общие свойства, имеются и существенные отличия. Эти отличия обусловлены различным кристаллическим строением рассматриваемых минералов:

Пироксены характеризуются спайностью по призме под углом 87 0 ;

Амфиболы – спайность по призме под углом 124 0 ;

Кристаллы пироксенов имеют в поперечном сечении псевдотетрагональный облик (рис. 1, а);

Кристаллы амфиболов имеют в поперечном сечении псевдогексагональный облик (рис. 1, б).

Рис. 1 Поперечные сечения кристаллов пироксенов (а) и амфиболов (б)

ЦЕПОЧЕЧНЫЕ СИЛИКАТЫ

Группа пироксенов

Минералы этой группы наиболее широко распространены в природе и подразделяются на моноклинные и ромбические пироксены.

Моноклинные пироксены: диопсид - CaMg ; геденбергит - CaFe ; сподумен - LiAl ; авгит - Ca (Mg, Fe, Al)[(Si, Al) 2 O 6 ]; жадеит - NaAl ; эгирин - NaFe.

Ромбические пироксены: энстатит - Mg 2 ; гиперстен - (Mg, Fe) 2 .

Моноклинные пироксены в природе широко распространены. Среди моноклинных пироксенов программой курса предусмотрено рассмотрение диопсида, геденбергита, сподумена.

Ромбические пироксены также довольно широко распространены в природе. Однако программой рассмотрение ромбических пироксенов в настоящем курсе не предусмотрено.

ЛЕНТОЧНЫЕ СИЛИКАТЫ

Для ленточных силикатов характерно вхождение Al в комплексный анионный радикал. Поэтому среди минералов данного подкласса распространены алюмосиликаты. Кроме того характерны дополнительные анионы , F, CL.

Наиболее распространены в природе минералы данного подкласса – группа амфиболов. Амфиболы подразделяются на моноклинные и ромбические.

Моноклинные амфиболы: - тремолит - Ca 2 Mg 5 2 2 ; - актинолит - Са 2 (Mg,Fe) 5 2 [ОН] 2 ; - роговая обманка - Сa 2 Na(MgFe) 4 (Al,Fe)[(Si,Аl) 4 О 11 ] 2 [ОН] 3 ; - глаукофан - Na 2 (Mg,Fe) 3 Al 2 2 [ОН,F] 2 ; - арфведсонит - Na 3 (Fe,Mg) 4 (Fe,Al) 2 2 .

Ромбические амфиболы - антофиллит -(Mg,Fe) 7 2 2 .

Моноклинные амфиболы в природе распространены шире, чем ромбические. Из моноклинных амфиболов наиболее распространены актинолит и роговая обманка. Другие встречаются реже.

Ромбические амфиболы в настоящем курсе не рассматриваются. Кроме того, не рассматриваются относительно редкие в природе, но входящие в подкласс «ленточные силикаты» довольно многочисленные по номенклатуре минералы.

Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются , , , 2+ , Fe 3+ , , , , , , а также , , , , , , , в виде (OH) − или H 2 O и другие.

Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. Из них сложена основная масса горных пород: полевые шпаты , кварц , слюды , роговые обманки , пироксены , оливин и другие. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц , на долю которого приходится около 12 % от всех минералов.

Структурные типы силикатов

В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы 3 , которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов.

  1. Островные силикаты , то есть силикаты с изолированными тетраэдрами 4− и изолированными группами тетраэдров:
    • а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал 4− , так как каждый из четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы;
    • б) Островные силикаты с добавочными анионами О 2− , ОН − , F − и другие.
    • в) Силикаты со сдвоенными тетраэдрами . Отличаются обособленными парами кремнекислородных тетраэдров 6− . Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами.
    • г) Кольцевые силикаты . Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их 6− , 8− , 2− , 24 − . Представители : оливины , гранаты , циркон , титанит , топаз , дистен , андалузит , ставролит , везувиан , каламин , эпидот , цоизит , ортит , родонит , берилл , кордиерит , турмалин и другие.
  2. Цепочечные (Цепочные) силикаты , силикаты с непрерывными цепочками из кремнекислородных тетраэдров (см. Схему, д, е). Тетраэдры сочленяются в виде непрерывных обособленных цепочек. Их радикалы 4− и 6− . Представители : пироксены ромбические (энстатит , гиперстен) и моноклинные (диопсид , салит, геденбергит , авгит , эгирин , сподумен , волластонит , силлиманит). Цепочечные силикаты характеризуются средними плотностью и твердостью и совершенной спайностью по граням призмы. Встречаются в магматических и метаморфических горных породах.
  3. Поясные (Ленточные) силикаты , это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры 6− . Представители : тремолит , актинолит , жадеит , роговая обманка .
  4. Листовые силикаты , это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры 2− . Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители : тальк , серпентин , хризотил-асбест , ревдинскит, палыгорскит , слюды (мусковит , флогопит , биотит), гидрослюды (вермикулит , глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит , хризоколла , гарниерит и др.), мурманит .
  5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал 0 . Именно такой каркас отвечает структуре кварца . На этом основании его относят не к окислам , а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют алюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности , что в свою очередь влечет за собой вхождение других катионов (например калия и натрия). Обычно отношение Al к Si равно 1:3 или 1:1.

И др.).

Химический состав и структура. В основе кристаллической структуры силикатов природных — солей кремниевой кислоты — лежат одиночные изолированные тетраэдрические радикалы SiО 4 4- ; солей изо- и гетерополикремниевых кислот — полимерные радикалы, в которых мостиковые атомы О связывают 2 атома Si смежных SiО 4 -тетраэдров (в изополикремниевых радикалах) или атомы Т (Т — Si, Al, В, Be, Fe 3+ и др.) в TО 4 -тетраэдрах (в гетерополикремниевых радикалах). В зависимости от атома Т последние получили название алюмо-, боро-, берилло-, ферри- и т.д. силикатов.

Роль катионов в силикатов природных играют преимущественно элементы 2-го, 3-го и 4-го периодов периодической системы Менделеева , среди которых Na, Mg, Al, Fe, К, Ca, Mn наиболее распространены в земной коре и составляют вместе с О и Si до 99% её объёма. Достаточно обычны также силикаты природные Ti, Zn, TR. Менее распространены силикаты V, Ni, Nb, Th, U, Sr, Cs, Ba. Особое место занимают немногочисленные силикаты природные, в которых катионами выступают халькофильные элементы: Cu, Zn, Sn, Pb, As, Sb и Bi.

Большая часть силикатов природных — основные, значительно меньшее их число — кислые и кисло-основные соли; среди силикатов много кристаллогидратов; некоторые силикаты природные (например, слюды) содержат ионы Н3О + . Известны также смешанные соли, содержащие наряду с силикатными радикалами анионы более сильных кислот (СО 3 2- , PО 4 3 SО 4 2- , Cl - , F- и др.).

Важнейшая кристаллоструктурная характеристика силикатов природных — строение их анионов, исходя из которого различаются силикаты с островными, цепочечными, ленточными, сеточными и каркасными радикалами. Главнейшие островные кремнекислородные радикалы имеют следующее строение; единичный SiО 4 -тетраэдр — ортогруппа (например, форстерит); группа из 2 связанных общей вершиной тетраэдров Si 2 О 7 6- — диортогруппа (гемиморфит); триортогруппа Si 3 О 10 8- (розенханит); тройное кольцо Si 3 О 9 6- (рис. 1, а; бенитоит); четверное кольцо Si 4 О 12 8- (рис. 1, б; баотит); шестерное кольцо Si 6 О 18 12- (рис. 1, в; диоптаз); сдвоенное четверное кольцо Si 8 О 20 8- (эканит); сдвоенное шестерное кольцо Si 12 О 3 0 12- (рис. 1, г; согдианит).

Важнейшие типы цепочечных радикалов в силикатах природных сводятся к следующим: пироксеновая цепочка из параллельно ориентированных диортогрупп с периодом повторяемости в 2 SiО 4 4- -тетраэдра (рис. 2, а); волластонитовая цепочка из чередующихся диортогрупп и одиночных SiО 4 4- -тетраэдров, повёрнутых в другую сторону, с периодом повторяемости в 3 SiО 4 4- -тетраэдра (рис. 2, б); родонитовая цепочка, в которой через 5 SiО 4 4- -тетраэдров происходит сдвиг в сторону (рис. 2, в); стокезитовая цепочка из разноориентированных диортогрупп, связанных SiО 4 4- -тетраэдрами иной ориентации (рис. 2, г); батиситовая зигзагообразная цепочка из вертикальных диортогрупп, поочерёдно смещённых относительно друг друга, с периодом повторяемости в 4 SiО 4 4- -тетраэдра (рис. 2, д); астрофиллитовая зигзагообразная цепочка из горизонтальных диортогрупп (рис. 2, е).

Важнейшие ленточные радикалы: лента силлиманитового типа (рис. 3, а); амфиболовая лента из сдвоенных пироксеновых цепочек (рис. 3, б); джимтомпсонитовая лента из 3 пироксеновых цепочек (рис. 3, в); власовитовая ступенчатая лента из четверных "налезающих" колец SiО 4 4- -тетраэдров (рис. 3, г); ксонотлитовая лента из сдвоенных волластонитоподобных цепочек (рис. 3, д); нарсарсукитовая трубчатая лента из вертикальных диортогрупп с квадратным поперечным сечением (рис. 3, е).

Цепочки и ленты SiО 4 4- -тетраэдров поликонденсируются в сетки (слои), которые могут быть полярными (рис. 4, а), или двусторонними (рис. 4, б-д).

Предельной степенью поликонденсации является соединение TО 4 4- -тетраэдров всеми своими вершинами друг с другом, при котором возникает каркасная структура.

Координационные числа (КЧ) катионов в силикатов природных с ионной связью меняются от 4 (Be, Al, Li, Fe 3+ , Cr 3+ , Mg) до 9-12 (К, Rb, Sr, Ca, Ba). Ковалентной связью характеризуется меньшее число катионов (Cu, Zn, Pb, As, Sb, Bi и др.), для них КЧ определяется типом гибридизации. В структурах силикатов, содержащих катионы с КЧ-6, выделяются различные мотивы катионных полиэдров от островных октаэдрических групп через цепочки, ленты до стенок (рис. 5, а-г).

Соответствие силы определённой кремниевой кислоты силе катиона заключается в соразмерности величины катиона расстояниям между концевыми атомами О 2 - в Тт,On-радикале. Поэтому небольшие катионные тетраэдры, образуемые ионами Be, Al, соединяясь с SiО 4 4- -тетраэдрами, образуют с последними единый структурный мотив берилло- и алюмосиликатов . Небольшие октаэдрического полиэдры (типичные для Mg, Fe 2+ и т.п. катионов) сопрягаются с концевыми атомами О 2 - одиночных SiО 4 4- -тетраэдров (рис. 6, а), полимерных кремнекислородных (рис. 6, б), алюмо-кремнекислородных и т.п. радикалов.

Увеличение размера катионных октаэдров вызывает необходимость поликонденсации SiО 4 4- -тетраэдров в цепочки (рис. 6, в, г) и более сложные кремнекислородные радикалы — ленты, сетки (слои), каркасы. Полимерные кольцевые, цепочечные, ленточные и сеточные радикалы имеют дополнительные возможности приспособления к различным катионным полиэдрам за счёт изменения угла сопряжения SiО 4 4- тетраэдров между собой.

Систематика. В зависимости от силовых характеристик (CX) катионов (In/ropбn+ или In/ri, где In — n-й потенциал ионизации; ropбn+ — орбитальный радиус иона с валентностью n; ri — эффективный ионный радиус катиона в ионном кристалле) класс силикатов природных в химико-структурной систематике делится на 3 подкласса: I — силикаты, содержащие катионы с низкими CX (К, Na, Li, Mg, Fe 2+ , Fe 3+ и др.); II — со средними CX (Ti, Zn и др.) — титано- и цирконосиликаты; III — силикаты халькофильных элементов .

По типу гетерополианионного радикала в каждом из подклассов выделяют сектора (бериллосиликаты, алюмосиликаты, боросиликаты, собственно силикаты).

В зависимости от степени поликонденсации TО 4 -тетраэдров в анионных радикалах различают 9 надотделов: тетрасиликаты (ортосиликаты) с радикалом SiО 4 4- (например, оливины); тетратрисиликаты (ортодиортосиликаты), содержащие одновременно, например, SiО 4 4- - и Si 2 О 7 6- -радикалы (); трисиликаты (диортосиликаты) с радикалом Si 2 О 7 6- (тортвейтит); тридисиликаты (например, розенханит); дисиликаты (метасиликаты) с радикалами SiО 3 N 2 n- (); димоносиликаты с радикалами типа Si 4 О 11 6- , AlSi 3 О 11 7- и др. (например, ); моносиликаты с радикалами Si 2 О 5 N 2 n- (каолинит); мононульсиликаты (родезит); нульалюмосиликаты с радикалами типа Tn 3+ Si 1-n О 2 n- (альбит). Принадлежность силикатов к средним, основным, кислым солям или кристаллогидратам позволяет выделять отделы. Более дробная систематика основывается на структурных признаках с учётом геометрии анионного мотива (отряды островных, цепочечных, сеточных или слоистых, каркасных силикатов природных) анионного и катионного субмотива (подотряды субкаркасных, субцепочечных и т.д. силикатов).

Свойства. Большинство силикатов природных из-за сложности состава имеют низкую симметрию. Около 45% из них относится к моноклинной, 20% — к ромбической, 9% — к триклинной (к низшим сингониям относятся прежде всего многие цепочечные, слоистые силикаты и каркасные алюмосиликаты), 7% — к тетрагональной, 10% — к тригональной и гексагональной (силикаты с кольцевыми треугольными и гексагональными радикалами) и 9% — к кубической (тетрасиликаты с изолированными SiО 4 4- -тетраэдрами; ряд каркасных нульалюмосиликатов) сингонии.

Большая часть силикатов бесцветные или белые; силикаты Fe, Mn, Ni, UО 2 2+ , Ti, Zr, V, Cu, TR и некоторых других элементов (а также содержащие их в виде изоморфных примесей) часто окрашены в различные цвета. Блеск стеклянный до алмазного. В тонких шлифах прозрачны. Многие силикатов природные обладают совершенной спайностью в трёх направлениях, для цепочечных и ленточных силикатов характерна спайность в двух направлениях, для слоистых — весьма совершенная спайность в одном направлении. Большинство силикатов (минералы с лёгкими катионами De, Mg, Al, каркасной и слоистой структурой) имеют низкую плотность (2000-3000 кг/м 3), которая возрастает до 3500 и даже 4000 кг/м 3 у тетрасиликатов с островными SiО 4 -тетраэдрами и до 6500 кг/м 3 у силикатов тяжёлых элементов (например, свинца). Твердость максимальная (до 6-8) у некоторых каркасных алюмосиликатов и силикатов с островной и цепочечной структурой снижается до 4-5 у большинства силикатов халькофильных элементов и до 1-2 у слоистых минералов. Показатели преломления силикатов в целом пропорциональны их плотности и колеблются в широких пределах.

Образование. Силикаты природные — полигенные минералы. В магматических породах нормального ряда от ультраосновных до кислых подавляющая роль принадлежит силикатам и алюмосиликатам катионов с низкими CX, тогда как силикаты с катионами, имеющими средние CX, известны в них в виде акцессорных минералов (циркон, титанит). В агпаитовых щелочных породах содержится большое число каркасных алюмосиликатов (полевые шпаты, фельдшпатиды), находящихся в тесной ассоциации с натриевыми пироксенами (эгирин, эгирин-авгит) и различными сложными силикатами Ti и Zr. Для пегматитов характерны силикаты катионов Na, К, Li, Cs, Be. Гидротермальным путём, а также при повышенном содержании в магме H 2 О образуются фельдшпатиды и цеолиты . Силикаты халькофильных элементов (хризоколла, виллемит, гемиморфит , и др.) типичны для зон окисления

Силикаты

На долю силикатов приходится примерно 30–35% всех известных минералов. По расчетам А.Е. Ферсмана они составляют 75% земной коры. Многие силикаты являются важнейшими породообразующими минералами различных по происхождению горных пород.

Часто силикаты являются носителями цветных металлов, полез-ных ископаемых, представленных силикатами (асбест, каолин, полевые шпаты), многие используются как строительный материал. Ряд силикатов – драгоценные камни (изумруд, аквамарин, нефрит и др.). Силикаты имеют сложный химический состав и строение. В основе их кристаллической структуры лежит кремнекислородный тетраэдр, в котором каждый ион кремния находится в окружении четырех ионов кислорода, располагающихся в углах тетраэдра.

Кремнекислородные тетраэдры в кристаллической структуре силикатов либо находятся в виде изолированных друг от друга структурных единиц 4– , либо сочленяются друг с другом в сложные комплексные анионные радикалы. При этом сочленение происходит только через углы тетраэдров, но не через ребра или грани. В зависимости от того, как происходит сочленение кремнекислотных тетраэдров, образуются различные формы анионных комплексных радикалов (рис. 10).

По кристаллографическому строению силикаты делятся на пять подклассов:

1) островные, в которых комплексный анион представлен изолированными тетраэдрами 4– , удерживаемыми в структуре с помощью катионов металлов, например, форстерит (Mg 2 SiО 4), оливин (Mg,Fe) 2 SiO 4 (рис. 10, под номерами 1, 2 );

2) кольцевые – комплексный анион состоит из трех, четырех, шести кремнекислородных тетраэдров, связанных между собой через две общие вершины в замкнутые плоские изолированные кольца, примером может служить берилл (Be 3 Al 2 ), (рис. 10, под номерами 3, 4 );

3) цепные и ленточные – комплексные анионы представлены одномерными непрерывными цепочками связанных друг с другом кремнекислородных тетраэдров (рис. 10, под номерами 5, 7 ), такое строение характерно для амфиболов и пироксенов;

4) слоевые – комплексные анионы представлены двумерными слоями кремнекислородных тетраэдров. В минералах с такой кристаллической структурой тетраэдры соединяются друг с другом тремя общими вершинами, образуя плоский слой непрерывной протяженности в двух направлениях, примерами таких минералов могут служить слюды, тальк, каолинит и др.;

5) каркасные силикаты образованы непрерывными трехмерными каркасами кремнекислородных тетраэдров, у которых каждый ион кислорода принадлежит одновременно двум тетраэдрам, нет ни одного угла с активным кислородным ионом. К каркасным силикатам относятся полевые шпаты и другие минералы.

Рис. 10. Типы соединения кремнекислородных тетраэдров: 1–2 – изолированный кремнекислородный тетраэдр; 2 – группа из двух тетраэдров (сдвоенный); 3–4 – группы из шести и четырех тетраэдров, связанных в кольцо; 5 – цепочка тетраэдров; 6 – лента тетраэдров; 7 – слой (лист) тетраэдров

Одной из главных особенностей многих силикатов является роль ионов алюминия в их кристаллической структуре. В.И. Вернадский доказал, что алюминий в силикатах, наряду с кремнием, входит в состав кислородных радикалов и формирует алюмосиликаты. В алю-мосиликатах ионы кислорода вокруг алюминия имеют ту же четвер-ную координацию, что и вокруг кремния, но заряд такого тетраэдра повышается на единицу и требует его компенсации каким-либо положительно-заряженным катионом. Подобные явления характерны для алюмосиликатов, имеющих сложный химический состав.

Островные силикаты

Оливин ((Mg,Fe) 2 SiO 4). Назван по оливково-зеленому цвету. Синонимы: хризолит, перидот .

Химический состав. MgO – 45–50%, FeO – 5–20%, SiO 2 – 36–43%. Иногда до 2% содержит Mn, Ni – 0,1–0,3%.

Физические свойства . Блеск стеклянный, жирный. Цвет от темно-желтого до зеленого, часто бывает бесцветным. Черты не дает. Спай-ность несовершенная. Излом раковистый. Плотность – 3,3–3,5 г/см 3 . Сингония ромбическая. Твердость – 6,5–7,0. Хрупок. Разлагается с образованием соляной и серной кислоты, студенистого осадка.

Формы нахождения . Сплошные зернистые массы среди основных и ультраосновных пород. Кристаллы редки.

Происхождение. Оливин – типичный магматический минерал.

Месторождения . Оливин входит в состав многих основных и ультраосновных магматических пород. Крупные массивы оливи-новых и оливино-пироксеновых сильно серпентинизированных пород встречаются на Урале, на южной окраине Западной Сибири, на Кавказе, в Закавказье.

Практическое значение . Маложелезистые разновидности оливина используются для изготовления огнеупорного кирпича. Прозрачные, красиво окрашенные и не затронутые метаморфизмом кристаллы – драгоценные камни.

. Минералы группы оливина входят в состав крупных фракций почв (до мелкой пыли). На земной поверхности они быстро переходят в гидрооксиды железа, магния, обогащая почву этими элементами. Иногда поставляет в почву оксиды марганца, которые при дальнейшем гидролизе используются растениями как микроэлементы.

Цепные и ленточные силикаты

Авгит ((Mg,Fe)Si 2 O 6). Относится к группе пироксенов.

Химический состав авгита сложен и непостоянен. SiO 2 – 48,39–55,55%, FeO – 0,0–29,4%, MgO – 0,0–18,5%, CaO – 22,2–26,0%.

Физические свойства . Блеск стеклянный или матовый. Цвет чер-ный, зеленовато- и буровато-черный. Черта серая, зеленовато-серая. Спайность средняя. Излом неровный, иногда раковистый. Плотность – 3,2–3,6 г/см 3 . Сингония моноклинная. Твердость – 5–6.

Формы нахождения . Сплошные зернистые массы, вкрапления в породу.

Происхождение. Авгит образуется магматическим путем. Накап-ливается главным образом в основных и реже средних магмати-ческих породах.

Месторождения . Авгит является важным породообразующим минералом некоторых изверженных пород. Например, он встречается в щелочных нефелиновых сиенитах Южного Урала.

Практическое значение . Большого практического значения не имеет. Используется как строительный материал.

Значение в почвообразовании и агрохимии . То же, что и для оли-вина.

Роговая обманка (Ca,Mg,Fe)Si 4 O 11. Входит в группу амфиболов.

Химический состав так же, как и у авгита, непостоянен. SiO 2 – 34,66–59,5%, FeO – 1,96–40,4%, MgO – 0,5–36,2%, CaO – 0,5–28,7%, Na 2 O до 12,9%, H 2 O – 0,5–10,9%

Физические свойства . Блеск стеклянный или матовый. Цвет от светло-зеленого до черного. Черта серая с зеленоватым оттенком. Спайность совершенная. Плотность – 3,1–3,3 г/см 3 . Сингония моно-клинная. Твердость – 5,5–6.



Формы нахождения . Сплошные волокнисто-лучистые массы, вкрапления среди изверженных пород, призматические кристаллы.

Происхождение. Роговая обманка образуется при магматических и метаморфических процессах.

Месторождения роговой обманки очень многочисленны. В виде крупных кристаллов, достигающих в длину 0,5 м, она обнаружена на горе Соколиной (Северный Урал).

Значение в почвообразовании . Роговая обманка входит в состав крупных фракций почв, которые у дневной поверхности относи-тельно быстро выветриваются и превращаются в лимонит с опалом, карбонаты, нонтронит – (Fe,Al) 2 ·nH 2 O, галлуазит – KH 2 Fe 3 (AlFe) 2 Si 3 O 12 ·nH 2 O и др. Встречается в относительно молодых почвах и поэтому может служить хронометром почвообразования.

Слоевые (листовые) силикаты

Серпентин (H 4 Mg 3 Si 2 O 9). Название происходит от латинского слова «серпенс» – змея. Синоним – змеевик .

Химический состав . MgO – 43,0%, SiO 2 – 44,1%, H 2 O – 12,9% (обычно – 13–17%). Примеси FeO, Fe 2 O 3 , NiO и Cr 2 O 3 .

Физические свойства . Блеск стеклянный, жирный, восковой. Цвет бутылочно-зеленый, зеленовато-черный, буровато-зеленый, серый. зеленовато-желтый с золотистым отливом, в распушенном виде снежно-белый. Иногда наблюдается изменение окраски в разных частях образца. Черта белая. Спайность отсутствует. Плотность – 2,5 г/см 3 . Сингония неизвестна. Твердость – 2,5–3.

Формы нахождения . Сплошные плотные или волокнистого сло-жения массы часто с прожилками асбеста.

Происхождение . Серпентин образуется при метаморфизации ультраосновных оливинсодержащих пород под воздействием тер-мальных вод, а также в результате химического выветривания оливин- и пироксенсодержащих пород под действием поверхностных вод.

Месторождения серпентина многочисленны. В частности, сер-пентиновые массивы широко распространены на всем протяжении Урала, в Забайкалье, Закавказье, Закарпатье.

Практическое значение . Серпентин используется для изготовле-ния огнеупорного кирпича. Плотные разновидности, имеющие красивую окраску, употребляются как облицовочные и поделочные камни.

Значение в почвообразовании и агрохимии . Серпентин под воздей-ствием химического выветривания разрушается и образует новые минералы: магнезит, опал, халцедон, лимонит. Особенно сильно выветивание протекает в условиях теплого тропического и субтро-пического климата. При выветривании на поверхности накапливаются землистые гидрооксиды железа, постепенно происходит формиро-вание латеритных почв. В обычных условиях обогащает почвы железом, магнием, кремнеземом.

Хризотил-асбест представляет собой тонковолокнистую разно-видность серпентина и имеет тот же химический состав и физические свойства.

Практическое значение . Хризотил-асбест используется для изго-товления огнестойких тканей, костюмов, театральных занавесей, различных фильтров, тормозных лент и т.д. Коротковолокнистые его разновидности идут на производство огнестойких кровельных материалов, картона, бумаги, теплоизоляционных прокладок и т.д.

Значение в почвообразовании и агрохимии то же, что и у серпентина. Отходы обогатительных фабрик используются в качестве магнезиаль-ных удобрений.

Тальк (H 2 Mg 3 Si 4 O 12 или 3MgO·4SiO 2 ·H 2 O). Химический состав . MgO – 31,7%, SiO 2 – 63,5%, H 2 O – 4,8%. Обычно присутствуют FeO, Al 2 O 3 , NiO.

Физические свойства . Блеск жирный, перламутровый. Цвет белый или бледно-зеленый. Черта белая. Спайность весьма совершен-ная. Плотность – 2,7–2,8 г/см 3 . Сингония моноклинная. Твердость около 1. Тальк легко определяется по твердости. Жирен на ощупь.

Формы нахождения . Образуется за счет метаморфизирующего воздействия гидротермальных вод на магнезиальные силикаты и алю-мосиликаты, а также высокого давления в условиях больших глубин. В тальк могут превращаться толщи доломита под действием гидротермальных вод.

Месторождения. Урал, Кемеровская область, Карелия, Казах-стан, Канада и т.д.

Практическое значение . Применяется как кислото- и огнеупор-ный материал, в бумажной, кожевенной, текстильной, резиновой, косметической, лакокрасочной, пищевой промышленности, в меди-цине, электронной технике.

Значение в почвообразовании и агрохимии . При гидролизе тальк в поверхностных условиях превращается в карбонаты магния, двуокись кремния, образуются окисиды и гидрооксиды железа, алюминия, минералы типа нонтронита, галлуазита и др., являющиеся глинистыми минералами и входящие в минеральный состав почв. Обычно на продуктах выветривания талька формируются плодородные почвы.

Мусковит (KH 2 Al 3 Si 3 O 12 или K 2 O·3Al 2 O 3 ·6SiO 2 ·2H 2 O). Синоним – белая слюда .

Химический состав . K 2 O – 11,8%, Al 2 O 3 – 38,5%, SiO 2 – 45,2%, H 2 O – 4,5%. Часть алюминия может быть замещена железом или хро-мом. Иногда в минерале в небольших количествах присутствуют Mg и Mn.

Физические свойства. Блеск стеклянный, перламутровый. Мине-рал чаще всего бесцветный, но бывает с желтоватым, сероватым, зе-леноватым оттенком. Фуксит (хромсодержащий мусковит) имеет яр-ко-зеленый цвет. Черты не дает. Спайность весьма совершенная. Плотность – 2,76–3,10 г/см 3 . Сингония моноклинная. Твердость 2–3.

Форма нахождения . Блестки и листочки в изверженных кислых метаморфических и осадочных породах. Крупные кристаллы в пегматитовых жилах.

Происхождение . Мусковит образуется при магматических и мета-морфических процессах.

Месторождения весьма многочисленны. Наибольшее промыш-ленное значение имеют месторождения Восточной Сибири, Алтая, Карело-Мурманские, Алданские, Индии, США и др.

Практическое значение . Мусковит используется как диэлектрик в сложных энергетических установках, вычислительных машинах, в радиоэлектронике, строительном деле для изготовления кровельных материалов (толь), смазочных веществ и т.д.

Значение в почвообразовании и агрохимии . При выветривании мусковит обладает относительной химической стойкостью и часто переходит в россыпи. В виде мельчайших листочков он обнару-живается во многих почвах и почвообразующих породах, накап-ливается в илистых осадках и глинах. В условиях интенсивного выветривания мусковит переходит в гидрослюды и каолинит, поставляя в почвы значительное количество калия, используемого для питания растений. Гидромусковит придает почвам повышенную поглотительную способность.

Биотит (KH 2 (Mg,Fe) 3 AlSi 3 O 12 или K 2 O·6(Mg,Fe)O·Al 2 O 3 ·6SiO 2 ·2H 2 O). Синоним – черная слюда .

Химический состав . K 2 O – 6,18–11,43%, MgO – 0,28–28,34%, FeO – 2,74–27,60%, Fe 2 O 3 – 0,13–20,65%, Al 2 O 3 – 9,43–31,69%, SiO 2 – 32,83–44,94%, H 2 O – 0,89–4,64%, F – 0–4,23%. Примеси: TiO 2 , Na 2 O, Li 2 O, MnO и др.

Физические свойства . Блеск от стеклянного до жирного и полу-металлического. Цвет черный, бурый. Черты не дает. Спайность весьма совершенная. Плотность – 3,02–3,12 г/см 3 . Сингония моно-клинная. Твердость – 2–3.

Формы нахождения . Встречается в сплошных чешуйчато- и зернистых массах. Друзы кристаллов сравнительно редки. В виде отдельных кристаллов входит в состав излившихся магматических пород (граниты, сиениты, диориты, трахиты и др.), кристаллических сланцев.

Происхождение. Биотит образуется из магмы при ее кристал-лизации, реже - за счет контактового метаморфизма при воздействии кислых магм на породы некарбонатного состава.

Месторождения. Биотит, наряду с мусковитом, широко распро-странен в природе. Наибольшее значение имеют месторождения Восточной Сибири (район р. Слюдянки), Урала, Гренландии и Скан-динавии.

Практическое значение. Биотит используется для изготовления жаростойких материалов и бронзовой краски.

Значение в почвообразовании и агрохимии . Слюды широко рас-пространены в породах и почвах. Значительное количество их можно встретить в аллювиальных, пустынных почвах, во взвесях рек и ирригационных наносах. Слюды имеют большое значение для агрохимических и физических свойств почв. Они являются источником калийного питания растений. По мере перехода слюд в гидрослюды при выветривании подвижность калия увеличивается. Если в почве много крупнозернистых слюд, то они увеличивают водо- и воздухопроницаемость почв. В процессе интенсивного химического выветривания биотит подвергается разложению. Продукты его разложения влияют на интенсивность структурообразования. При выветривании щелочные и щелочноземельные элементы выносятся с поверхностными или грунтовыми водами, двухвалентное железо переходит в трехвалентное, образуется гидробиотит. Минерал теряет блеск, упругость, становится рыхлым. В конечной стадии выветривания образуются гидрооксиды железа и глинистое вещество. Поэтому в древних корах выветривания и в почвах, распространенных в зоне субтропического климата, количество слюды меньше, что значительно снижает в них количество калия.

Каолинит (H 2 Al 2 Si 2 O 8 ·H 2 O или Al 2 O 3 ·2SiO 2 ·2H 2 O). От китайского Кау-Линг – высокая гора. Полиморфные разновидности диккит и накрит имеют тот же химический состав, что и каолинит.

Химический состав . Al 2 O 3 – 39,5%, SiO 2 – 46,5%, H 2 O – 14%. Из примесей в незначительных количествах встречаются Fe 2 O 3 , MgO, CaO, Na 2 O, K 2 O и др.

Физические свойства . Блеск отдельных чешуек перламутровый, в основном жирный или матовый. Цвет белый, серовато-белый, нередко с желтым, бурым, красным или синеватым оттенком. Черта белая. Спайность весьма совершенная в одном направлении. Излом неровный зернистый, у сухарных разновидностей раковистый. Плотность – 2,58–2,60 г/см 3 . Сингония моноклинная. Плотность – 1–2. Каолинит в сплошных землистых массах легко растирается между пальцами, в сухом виде жадно поглощает воду, в сыром – дает пластичное тесто. Если подышать на образец каолинита, издает запах глины.

Формы нахождения. Рыхлые, чешуйчатые или плотные тонко-зернистые массы. Иногда натечные формы.

Происхождение. Образуется каолинит в результате выветривания изверженных и метаморфических горных пород.

Месторождения. Урал, Восточная и Западная Сибирь, Дальний Восток, Украина, Казахстан, крупнейшие месторождения имеются в Китае и других местах.

Практическое значение . Применяется каолинит в керамической, бумажной промышленности, строительстве и других отраслях.

Значение в почвообразовании и агрохимии . Каолинит в различных количествах встречается в большинстве почв. По данным Н.И. Горбу-нова (1974), он преобладает над другими минералами в тропических и субтропических почвах. Этот минерал не набухает, поэтому почвы, содержащие каолинит, имеют ряд благоприятных водно-физических свойств – хорошую водопроницаемость и небольшую липкость. При одинаковой с монтмориллонитом дисперсности каолинит больше поглощает из раствора фосфора. Обладая низкой поглотительной спо-собностью, он передает ее почвам. Как правило, почвы на каоли-нитовых породах обладают кислой реакцией среды.

Почти такое же влияние на почвообразование и свойства почв характерно для галлуазита (H 2 Al 2 Si 2 O 8 ·2H 2 O).

Монтмориллонит (Ca,Mg)O·Al 2 O 3 ·4SiO 2 ·nH 2 O или (Аl,Mg) 2 (OH) 2 ·nH 2 O.

Химический состав минералов группы монтмориллонита очень непостоянен и изменяется от силиката алюминия – монтмориллонита до алюмосиликата – бейделлита: SiO 2 – 35,9–53,9%; MgO – 0,2–25,9%; Al 2 O 3 – 0,1–29,9%; H 2 O – 11,96–26,0%; Fe 2 O 3 – 0,03–29,0%. Могут присутствовать FeO, Cr 2 O 3 , CaO, NiO, CuO, Na 2 O, K 2 O, ZnO, Li 2 O.

В зависимости от того, какие элементы входят в состав монт-мориллонита, выделяют следующие его разновидности: нонтронит (ферримонтмориллонит) – Fe 2 (OH) 2 ·nH 2 O; керолит (сапо-нит) – Mg 3 (OH) 2 ·nH 2 O; соконит (цинкомонтмориллонит) – Zn 3 (OH) 2 ·nH 2 O; волконскоит (хроммомонтмориллонит) –Cr 3 (OH) 2 ·nH 2 O; бейделлит – Al 2 (H 2 O) nH 2 O и др.

Физические свойства . Блеск матовый, восковый, иногда сте-клянный. Цвет белый, зеленый, голубой, черный, иногда с сероватым, буроватым и красноватым оттенками. Цвет черты зависит от цвета минерала. Спайность чешуек совершенная. Излом плотных разно-видностей раковистый. Плотность изменяется от 1,73 до 2,9 г/см 3 . Сингония моноклинная или ромбическая. Твердость – 1,5–2,5. Жирен на ощупь. При увлажнении увеличивает объем до 150–200%.

Формы нахождения . Плотные или рыхлые землистые массы в виде пластов, гнезд, псевдоморфозы по створкам известковых раковин, древесине.

Происхождение . Осадочное. Образуется за счет выветривания основных изверженных горных пород вулканических туфов, пепла в условиях щелочной среды; в почвах при выветривании первичных минералов.

Месторождения . Многие из минералов монтмориллонитовой группы широко развиты в осадочных горных породах, образуют месторождения глин. Некоторые из них получили специальные местные названия: гумбрин, кия, бентонит, асканит и др. Месторождения высококачественных монтмориллонитовых глин известны в Грузии (с. Гумбри и Аскани), в Крыму, в Приднепровье, Закарпатье, США, Франции, Германии и других странах.

Практическое значение . Монтмориллонитовые глины благодаря своим химическим и физико-химическим свойствам находят приме-нение более чем в 200 отраслях промышленности. Главным образом в нефтяной промышленности для очистки продуктов дробной перегонки от посторонних взвешенных примесей (смол, углистых веществ), текстильной, мыловаренной, косметической, резиновой, бумажной, керамической промышленности, при очистке воды и пищевых продуктов и др.

Значение в почвообразовании и агрохимии . Минералы группы монтмориллонита широко распространены в почвах, глинах, морских осадках, взвесях рек, где они встречаются совместно со слюдами, гидрослюдами и другими минералами, оказывая большое влияние на физико-химические свойства почв и их плодородие. Н.И. Горбунов (1974) указывает, что поглотительная способность почв, емкость поглощения катионов, физико-механические свойства, водопрони-цаемость, максимальная гигроскопичность в той или иной мере определяются монтмориллонитом. В сочетании с органическими веществами типа гуминовых кислот монтмориллонитовые глины способствуют формированию водопрочной структуры. При малом содержании гумуса в почве монтмориллонит оказывает на почву отрицательное действие: почва от воды набухает, при высыхании сильно растрескивается. Выходы монтмориллонитовых глин на дневную поверхность после дождей превращаются в густую массу, напоминающую скользкий студень. При высыхании они трескаются, вспучиваются под влиянием продолжающегося набухания более глубоких участков. В установившуюся сухую погоду поверхность таких глин становится очень рыхлой.

Хлориты ((Mg,Fe) 5 Al(OH) 8 ) – группа минералов по ряду свойств близкая к слюдам.

Химический состав . Широкий изоморфизм хлоритов определяет большое разнообразие химического состава. Изменение состава отдельных окислов происходит в широких пределах: SiO 2 – 13–34%, Al 2 O 3 – 10–27%, Fe 2 O 3 – 1,5–9,0%, FeO – 0–36%, MgO – 2,0–36,5%, H 2 О – 10,0–14,1%. В качестве примесей могут быть CaO, MnO, Cr 2 O 3 , P 2 O 3 и др.

Физические свойства . Блеск от матового, стеклянного до перла-мутрового. Цвет зеленый разных оттенков. Черта зеленовато-серая. Спайность весьма совершенная. Плотность – 2,0–3,4 г/см 3 . Сингония моноклинная. Твердость – 1,5–3,0.

Формы нахождения . Хлориты встречаются в виде листоватых и чешуйчатых агрегатов или сплошных масс.

Происхождение . Низкотемпературное гидротермальное, мета-морфическое, осадочное.

Месторождения . Наиболее распространены хлориты в метармофических горных породах, нередко при этом слагаются толщи хлоритовых сланцев. Широко распространены минералы группы хлорита на Урале, в Альпах, в ряде мест Северного Кавказа, Германии, Казахстана и др.

Практическое значение . Из группы хлоритов тюрингит и шамозит при больших скоплениях используются как железная руда. Хлоритовые сланцы в виде порошка применяются для придания блеска продукции бумажного производства.

Значение в почвообразовании . Хлориты встречаются во всех гранулометрических фракциях почв. Обладают относительно высокой емкостью поглощения (10–40 мг-экв. на 100 г). При выветривании обогащают почвы соединениями кальция, магния, железа и других элементов.

Гидрослюды и им подобные минералы

Гидрослюды составляют обширную группу вторичных минералов переменного химического состава. Эти минералы в большинстве случаев возникают в коре выветривания при разложении и гидратации слюд, полевых шпатов и других силикатов. Они являются промежуточными образованиями между слюдами и глинистыми минералами слоистой структуры.

При биохимическом разрушении гидрослюд образуются аморф-ная кремнекислота и полуторные окислы, которые при определенных условиях могут образовывать минералы типа аллофана.

Гидромусковит (Al 2 [(Al,Si) 4 O 10 ](OH) 2 ·nH 2 O). Синоним – иллит .

Химический состав непостоянен. Содержание K 2 O по сравнению с мусковитом снижается до 2–6%, доля воды возрастает до 8–9%, количество SiO 2 увеличивается до 50–55%, а Al 2 O 3 уменьшается до 25–33%. Кристаллическая структура гидромусковита мало чем отличается от структуры мусковита и является переходной к структуре монтмориллонита. Гидромусковит встречается среди глин, особенно огнеупорных, также является важным минералом многих осадочных горных пород и почв. Он находится преимущественно в илистой и коллоидной фракциях почв, обусловливая их физико-химические свойства. Калий частично усваивается растениями, поэтому гидромусковит имеет большое значение для плодородия почв.

Гидробиотит (K(Mg,Fe) 3 (OH) 2 [(Al,Si) 4 O 10 ]·nH 2 O). В отличие от биотита содержит меньшее количество K 2 O, MgO, FeO и большее – воды. Отношение окисного железа к закисному значительно возрастает. Изменяется цвет минерала от черного до золотисто-желтого и затем до белого. Так же, как и гидромусковит, встречается во многих осадочных горных породах и почвах.

Вермикулит ((Mg,Fe) 3 (OH) 2 [(Al,Si) 4 O 10 ]·4H 2 O). Название произошло от латинского вермикулис – червячок. При нагревании из его пластинок получаются длинные червеобразные столбики и нити, похожие на червей.

Химический состав непостоянный. Содержание (в %): MgO – 14–25, Fe 2 O 3 – 3–17, FeO – 1–3, SiO 2 – 37–42, Al 2 O 3 – 10–13, H 2 O – 8–18. Kроме того присутствуют K 2 O – до 5%; в некоторых разновидностях – NiO (до 11%).

Физические свойства . Блеск перламутровый или жирный. Цвет бурый, золотисто-желтый, бронзово-желтый иногда с землистым от-тенком. Спайность совершенная. Плотность – 2,4–2,7 г/см 3 . Сингония моноклинная. Твердость – 1–1,5.

Формы нахождения . Чешуйчатые, листоватые массы или тонко-дисперсные скопления среди глинистых пород.

Происхождение. Вермикулит образуется главным образом гидро-термальным путем при изменении биотита и флогопита и при вывет-ривании этих минералов, а также роговой обманки и плагиоклазов.

Месторождения. Урал, Украина, США, Западная Австралия.

Практическое значение . Вермикулит применяется как термо-изоляционный, звукопоглощающий и смазочный материал.

Значение в почвообразовании и агрохимии . Вермикулит способен к очень высокому катионному обмену, значительно сильнее выражен-ному, чем у монтмориллонита. В почвах и глинистых породах верми-кулит встречается в небольшом количестве.

Глауконит (KH 2 Fe 3 (Al,Fe)Si 3 O 12 ·nH 2 O). Глаукос по-гречески – синевато-зеленый.

Химический состав непостоянен (в %): K 2 O – 2,07–7,58, Na 2 O – 0,01–3,34, CaO – 0,25–5,43, MgО – 1,77–6,22, FeO – 0,8–8,6, Al 2 O 3 – 0,56–20,39, Fe 2 O 3 – 6,42–27,90, H 2 O – 4,9–13,5.

Физические свойства . Блеск матовый, у плотных разновидностей стеклянный. Цвет зеленый различных оттенков. Черта зеленая. Спай-ность устанавливается редко. Плотность – 2,2–2,9 г/см 3 . Сингония моноклинная. Твердость – 2–3.

Формы нахождения. Глауконит встречается в виде зернистых и землистых масс, а также единичных зерен в осадочных породах мор-ского происхождения.

Происхождение. Глауконит – минерал осадочного происхожде-ния. Образуется за счет диагенетического превращения алюмоси-ликатного и железистого материала илов, а также за счет синтеза из коллоидных растворов. Возможно образование глауконита в коре выветривания и почвах.

Месторождения . Месторождения глауконита весьма многочис-ленны. Значительные скопления его отмечаются на восточных склонах Урала, в Поволжье, Днепрово-Донецкой впадине, в Подолии, Волыни.

Практическое значение . Глауконит используется для получения дешевой зеленой краски, в стекольной промышленности, для смягче-ния жесткости воды.

Значение в почвообразовании и агрохимии . В процессе вывет-ривания глауконит неустойчив и разлагается с образованием гидрооксидов железа и кремнезема. С этим часто связаны некоторые месторождения бурых железняков, особенно в болотах. В почвах обусловливает довольно высокую поглотительную способность. Как калийсодержащий минерал в сыром виде или после термической обработки может использоваться как калийное удобрение.

Аллофан mAl 2 O 3 ·nSiO 2 ·pH 2 O – аморфный минерал, генетически и пространственно связанный со слоистыми минералами.

Химический состав . Аллофан представляет собой тонкие кол-лоидные смеси или твердые растворы свободного глинозема и кремнезема, образовавшихся в результате совместной коагуляции. В его состав входят: Al 2 O 3 – 23,5–41,6%, SiO 2 – 21,4–39,1%, H 2 O – 39,0–43,9%; часто присутствуют Fe 2 O 3 , MgO, CaO, K 2 O, P 2 O 5 , SO 3 , CO 2 .

Физические свойства . Блеск стеклянный, жирный. Цвет бледно-голубой, зеленовато-желтый. Черта голубая. Спайность отсутствует. Излом раковистый. Плотность – 1,85–1,88 г/см 3 . Сингонии нет. Твер-дость около 3. Очень хрупок.

Формы нахождения . Стеклоподобные массы и корки с натечно-почковидной поверхностью, редко порошковатые белые массы.

Происхождение . Аллофан образуется в результате процессов вы-ветривания изверженных горных пород.

Месторождения . Известен во многих районах земного шара. В РФ встречается на Урале, в Хакасии, Хоперском и Липецком железнорудных месторождениях.

Практическое значение . Производственного значения аллофаныне имеют.

Значение в почвообразовании и агрохимии . Аллофаноиды явля-ются типичными минералами молодых почв, где они образуются за счет осаждения из растворов соединений кремнезема и алюминия. Оказывают большое влияние на емкость поглощения и гидро-фильность почв.

Каркасные силикаты

Группа полевых шпатов

Полевые шпаты – наиболее распространенные минералы. Они составляют около 50% силикатов, входящих в состав земной коры. Это главные породообразующие минералы большинства изверженных, многих метаморфических и некоторых осадочных пород.

Среди полевых шпатов выделяют: а) известково-натриевые, или плагиоклазы , представляющие собой непрерывный изоморфный ряд, крайними членами которого являются альбит и анортит и б) калие-натриевые полевые шпаты .

Известково-натриевые полевые шпаты (плагиоклазы)

Альбит (Na 2 Al 2 Si 6 O 16).Химический состав . SiO 2 – 68,81%, Al 2 O 3 – 19,40%, Na 2 O – 10,79%.

Физические свойства . Блеск стеклянный. Цвет белый, серовато-белый. Черта белая, бесцветная. Спайность совершенная в двух на-правлениях. Плотность – 2,61 г/см 3 . Сингония триклинная. Твердость 6–6,5.

Формы нахождения . Альбит встречается в виде друз, пластин-чатых кристаллов, зернистых агрегатов во многих изверженных породах, плотных зернистых масс.

Происхождение. Альбит образуется эндогенным путем (маг-матическое, гидротермальное, пегматитовое минералообразование).

Месторождения альбита многочисленны. Он встречается во мно-гих изверженных породах.

Практического значения в промышленности не имеет.

Значение в почвообразовании и агрохимии . Альбит входит в незначительном количестве в состав крупных фракций почв. На земной поверхности он неустойчив и под влиянием процессов выветривания полностью разлагается, обогащая породы и почвы натрием.

Анортит (CaAl 2 Si 2 O 8). Химический состав . SiO 2 – 43,28%, Al 2 O 3 – 36,62%, CaO – 20,1%.

Физические свойства . Блеск стеклянный. Цвет желтоватый, голу-боватый, розовый, бесцветный. Черта бесцветная, белая. Спайность совершенная. Плотность – 2,76 г/см 3 . Сингония триклинная. Твер-дость – 6–6,5.

Формы нахождения такие же, как у альбита.

Происхождение . Образуется совместно с альбитом, лабрадором и другими плагиоклазами, входя в различные изоморфные соединения.

Практического значения в народном хозяйстве не имеет.

Значение в почвообразовании и агрохимии . Входит в состав круп-ных фракций почв. Быстро выветривается, превращается в каолинит. Обогащает почву соединениями кальция.

Лабрадор – изоморфная смесь альбита и анортита, содержащая от 50 до 70% анортитовой молекулы.

Химический состав. SiO 2 – 49,67–56,05%, Al 2 O 3 – 28,01–32,33%, CaO – 10,05–15,08%, Na 2 O – 2,92–5,82%.

Физические свойства . Блеск стеклянный. Цвет серый, темно-се-рый, зеленовато-серый. Характерный синий отлив на плоскостях спайности. Черты не дает. Спайность совершенная в двух направ-лениях. Плотность – 2,69 г/см 3 . Сингония триклинная. Твердость – 6–6,5.

Формы нахождения . Сплошные крупнозернистые массы, зерна в основных изверженных породах.

Происхождение. Образуется лабрадор в результате кристалллиза-ции основных магм.

Месторождения. Крупнейшие месторождения лабрадора извест-ны в Житомирской области на Украине.

Практическое значение . Облицовочный материал в строитель-стве.

Значение в почвообразовании и агрохимии . Лабрадор входит в состав крупных фракций почв. Быстро выветривается с образованием в почве каолинита и других глинистых минералов, обогащая при этом породы кальцием и натрием.

Калий-натриевые полевые шпаты

Ортоклаз

Химический состав . K 2 O – 16,9%, Al 2 O 3 – 18,4%, SiO 2 – 64,7%. Часто присутствуют Na 2 O и примеси BaO, FeO, Fe 2 O 3 и др.

Физические свойства . Блеск стеклянный. Цвет светло-розовый. Черты не дает. Спайность совершенная в двух направлениях. Плот-ность 2,56 г/см 3 . Сингония моноклинная. Твердость – 6–6,5. Отличить от микроклина на глаз практически невозможно.

Формы нахождения . Ортоклаз встречается в виде сплошных кристаллических масс, зерен в породах, крупных кристаллов в пегматитовых жилах.

Происхождение . Образуется из кислых и частично из средних магм, гидротермальным путем в кварцевых жилах.

Месторождения . В РФ высокосортные полевые шпаты встре-чаются на северо-западе европейской части, на Среднем Урале. В горных массивах – в кислых и, частично, средних магматических породах.

Практическое значение . Ортоклаз и микроклин используются в стекольной и керамической промышленности. Их разновидности (лунный и солнечный камни) – облицовочный материал.

Значение в почвообразовании и агрохимии . Полевые шпаты и продукты их преобразования существенно влияют на свойства почв. Крупные зерна полевых шпатов так же, как и кварца, оказывают большое влияние на физические свойства почв. При наличии натрия в составе кристаллической решетки образуются сода и силикаты натрия, являющиеся причиной образования содовых солончаков. Ортоклаз – один из источников калийного питания растений, в том случае когда его частицы измельчены до размера менее 0,001 мм.

Микроклин (K 2 Al 2 Si 6 O 16 или K 2 O·Al 2 O 3 ·6SiO 2).

Химический состав аналогичен составу ортоклаза.

Физические свойства . Блеск стеклянный. Цвет такой же, как у ортоклаза. Однако существует отличие: есть разновидность зеленого цвета, называемая амазонитом. Черты не дает. Спайность совершенная. Плотность – 2,54–2,57 г/см 3 . Сингония триклинная. Твердость – 6–6,5. По внешним признакам трудно отличим от ортоклаза.

Формы нахождения . Кристаллы в пегматитовых жилах, друзы.

Происхождение. Основной путь образования микроклина пегма-титовый.

Месторождения. Высокосортные полевые шпаты распространены на северо-западе европейской части РФ, на Среднем Урале, в Восточной Сибири. Месторождения амазонита имеются в Ильменских горах.

Практическое значение . Микроклин используется в стекольной и керамической промышленности. Амазонит – поделочный камень.

Значение в почвообразовании и агрохимии такое же, как у орто-клаза.

Группа нефелина

Нефелин (Na 2 Al 2 Si 2 O 8 или Na 2 O·Al 2 O 3 ·2SiO 2).

Химический состав . SiO 2 – 44,0%, Al 2 O 3 – 33,0%, Na 2 O – 16%, K 2 O – 5%. Остальное приходится на CaO, MgO, Ga 2 O 3 , BeO, а иногда Fe 2 O 3 , Cl, F и H 2 O.

Физические свойства . Блеск на поверхности стеклянный, в изломе жирный, при выветривании матовый. Цвет серовато-белый или серый с желтым, бурым, красным или зеленоватым оттенком. Черты не дает. Спайность отсутствует. Излом неровный. Плотность – 2,6 г/см 3 . Сингония гексагональная. Твердость – 5–6.

Формы нахождения . Сплошные крупнозернистые массы. Зерна в щелочных породах.

Происхождение . Нефелин образуется магматическим путем.

Месторождения . Крупные месторождения нефелина находятся близ города Ачинск, в Хибинах, в Приазовском районе Украинской кристаллической полосы, Норвегии, Гренландии, Италии.

Практическое значение . Нефелин используется как руда на алю-миний, для получения соды, в стекольной и фарфоровой промышлен-ности.

Значение в почвообразовании и агрохимии . Как и плагиоклазы, нефелин входит в состав скелета почв, встречаясь в крупных фракциях. При выветривании он переходит в каолин, карбонаты, сульфаты и другие кислородные образования.

Цеолиты. Группа цеолитов очень разнообразна по химическому составу, характеру распределения кремнийкислородных и алюмо-кислородных тетраэдров. Е.К. Лазаренко указывает: «С хими-ческой точки зрения цеолиты представляют собой водные алюмо-силикаты Ca и Na, частично Ba, Sr, K, редко Mg, Mn (табл. 4). Их можно рассматривать как гидратные формы полевых шпатов (Na 2 Ca)O·nSiO 2 ·mH 2 O, где n – 2, 3, 4, 6, а m колеблется от 0 до 8.

Физические свойства . Блеск стеклянный. Обычно бесцветные или белые, иногда красноватые или красные массы. Черта белая. Спайность средняя. Плотность – 2,1–2,5 г/см 3 . Сингония у большинства цеолитов моноклинная, у шабазита тригональная, натролита – ромбическая. Твердость – 3,5–5,5.

Формы нахождения . Цеолиты образуются в основном из холод-ных и горячих вод в результате изменения основных плагиоклазов.

Месторождения. Цеолиты встречаются в Забайкалье, в Восточ-ной Сибири, на Кавказе, в Крыму, Казахстане, США, Африке и др.

Практическое значение . Искусственно полученные цеолиты используются для очистки воды.

Таблица 4

Химический состав некоторых цеолитов, %

(по Е.К. Лазаренко, 1963)

Значение в почвообразовании и агрохимии . Цеолиты обладают высокой обменной способностью. Так, Са 2+ и Na + могут замещаться катионами K + , Mg 2+ , Fe +2 , находящимися в водных растворах. При этом изменяются многие свойства почв и пород, в которых они имеют довольно широкое распространение.

На земной поверхности цеолиты неустойчивы. Более сложные из них, содержащие кальций, натрий и калий, переходят в цеолиты чисто натриевые или кальциевые и в конечном счете превращаются в хлорит и монтмориллонит. Иногда наблюдается каолинитизация цеолитов.

1.5. ПОРЯДОК ОПРЕДЕЛЕНИЯ МИНЕРАЛОВ

ПО ВНЕШНИМ ПРИЗНАКАМ

Необходимо научиться определять не только морфологические признаки и физические свойства, но и принадлежность минералов к тому или иному классу. Это делается с помощью определителя (прил. А).

Определив морфологические признаки, следует записать резуль-таты в рабочую тетрадь и, проанализировав эти данные, установить название минерала. Минералы должны быть описаны по схеме, при-веденной в табл. 5.