Приливом и отливом называется такое периодическое колебание уровня океана или моря, которое происходит от притяжения Луны и Солнца. Явление заключается в следующем: уровень воды постепенно поднимается, что называется приливом, достигает наивысшего положения, называемого полной водой. После того уровень начинает понижаться, что называется отливом, и через 6 час. 12,5 мин. (приблизительно) достигает наиболее низкого положения, называемого малой водой. Затем уровень снова начинает повышаться, и еще через 6 час. 12,5 мин. (приблизительно) наступает опять полная вода.

Таким образом, период явления равен 12 час. 25 мин. (приблизительно), и каждые 24—25 час. бывает два прилива и два отлива, две полные воды и две малые.

Расстояние от вертикали между уровнями последовательных полной и малой вод есть амплитуда прилива.

Если производить в том же месте наблюдения прилива в течение месяца, то окажется, что изо дня в день полная и малая воды изменяют свои положения. Два раза в месяц, в сизигии (полнолуние и новолуние), уровни полной и малой воды располагаются всего далее друг от друга, и тогда амплитуда прилива наибольшая, это случается каждые 14 дней (приблизительно). После момента сизигийных полных и малых вод уровни последующих полных и малых вод начинают приближаться друг к другу; первые располагаются все ниже и ниже, а вторые — все выше и выше, и около времени квадратур (первая и последняя четверти) амплитуда прилива достигает наименьшей величины, что случается тоже каждые 14 дней (приблизительно).

Наблюдая моменты полных вод, нетрудно заметить, что они бывают около времени верхнего и нижнего прохождений Луны через меридиан места, а малые — приблизительно посередине между этими моментами (т. е. когда Луна находится около первого вертикала). При этом каждая последующая полная и малая воды опаздывают относительно момента предшествовавшей в среднем на 12,5 мин.; таким образом, за сутки накопится около 50 мим. опоздания явления, т. е. столько же, как и опоздание прохождения Луны через верхнюю часть меридиана места.

В свою очередь наибольшие амплитуды бывают около времени фаз Луны, называемых сизигиями, а наименьшие — около времени фаз Луны, называемых квадратурами.

Все эти обстоятельства были подмечены еще до нашей эры и тогда же привели к заключению, что явление приливов связано с Луной. Прошло, однако, более полуторы тысячи лет, пока нашли и сумели выразить научным образом зависимость между явлением приливов и Луной, это открытие было сделано Ньютоном на основании впервые им высказанных законов всемирного тяготения.

Наблюдая внимательно приливы или изучая таблицы тщательно произведенных наблюдений, нетрудно заметить еще некоторые особенности, представляющие уклонения от идеально правильного хода явления; но так как эти уклонения правильно повторяются, то они тоже суть характерные признаки явления.

Моменты полных и малых вод всегда опаздывают относительно времени прохождения Луны через меридиан. Промежуток времени между верхним или нижним прохождениями Луны через меридиан и моментами полной воды называется лунным промежутком, этот промежуток изменяется в некоторых пределах; среднее из многих лунных промежутков во время сизигий называется прикладным часом.

Лунные промежутки бывают меньше средних между новолунием л полнолунием и следующими за ними квадратурами. Лунные промежутки бывают больше средних между квадратура;ми и следующими за ними сизигиями.

Промежутки времени между полной и малой водами, а также малой и полной водами в действительности никогда не бывают равны между собой, но различаются иногда до 2 час. времени. Так же точно и промежутки времени между сизигийными и квадратурными приливами неравны между собой.

При большом удалении Луны от экватора, т. е. когда склонение Луны велико, все местные отклонения явления от его нормального хода увеличиваются в размерах.

Все эти особенности явления подтверждают преобладающее значение Луны в возбуждении явления приливов.

Изучение явления приливов

Явление приливов на берегах морей, где колебания уровня, вызываемые приливами, сколько-нибудь заметны, своей правильной повторяемостью должны были неминуемо обратить на себя внимание береговых жителей, тем более, что последние всегда заняты рыболовством, для которого правильное колебание уровня имеет большое практическое значение. Таким образом, существование периодических колебаний уровня было известно, конечно в глубокой древности.

Геродот (484—428 гг. до н. э.) был первый, который упоминает о явлении приливов в своих трудах, именно о приливах в Красном море. В Средиземном море приливы очень невелики, и, хотя европейская цивилизация « зародилась на берегах этого моря, вполне понятно, что явление приливов стало изучаться только после плаваний греков за пределы Гибралтара.

Первые наблюдения и выводы из них были сделаны Пифеем (325 г. до н. э.) из греческой колонии Массилия (нынешний Марсель), ученым мореплавателем, бывавшем не только в Англии, но и далее на север. Наблюдая приливы у берегов Англии, i де они очень велики я отличаются правильностью, Пифей был первый, который заметил зависимость между явлением приливов и Луной, а именно, что полные воды бывают около времени прохождений Луны через меридиан, а малые — посередине между ними; и второе, что амплитуда пр.илявов изменяется в течение полумесяца вместе с фазами Луны; очевидно, для получения таких выводов надо было наблюдать приливы и измерять амплитуды их.

Посидоний (130—50 гг. до н. э.), греческий ученый, считался знатоком явления приливов и даже сделал попытку выразить числом влияние Луны на приливы. Его описание приливов в Кадиксе замечательно обстоятельно, причем оп указывает даже на существование разности амплитуд приливов во время равноденствий и солнцестояний.

Взгляды Галилея (1564—1642 гг.) на приливы не были особенно ясны. Кеплер (1571—1630 гг.) внес более серьезный вклад в дело изучения явления. Он указал, что, разбирая приливы, надо принимать во внимание не солнечные сутки, а лунные. Он же упоминает впервые о 19-летнем периоде приливов. В общем до открытия законов всемирного тяготения представления о причинах приливов не могли быть ясны.

Ньютон (1642—1727 гг.) на основании законов всемирного тяготения изложил свою теорию приливов, так называемую теорию равновесия, пользуясь которой он дал первое объяснение главных особенностей приливов, как, например, суточного неравенства, и первое вычисление величины сил, производящих приливы; все последующие труды основаны на работе Ньютона.

Дальнейшее движение в изучении приливов принадлежит Д. Беряулли (1700— 1782 гг.), который развил теорию равновесия Ньютона и первый приспособил ее к предсказанию приливов. Его работа была большим усовершенствованием теории равновесия вообще.

Маклорен (1698—1746 гг.) доказал те стороны теории равновесия, которые Ньютон дал без подтверждения; а именно он окончательно подтвердил, что под влиянием притяжения Луны однородная сфера должна принимать вид эллипсоида вращения.

Лаплас (1749—1827 гг.) первый приложил к изучению приливов новый взгляд, разбирая явление не как результат статического равновесия, а как род колебательного движения частиц воды, возбуждаемого притяжением каждой из них Солнцем и Луной. Пользуясь предпринятыми по его настоянию наблюдениями в Бресте (с 1807 по 1822 г.), он проверил выводы своей теории, впервые показавшей, каким способом можно выразить аналитически какое-либо периодическое явление. Работы Лапласа легли в основание всех современных приемов изучения явления приливов.

Лёббок (1803—1865 гг.) много сделал для применения теории к практике предсказания приливов и дал для этого прекрасные примеры. Он же высказал мысль, о построении карт распространения приливов, на что уже указывал Юнг, и хотя последний и не построил подобных карт, но ему принадлежит термин «котидальная линия», т. е. линия, соединяющая местность с одновременными полными водами.

Уевель (1794—1866 гг.) много работал по изучению приливов, и ему обязана наука многими одновременными наблюдениями в большом числе мест в Атлантическом океане. Он же построил и первые карты котидальных линий для большей части Мирового океана. Однако к концу своей деятельности он справедливо высказал сомнение о правильном представлении явления такими картами для открытого океана, оставляя их для прибрежных вод, где прилив распространяется по законам волн в водах малой глубины."

Эри (1801—1892 гг.) в своих трудах, имеющих отношение к приливам, разобрал случаи движения волн в каналах малой глубины сравнительно с размерами волн. Ои объяснил и показал, что трение действительно может произвести опоздание в наступлении полной воды сравнительно с моментом прохождения Луны через меридиан, как это почти везде и наблюдается; обстоятельство, которое предшествовавшими теориями не объяснялось. Он же приложил свою теорию ко многим случаям на практике и показал, что она объясняет такие стороны явления приливов у берегов, которые остались до тех пор не ясными (явление бора, смена приливных течений).

В. Томсон, лорд Кельвин (1824—1908 гг.) очень много сделал для практической стороны вопроса предсказания приливов. Он применил прием Лапласа:—выражение прилива с помощью особых рядов — и развил его в гармонический анализ кривой колебания уровня при приливе. Им был построен особый прибор (в 1878 г.) — гармонический анализатор, решавший задачу механически. При помощи его можно было из кривой прилива за годовой период в каком-либо месте вывести коэффициенты прилива, подобно тому, как из наблюдений девиации получаются ее коэффициенты. Пользуясь этими коэффициентами, можно построить или вычислить кривую прилива для того же мест? на год вперед. Для облегчения зыполнения этой задачи Томсон построил другой прибор — приливопредсказатель (1876 г.).

Г. Дарвину (1845—1912 гг.) принадлежит разработка важных теоретических вопросов приливов, между прочим, он высказал гипотезу о возникновении Луны, как следствия приливов в еще жидкой массе Земли. Он же разработал вопрос о влиянии прилива на замедление вращения Земли на оси. Кроме того, Дарвин много работал над улучшением приемов гармонического анализа и дал удобные для выполнения его приемы. Его статьи о приливах в «Encyclopedia Britannica» представляют образцовые изложения вопроса, и им же написано одно из лучших популярных описаний состояния теории приливов под заглавием.Tides and Kindred phenomena in the Solar system, 1911.

P. Гарриссв (1894—1904 и 1911 гг.) посвятил приливам громадный труд, где он сделал свод всего достигнутого его предшественниками и изложил свою гипотезу распространения прилива в Мировом океане, основанную на применении стоячих волн (сейш) к явлению прилива.

Приливы и отливы - природные явления, о которых слышали и которые наблюдали многие люди, особенно живущие на берегу моря или океана. Что такое приливы и отливы, какая сила кроется в них, почему они возникают, читайте в статье.

Значение слова «прилив»

Согласно толковому словарю Ефремовой, прилив - это природное явление, когда уровень открытого моря повышается, то есть происходит его подъем, и это периодически повторяется. Что значит прилив? По толковому словарю Ожегова прилив - это приток, скопление движущегося.

Прилив - это что такое?

Это природное явление, когда регулярно поднимается и падает уровень воды в океане, море или другом водоеме. Что такое прилив? Это ответная реакция на воздействие гравитационных сил, то есть сил притяжения, которыми обладают Солнце, Луна и другие приливообразующие силы.

Что такое прилив? Это подъем воды в океане до самого высокого уровня, который происходит каждые 13 часов. Отлив - обратное явление, при котором вода в океане падает до самого низкого уровня.

Прилив и отлив - это что такое? Это колебание уровня воды, которое происходит периодически по вертикали. Это природное явление, приливы и отливы, происходит потому, что относительно Земли изменяется положение Солнца, Луны вместе с вращающими эффектами Земли и особенностями рельефа.

Где случаются отливы и приливы?

Эти природные явления наблюдаются почти во всех морях. Они выражаются в периодическом повышении и понижении уровня воды. Случаются приливы по противоположным сторонам Земли, которые лежат рядом с линией, направленной к Солнцу и Луне. На образование горба по одну сторону Земли оказывает влияние прямое притяжение небесных тел, а по другую - наименьшее их притяжение. Так как Земля вращается, у берега моря в каждом пункте за одни сутки наблюдается по два прилива и столько же отливов.

Приливы одинаковыми не бывают. Перемещение водных масс и уровень, до которого поднимается вода в море, зависят от многих факторов. Это широта местности, очертание суши, атмосферное давление, сила ветра и многое другое.

Разновидности

Приливы и отливы классифицируют по продолжительности цикла. Они бывают:

  • Полусуточные , когда в сутки случается два прилива и два отлива, то есть преобразование пространства воды в океане или на море заключается в полных и неполных водах. Параметры амплитуд, которые чередуются между собой, практически не имеют различий. Они выглядят как кривая синусоидальная черта и локализуются в водах такого моря, как Баренцево, у берегов Белого, распространены практически на всей территории Атлантического океана.
  • Суточные - характеризуются одним приливом и таким же количеством отливов в течение суток. Такие природные явления наблюдаются и в Тихом океане, но очень редко. Так, если спутник Земли проходит через экваториальную зону, наблюдается стояние воды. Но если происходит склонение Луны с самым маленьким показателем, наблюдаются приливы малой мощности, имеющие экваториальный характер. Если цифры более высокие, образуются тропические приливы, сопровождающиеся значительной силой.
  • Смешанные , когда по высоте преобладают полусуточные или суточные приливы, имеющие неправильную конфигурацию. Например, в полусуточных изменениях уровня гидросферы прослеживается схожесть с полусуточными приливами по многим признакам, а в суточных - с такими же по времени приливами, то есть суточными, которые зависят от того, с каким градусом склоняется Луна в данный промежуток времени. Приливы и отливы смешанного типа чаще встречаются в водном пространстве Тихого океана.

  • Приливы аномального характера - характеризуются подъемами и спадами воды, не подходящими ни под одно описание по различным признакам. Аномалия имеет непосредственную связь с мелководьем, в результате чего меняется сам цикл как подъема, так и спада воды. Этот процесс особенно влияет на устье рек. Здесь приливы по времени меньше отливов. Подобными катаклизмами характеризуются отдельные участки пролива Ла-Манш, а также течения Белого моря.

Однако приливы практически не заметны в морях, которые называются внутренними, то есть отделенных от океана проливами, узкими по ширине.

Что порождает приливы?

Если нарушаются силы тяготения и инерции, на Земле возникают приливы. Природное явление приливы в большей степени проявляется у океанических берегов. Здесь два раза в сутки в разной степени уровень воды повышается и столько же раз опускается. Происходит это потому, что на поверхности двух противоположных областей океана образуются горбы. Их положение определяется в зависимости от положения Луны и Солнца.

Влияние Луны

На возникновение приливов и отливов Луна оказывает большее влияние, чем Солнце.В результате многочисленных исследований было выявлено, что на точку земной поверхности, расположенную ближе всего к Луне, внешние факторы влияют на 6 % больше, чем на самую удаленную. В этой связи ученые сделали вывод, что благодаря данному размежеванию сил Земля раздвигается в направлении такой траектории, как Луна-Земля.

Учитывая то обстоятельство, что Земля вокруг своей оси оборачивается за одни сутки, двойная приливная волна за это время проходит по создавшемуся растяжению, точнее, его периметру, два раза. В результате этого процесса создаются двойные «долины». Их высота в Мировом океане достигает двухметровой отметки, а на суше - 40-43 сантиметра, поэтому для жителей планеты это явление остается незамеченным. Нами не ощущается сила приливов, отливов, где бы мы ни находились: на суше или на воде. Хотя с подобным явлением человек знаком, наблюдая его на береговой линии. Морские или океанические воды набирают иногда по инерции достаточно большую высоту, тогда мы видим выкатывающиеся на берег волны - это прилив. Когда они откатываются обратно - отлив.

Влияние Солнца

Главная звезда Солнечной системы далеко расположена от Земли. По этой причине ее воздействие на нашу планету мало заметно. Солнце массивней Луны, если рассматривать эти небесные тела как источники энергии. Но большое расстояние между светилом и Землей оказывает влияние на амплитуду солнечных приливов, она в два раза меньше аналогичных процессов Луны. Когда наблюдается полнолуние и растет Луна, небесные тела - Солнце, Земля и Луна - имеют одинаковое расположение, в результате чего солнечные и лунные приливы складываются. Солнце оказывает небольшое влияние на приливы и отливы в тот период, когда гравитационные силы от Земли идут в двух направлениях: к Луне и Солнцу. В это время уровень отлива повышается, а прилива - понижается.

Суша на планете занимает 30 % поверхности. Остальную часть покрывают океаны и моря, с которыми связано много тайн и явлений природного характера. Одним из них является так называемый красный прилив. Это явление удивительное по красоте. Оно наблюдается у побережья Флоридского залива и считается самым большим, особенно в такие летние месяцы, как июнь или июль. Как часто можно наблюдать красный прилив, зависит от банальной причины - загрязнения прибрежных вод человеком. Волны имеют насыщенный ярко-красный или оранжевый оттенок. Это потрясающее зрелище, но любоваться им долго опасно для здоровья.

Дело в том, что окраску воде дают водоросли во время цветения. Этот период происходит очень интенсивно, растения выделяют большое количество токсинов и химикатов. В воде они растворяются не полностью, какая-то их часть выделяется в воздух. Эти вещества очень вредны для растений, животных, морских птиц. Часто от них страдают люди. Особо опасными для человека являются моллюски, которых выловили из зоны "красного прилива". Человек, употребляя их, получает сильное отравление, часто приводящее к летальному исходу. Дело в том, что уровень кислорода во время прилива понижается, в воде появляется аммиак и сероводород. Они и являются причиной отравлений.

Какие приливы считаются самыми высокими в мире?

Если форма залива воронкообразная, при попадании в него приливной волны происходит сжимание берегов. Из-за этого увеличивается высота прилива. Так, высота приливной волны у восточных берегов Северной Америки, а именно в заливе Фанди, достигает примерно 18 метров. В Европе самыми высокими приливами (13,5 метров) отличается Бретань, недалеко от Сен-Мало.

Как влияют приливы и отливы на обитателей планеты?

Этим природным явлениям особенно подвержены морские жители. Самое большое влияние приливы и отливы оказывают на обитателей вод в береговой полосе. Так как уровень земной воды изменяется, происходит развитие организмов с оседлым образом жизни. Это моллюски, устрицы, которым изменение структуры водной стихии не мешает размножаться. Этот процесс происходит гораздо активнее во время больших приливов

Но многим организмам периодические колебания уровня воды приносят страдания. Особенно трудно приходится животным маленького размера, многие из них во время приливов полностью меняют среду обитания. Одни перебираются ближе к берегу, а других, наоборот, волна уносит глубоко в океан. Природа, конечно, координирует все изменения на планете, но живые организмы приспосабливаются к условиям, преподнесенным деятельностью Луны, а также Солнца.

Какую роль играют приливы и отливы?

Что такое приливы и отливы, мы разобрали. Какова их роль в жизни человека? Эти природные явления обладают титанической силой, которую в настоящее время, к сожалению, используют мало. Хотя первые попытки в этом направлении были предприняты еще в середине прошлого столетия. В разных странах мира стали сооружать гидроэлектростанции, использующие силу приливной волны, но их пока очень мало.

Значение приливов огромно и для судоходства. Именно во время их образования суда заходят в реку на много километров вверх по течению для выгрузки товаров. Поэтому очень важно знать, когда эти явления произойдут, для чего составляются специальные таблицы. Капитаны судов по ним определяют точное время наступления приливов и их высоту.

Приливами и отливами называют периодические повышения и понижения уровня воды в океанах и морях.

Дважды в течение суток с промежутком около 12 часов 25 минут вода у берега океана или открытого моря поднимается и, если нет преград, заливает иногда большие пространства – это прилив. Затем вода понижается и отступает, обнажая дно – это отлив. Почему это происходит? Об этом задумывались еще древние люди, они-то и заметили, что эти явления связаны с Луной. На основную причину приливов и отливов впервые указал И. Ньютон – это притяжение Земли Луной, а точнее, разность между притяжением Луной всей Земли в целом и водной ее оболочки.

Объяснение приливов и отливов теорией Ньютона

Притяжение Земли Луной складывается из притяжения Луной отдельных частиц Земли. Частицы, находящиеся в данный момент ближе к Луне, притягиваются ею сильнее, а более далекие – слабее. Если бы Земля была абсолютно твердой, то это различие в силе притяжения не играло бы никакой роли. Но Земля не является абсолютно твердым телом, поэтому разность сил притяжения частиц, находящихся вблизи поверхности Земли и вблизи ее центра (эту разность называют приливообразующей силой), смещает частицы относительно друг друга, и Земля, прежде всего ее водная оболочка, деформируется.

В результате на той стороне, которая обращена к Луне, и на ее противоположной стороне вода поднимается, образуя приливные выступы, и там накапливается излишек воды. За счет этого уровень воды в других противоположных точках Земли в это время снижается – здесь происходит отлив.

Если бы Земля не вращалась, а Луна оставалась неподвижной, то Земля вместе со своей водной оболочкой всегда сохраняла бы одну и ту же вытянутую форму. Но Землявращается, а Луна движется вокруг Земли примерно за 24 часа 50 минут. С этим же периодом и приливные выступы следуют за Луной и перемещаются по поверхности океанов и морей с востока на Запад. Поскольку таких выступов два, то над каждым пунктом в океане дважды в сутки с интервалом около 12 часов 25 минут проходит приливная волна.

Почему высота приливной волны разная

В открытом океане вода поднимается при прохождении приливной волны незначительно: около 1 м и менее, что остается практически незаметным для мореплавателей. Но у берегов даже такой подъем уровня воды заметен. В бухтах и узких заливах уровень воды поднимается во время приливов гораздо выше, так как берег препятствует движению приливной волны и вода накапливается здесь в течение всего времени между отливом и приливом.

Самый большой прилив (около 18 м) наблюдается в одной из бухт на побережье в Канаде. В России наибольшие приливы (13 м) происходят в Гижигинской и Пенжинской губах Охотского моря. Во внутренних морях (например, в Балтийском или Черном) приливы и отливы почти незаметны, потому что в такие моря не успевают проникнуть массы воды, перемещающиеся вместе с океанской приливной волной. Но все равно в каждом море или даже озере возникают самостоятельные приливные волны с небольшой массой воды. Например, высота приливов в Черном море достигает лишь 10 см.

В одной и той же местности высота прилива бывает различной, так как расстояние от Луны до Земли и наибольшая высота Луны над горизонтом с течением времени изменяются, а это приводит к изменению величины приливообразующих сил.

Приливы и Солнце

На приливы также оказывает действие и Солнце. Но приливные силы Солнца в 2,2 раза меньше приливных сил Луны.

Во время новолуния и полнолуния приливные силы Солнца и Луны действуют в одном направлении – тогда получаются наиболее высокие приливы. Но во время первой и третьей четвертейЛуны приливные силы Солнца и Луны противодействуют, поэтому приливы бывают меньшими.

Приливы в воздушной оболочке Земли и в ее твердом теле

Приливные явления происходят не только в водной, но и в воздушной оболочке Земли. Они называются атмосферными приливами и отливами. Приливы происходят также в твердом теле Земли, поскольку Земля не является абсолютно твердой. Вертикальные колебания поверхности Земли вследствие приливов достигают нескольких десятков сантиметров.

Практическое использование приливов и отливов

Приливная электростанция – это особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды. Колебания уровня воды у берега могут достигать 18 метров.

В 1967 г. во Франции была построена приливная электростанция в устье реки Ранс.

В России c 1968 г. действует экспериментальная ПЭС в Кислой губе на побережье Баренцева моря.

Существуют ПЭС и за рубежом - во Франции, Великобритании, Канаде, Китае, Индии, США и других странах.

Волнение представляет собой такую форму периодического непрерывно меняющегося движения, при котором частицы воды совершают колебания около своего положения равновесия.

Если из-за какой-либо причины частицы воды будут выведе­ны из положения равновесия, то под влиянием силы тяжести они будут стремиться восстановить нарушенное равновесие. Приэтом каждая водная частица будет совершать колебательное движение относительно положения равновесия, не перемещаясь вместе с видимой формой движения волн.


Волны могут возникать под действием разных причин (сил). В зависимости от происхождения, т. е. от вызвавших нх причин, различают следующие виды морских волн.

  1. Волны трения (илн фрикционные). К этим волнам принадлежат в первую очередь ветровые, возникающие при дей­ствии ветра на поверхность моря. К ним относятся также так называемые внутренние, или глубинные, волны, которые возни­кают на глубинах при перемещении слоя воды одной плотности над слоем вочы другой плотности.

Исследованиями установлено, что если над жидкостью одной плотности движется другая жидкость, имеющая иную плотность, то на поверхности, разделяющем обе жидкости, образуются вол­ны. Размер этих волн зависит от разности скоростей движения жидкостей по отношению друг друга и разности плотности двух сред. Это относится и к случаю движения воздуха над водой. Вот почему волны возникают и па глубинах океана, и в высоких слоях атмосферы, если там существует подобное движение двух разных по плотности водных или воздушных масс.

  1. Барические волны возникают при колебаниях ат­мосферного давления. Колебания атмосферного давления вызы­вают поднятия и опускания водных масс, при которых частицы воды стремятся занять новые положения равновесия, но, до­стигнув их, совершают по инерции колебательные движения.

  2. Приливо-отливные волны возникают под влия­нием явления приливов и отливов.

  3. Сейсмические волны образуются при землетрясе­ниях и вулканических извержениях. Если очаг землетрясения расположен под водой или же поблизости от берега, то колеба­ния передаются водным массам, вызывая в них сейсмические волны, которые называются еще цунами.

  4. Сейши. В морях, озерах, водохранилищах, кроме коле­бания водных частиц в виде поступательных волн, нередко наб­людаются периодические колебания частиц воды только в вер­тикальном направлении. Такие волны называются сейшами. При сейшах происходят колебания, похожие по своему характеру на колебания, в периодически покачиваемом сосуде. Самый простой вид сейш возникает, когда уровень воды поднимается у одного края водоема и одновременно опускается у другого. При этом по середине водоема наблюдается линия, вдоль которой частицы воды не имеют вертикальных перемещений, а движутся горизон­тально. Эта линия называется узлом сейша. Более сложные сей­ши бывают двухузловымн, трехузловыми и т. д.

Сейши могут возникать в результате различных причин. Ве­тер, дующий над морем некоторое время в одном и том же на­правлении, производит нагон воды у подветренного берега. С прекращением ветра сейчас же начинаются колебания уровня сейшового характера. Это же явление может возникать под влия­нием разности атмосферного давления в различных местах вод­ного бассейна. Сеншевые колебания уровня моря мот созда­ваться сейсмическими колебаниями в очень небольших бассей­нах (в гавани, в ковше и т. п.) сейши могут возникать при про­хождении судов.
Надпись (иероглифами), вырезанная в камне

26 декабря 2004 г. в Индийском океане вблизи о. Суматра произошло сильнейшее землетрясение и последующее цунами, приведшие к беспрецедентным в истории жертвам и разрушениям (более 260 тыс. жертв). Катастрофа носила глобальный характер: пострадали не только районы в непосредственной близости от эпицентра, но и участки побережья, удалённые от него на тысячи километров. Волны были зарегистрированы повсеместно – в Атлантике, Тихом океане, на побережье Антарктиды и т.д. Фактически мы оказались свидетелями катастрофы планетарного масштаба, стоящей в одном ряду с падением Тунгусского метеорита, взрывом вулкана Кракатау и др. Поисковые группы обнаружили участки побережья на юге Суматры, где высота наводнения достигала 35 м! Это выше 12-этажного дома.

Что же такое цунами? Слово это японского происхождения и означает большая волна. Япония является страной, наиболее часто подвергавшейся атакам этих чудовищных волн. Там, на берегу, можно встретить старинные каменные столбы с надписями, предупреждающими об опасности цунами.

Учитывая специфический характер поражающих факторов цунами, это стихийное бедствие можно отнести к одному из наиболее неотвратимых природных явлений. Чудовищные объёмы морской воды, накатывающие на берег, в большинстве случаев не могут быть остановлены искусственными защитными сооружениями. Высота наводнения порой превышает 10 м, а в некоторых зонах побережья (в области мелководного шельфа, в устьях рек и др.) волна приобретает форму бора (бурлящего водяного вала, водной стены). Двигаясь с огромной скоростью в глубь берега, этот вал воды аккумулирует колоссальную динамическую энергию, уничтожая на своём пути суда и строения (рис. 1).

Рис. 1. Волна в виде бора

Возникают такие волны в большинстве случаев в результате сильного подводного землетрясения. Однако известны случаи, когда цунами возникало в случае взрывов подводных вулканов, падений скал в воду, подводных оползней и др. На рис. 2 показаны различные механизмы возбуждения волн цунами: сейсмический, вулканический, оползневый, метеорологический. Что же объединяет все эти механизмы? Общим является эффект быстрого вытеснения значительных объёмов воды: в результате сейсмо-тектонического разлома дна, вулканического взрыва на дне океана, внедрения в воду огромных масс оползня, движущегося по наклонному дну, или резкого изменения атмосферного давления (водная поверхность испытывает внезапное воздействие атмосферы, например, во время грозового фронта).

Рис. 2. Различные механизмы возбуждения волн цунами

Волны цунами относятся к так называемым длинным волнам – расстояние от гребня к гребню (длина волны) значительно превосходит глубину океана. С точки зрения гидродинамики волны цунами близки по своей природе к приливам. Цунами и приливы отличаются от обычных ветровых (штормовых) волн и морской зыби. Ветровое волнение затрагивает лишь верхний слой океана, на глубине 50 м волнение уже не ощущается. А приливы и течения, вызванные волной цунами, вовлекают в движение всю водную массу – от дна до поверхности (рис. 3).

Рис. 3. Траектории частиц воды ветровых волн и волн цунами

Скорость распространения волны цунами определяется глубиной океана H и ускорением свободного падения g : . (К сожалению, вывод формулы для скорости длинных гравитационных поверхностных волн сложен для школы. Однако с помощью размерного анализа её можно вывести с точностью до константы. Если жидкость бесконечно глубокая, единственная величина, имеющая линейный размер, это длина волны . Другой физический параметр – это гравитационная постоянная g , обеспечивающая возвращающую силу при колебаниях частиц воды Других физических параметров, влияющих на скорость, нет. Тогда размерность скорости можно составить только из комбинации . Соответственно , или, в простом случае, (когда . Для неглубокой жидкости ~ H и формула сложнее, размерным анализом не обойтись. Стоит заметить, скорость длинных волн записывается почти так же, как скорость истечения жидкости из сосуда с дырочкой в дне, высота заполнения которого равна H : .)

При приближении к берегу глубина океана уменьшается, и волна замедляется. Кинетическая энергия частиц жидкости, распределённая по вертикали, сосредотачивается во всё меньшем столбе жидкости. Именно поэтому высота волны возрастает при приближении к берегу. Высота волны цунами в открытом океане обычно невелика – не более 1 м (рис. 4). Однако, приближаясь к берегу, гребень волны становится выше и круче, и наконец на мелководье происходит его обрушение и образуется бор.

Рис. 4. Схема образования и распространения волны цунами

В глубоком океане (H = 4000 м) скорость распространения волны огромна: (720 км/ч). Такова примерно скорость реактивного самолёта! Когда волна выходит на мелководье (H = 10 м), скорость снижается до «автомобильной», (36 км/ч), но при этом высота гребня может достигать 10 и более метров!

Специалисты службы оповещения о волнах цунами, получив сведения о сильном подводном землетрясении (положение эпицентра), рассчитывают время подхода волны к берегу по формуле , где x и y – координаты точки на карте глубин. На рис. 5 приведена такая карта Тихого океана, на которой нанесены изолинии времён добегания волны Шикотанского цунами 4 октября 1994 г. Видно, что волна достигла побережья самой южной части Южной Америки примерно за сутки. На основе таких расчётов принимается решение: необходимо ли эвакуировать население немедленно или есть время, чтобы подготовиться к нему.

Как и все виды волн (звук, свет, радиоволны), цунами испытывает затухание, отражение, преломление и рассеяние.

Рис. 5. Расчёт времен добегания волны Шикотанского цунами 4 октября 1994 г. Изолинии нанесены в часах. Эпицентр отмечен чёрным кружком

Затухание волн. В открытом океане с ровным дном энергия волны затухает как 1/r , где r – расстояние от источника. Соответственно амплитуда (высота) волны уменьшается как . Такое затухание иногда называют геометрическим расхождением. Кроме эффекта геометрического расхождения волна испытывает затухание за счёт рассеяния на неоднородностях рельефа дна.

Отражение. Отражение волны от крутого берега приводит к удвоению её амплитуды на берегу. Если амплитуда набегающей волны 5 м, то при отражении на линии берега высота составит 10 м. Коэффициент отражения от берега-стенки близок к 1. Однако, если берег покатый, при выходе волны на мелководье происходит обрушение гребня. Оказывается, когда высота волны a сравнима с глубиной воды H, разница между скоростями движения «подошвы» волны и её гребня становится существенной. Вершина волны, скорость движения которой равна , догоняет подошву, движущуюся со скоростью , что и вызывает обрушение (рис. 6). Естественно, после этого коэффициент отражения становится существенно меньше единицы. Волновая энергия в этом случае расходуется на трение в бурлящем потоке.

Рис. 6. Обрушение волны цунами при выходе на мелководье

Преломление. В роли коэффициента преломления для волн цунами выступает скорость . Чем меньше глубина воды, тем скорость распространения меньше. Соответственно «луч» цунами всегда загибается в сторону мелководья. Особенности топографии дна могут создавать дополнительные эффекты. На шельфе, глубина которого в среднем 200 м, могут образовываться так называемые «захваченные» волны. Если источник цунами находится в пределах протяжённого шельфа, часть лучей цунами не может покинуть мелководную часть и уйти в глубокий океан из-за эффекта полного внутреннего отражения (рис. 7).

Рис. 7. Схема образования захваченных и излучённых волн

Захваченные шельфом волны, распространяясь вдоль берега, практически не затухают. Такая особенность волнового поля называется волноводом. Явление волновода может возникать не только вблизи берега. Академик М.М.Лаврентьев показал, что цунами-волноводы могут образовываться и над подводными хребтами. При этом эффект полного внутреннего отражения проявляется справа и слева от оси хребта.

Цунамиопасные зоны. Наиболее часто цунами возникают в зонах высокой сейсмичности. К ним прежде всего относятся так называемые зоны субдукции или, иными словами, зоны сочленения океанической и материковой тектонических плит. На карте Тихого океана (рис. 8) хорошо видно, что сильнейшие землетрясения и цунами возникали в ХХ в. по периметру океана в окрестности континентального склона в океане. Согласно теории плитовой тектоники океанические плиты постоянно «раздвигаются» в обе стороны от срединного океанического хребта в направлении материка (рис. 9) со скоростью несколько сантиметров в год. Источником такого движения плит является постоянный выход наружу магмы из глубины Земли в районе срединных океанических хребтов. Сталкиваясь с материковой плитой, относительно тонкая океаническая плита погружается в глубь Земли. Постоянный «напор» океанической плиты постепенно приводит к накоплению энергии упругого сжатия в земной коре, которая в конце концов высвобождается в виде мощного землетрясения – возникает тектонический разлом. Часть дна вздымается вверх, а часть опускается. Это смещение может достигать нескольких метров и более, при этом горизонтальные размеры очага порой превышают 1000 км. Именно это внезапное смещение дна, образуемое при возникновении тектонического разлома земной коры, и формирует гигантские волны цунами в океане.

Рис. 8. Карта Тихого океана. Показаны очаги цунами в ХХ в.

Рис. 9. Тектоническая схема возникновения землетрясений в зоне субдукции

Основные зоны субдукции расположены по периметру Тихого и Атлантического океанов. Наиболее тектонически активные участки прилегают к побережьям Японии, Чили, Курильских островов, Камчатки, Алеутских островов, Аляски и Индонезии. Здесь скорость движения океанической плиты достигает 6–8 см/год. Как следствие время от времени здесь происходят мощные подводные землетрясения и цунами. Самое страшное цунами в нашей стране обрушилось на побережье Курильских островов и Камчатки 4 ноября 1952 г. в результате подводного землетрясения. Тогда был полностью смыт п. Северокурильск и погибли около 3000 человек. Последнее цунами произошло у берегов о. Шикотан 2 октября 1994 г. Никто не погиб, но на о. Кунашир были затоплены и смыты дома в низине, несколько рыбацких судов выбросило на берег.

Оценка энергии цунами. Попробуем оценить энергию, которую несут волны цунами. Во время землетрясения над очагом формируется начальное смещение поверхности океана. Мы можем считать, что вся энергия цунами в этот момент представлена в виде потенциальной энергии поднятия столба жидкости над очагом. Обозначим среднюю высоту смещения поверхности океана через a . Тогда потенциальная энергия выразится формулой , где – плотность воды, а S – площадь очага. Размеры источника возьмём 100 . 1000 км . км – это типично для мощных землетрясений. Для источника со средней высотой смещения поверхности a = 0,5 м получается примерно 10 21 эрг (10 14 Дж), что равняется энергии бомбы, взорванной в Хиросиме. Однако, согласно расчётам канадского учёного Т.Мурти, энергия цунами 26 декабря 2004 г. оказалась в 390 раз больше! Это означает, что средняя высота начального возмущения уровня составила около 10 м.

Как видно из рис. 8, в ХХ в. в районе южнее Суматры не наблюдалось ни одного мощного землетрясения, способного вызвать цунами. Учёные предполагают, что такое длительное «молчание» зоны субдукции привело к накоплению огромной энергии сжатия, которая высвободилась 26 декабря 2004 г.

На рис. 10 показана карта Индийского океана, где нанесён эпицентр основного сейсмического толчка и последующих афтершоков (меньших по мощности землетрясений). Протяжённость зоны разлома превысила 1000 км. Серым цветом отмечен предполагаемый очаг цунами. На карте нанесены изолинии времён добегания цунами. Хорошо видно, что для большей части пострадавших побережий «запас времени» был достаточный, чтобы организовать эвакуацию населения из прибрежной зоны. Однако службы оповещения о цунами в этом районе не было. Люди не знали, что такое цунами. Более того, когда вода стала отступать, многие находящиеся на берегу углубились в зону отлива, чтобы собрать раковины и кораллы. Спустя несколько минут пришла волна. В отдельных районах о. Суматра вал прокатился в глубь на 10 км! Последствия были ужасны. В прибрежной зоне и на мелких островах смыло целые деревни. Люди, попадая в бушующий поток, гибли от столкновения с плавающими предметами. Этот поток представлял собой «кашу» из обломков домов и деревьев, частей автомобилей и людей. Шансов выжить в нём было мало.

Рис. 10. Карта Индийского океана. Нанесён эпицентр основного землетрясения и последующих афтершоков. Чёрным обведена область предполагаемого очага цунами. Нанесены изолинии добегания волны цунами

На рис. 11 показано, как высоко была смыта растительность на маленьком острове. Две следующих фотографии (рис. 12) – снимки из космоса территории Андаманских островов до и после цунами. Хорошо видно, что в результате землетрясения часть суши погрузилась в море.

Рис. 11. Результат воздействия волны цунами 26 декабря 2004 г. на о. Суматра. Хорошо видно, как высоко поднимался уровень океана

Рис. 12. Последствия землетрясения и цунами 26 декабря 2004 г. в Индийском океане (снимки из космоса до и после цунами)

Как спастись от цунами? Максимальную амплитуду цунами имеет непосредственно вблизи сейсмического источника. Поэтому здесь первым признаком цунами является само землетрясение. Жителям Курильских островов и Камчатки хорошо известно, что после подземных толчков необходимо быстро уходить из прибрежной зоны. Иногда перед приходом волны море быстро отступает от берега, обнажая дно на сотни метров. Многие свидетели отмечают наступление «тишины» перед приходом основной волны. Этот необычный отлив является признаком приближающейся волны цунами. А наступление «тишины» обусловлено тем, что быстрое отливное течение «уносит» от берега ветровые волны – шум прибоя затихает. Появление на горизонте пенящегося вала означает приближение цунами. Необходимо немедленно уходить на возвышение! Многие люди спаслись, забравшись на крепкие деревья, укрывшись на крыше крепкого здания. Известно, что многие животные и люди из кочевых племён как-то почувствовали катастрофу и ушли в горы.

Евгений Александрович Куликов – выпускник МФТИ 1973 г. В 1973–1986 гг. работал в Институте морской геологии и геофизики ДВО РАН, в 1979 г. защитил диссертацию на звание кандидата физико-математических наук. Сейчас – заведующий лабораторией цунами в Институте океанологии им. П.П.Ширшова РАН, автор около ста научных публикаций по цунами, волновым процессам в краевых областях океана и др., в том числе двух монографий, один из самых крупных специалистов-любителей по идеям Чучхе (учения Ким Ир Сена), за что награждён значком с изображением Великого вождя, приверженец теоретической кулинарии (см. сайт http://www.proza.ru/author.html?kulikove) и основатель нового вида спорта бананометания (http://kulikov.korolev.net.ru). Имеет троих теперь уже взрослых детей.