Шифр замены

Шифр подстано́вки каждый символ открытого текста заменяет на некоторый другой. В классической криптографии различают четыре типа шифра подстановки:

  • Одноалфавитный шифр подстановки (шифр простой замены) - шифр, при котором каждый символ открытого текста заменяется на некоторый, фиксированный при данном ключе символ того же алфавита.
  • Однозвучный шифр подстановки похож на одноалфавитный за исключением того, что символ открытого текста может быть заменен одним из нескольких возможных символов.
  • Полиграммный шифр подстановки заменяет не один символ, а целую группу. Примеры: шифр Плейфера , шифр Хилла.
  • Многоалфавитный шифр подстановки состоит из нескольких шифров простой замены. Примеры: шифр Виженера , шифр Бофора, одноразовый блокнот .

Шифры простой замены

Примеры шифров простой замены

Шифр Атбаш

Шифр простой замены, использованный для еврейского алфавита и получивший оттуда свое название. Шифрование происходит заменой первой буквы алфавита на последнюю, второй на предпоследнюю (алеф (первая буква) заменяется на тав (последнюю), бет (вторая) заменяется на шин (предпоследняя); из этих сочетаний шифр и получил свое название). Шифр Атбаш для английского алфавита:

Алфавит замены: Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Шифр с использованием кодового слова

Шифр с использованием кодового слова является одним из самых простых как в реализации так и в расшифровывании. Идея заключается в том что выбирается кодовое слово , которое пишется впереди, затем выписываются остальные буквы алфавита в своем порядке. Шифр с использованием кодового слова WORD.

Исходный алфавит: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Алфавит замены: W O R D A B C E F G H I J K L M N P Q S T U V X Y Z

Как мы видим при использовании короткого кодового слова мы получаем очень и очень простую замену. Так же мы не можем использовать в качестве кодового слова слова с повторяющимися буквами, так как это приведет к неоднозначности расшифровки, то есть двум различным буквам исходного алфавита будет соответствовать одна и та же буква шифрованного текста.

К шифрам замены тоже можно отнести всем известные шифры, используемые авторами многих известных книг. Таких как «Пляшущие человечки» А. Конан Дойла, или «Золотой Жук» Э. По, так же шифр из романа Ж. Верна «Путешествие к центру земли».

Безопасность шифров простой замены

Главный недостаток этого метода шифрования это то, что последние буквы алфавита (которые имеют низкие коэффициенты при частотном анализе) имеют тенденцию оставаться в конце. Более защищенный способ построить алфавит замены состоит в том, чтобы выполнить колоночное перемещение (перемещение столбцов) в алфавите, используя ключевое слово, но это не часто делается. Несмотря на то, что число возможных ключей является очень большим (26! = 2^88.4), этот вид шифра может быть легко взломанным. Согласно расстоянию уникальности английского языка, 27.6 букв от зашифрованного текста должно быть достаточно чтобы взломать шифр простой замены. На практике, обычно достаточно около 50 символов для взлома, хотя некоторые шифротексты могут быть взломаны и с меньшим количеством символов, если найдены какие-либо нестандартные структуры. Но при равномерном распределении символов в тексте может потребоваться куда более длинные шифротексты для взлома.

  • расстояние уникальности - термин, используемый в криптографии, обращающейся к длине оригинального шифротекста, которого должно быть достаточно для взлома шифра.

Омофоническая замена

Ранние попытки увеличивать трудность дешифровки частотным анализом шифров замены состояла в том, чтобы замаскировать реальные частоты появления символов обычного текста с помощью омофонии. В этих шифрах, буквы исходного алфавита соответствуют больше чем одному символу из алфавита замены. Обычно, символам исходного текста наивысшей частотой дают большее количество эквивалентов чем более редким символам. Таким образом, распределение частоты становится более равномерным, сильно затрудняя частотный анализ. С тех пор как для алфавита замены стало требоваться больше чем 26 символов появилась необходимость в расширенных алфавитах. Одним из самых простых решений является это замена алфавита на цифры . Другой метод состоит из простых изменений существующего алфавите: прописные буквы , строчные буквы, перевернутые символы и т. д. Более художественными, хотя не обязательно более надежными, будут омофонические шифры, которые используют полностью изобретенные (вымышленные) алфавиты. (например «Пляшущие человечки» А. Конан Дойла, или «Золотой Жук» Э. По. или «Рукопись Войнича»).

Примеры омофонических шифров

Номенклатор

Шифр, изданный средневековым чиновником, представляющий собой маленькую книгу с большими омофоническими таблицами замены. Первоначально шифр был ограничен названиям важных людей того времени, отсюда и последовало название шифра; в более поздних изданиях это шифр дополнился большим количеством распространенных слов и географических названий. На основе этого «номенклатора» был составлен Великий Шифр Россиньеля, используемый королем Франции Луи XIV . И действительно после того как этот шифр перестал использоваться французские архивы были закрытыми ещё в течение нескольких сотен лет. «Номенклаторы» были стандартом для дипломатической корреспонденции, шпионских сообщений, и являлись основыним средством антиполитической конспирации с начала пятнадцатого столетия до конца восемнадцатого столетия. Хотя правительственные криптоаналитики систематически взламывали «номенклаторы» к середине шестнадцатого столетия. Обычный выходом из этой ситуации было увеличение объемов таблиц. Но к концу восемнадцатого столетия, когда система начинала вымирать, некоторые «номенклаторы» имели до 50 000 символов. Однако, не все «номенклаторы» были сломаны.

Великий Шифр Россиньеля

Антони Россиньель и его сын Бонавентур Россиньель изобрели шифр, который использовал 587 различных числа. Шифр был настолько силен, что в течение многих столетий никто не мог взломать его, пока это не сделал Командир Птинье Базарье в 1893 году , который понял, что каждое число замещало французский слог , а не одну букву, как до этого считали. Он предположил, что специфическая последовательность повторных чисел, 124-22-125-46-345, кодирует слово «les ennemis» (враги) и отталкиваясь от этой информации он смог распутать весь шифр.

Книжный шифр

Книжный шифр - шифр, в котором ключом является книга или небольшая часть текста . Основным требованием будет, чтобы оба корреспондента не только имели одну и ту же самую книгу, но и тот же самое издание и выпуск. Традиционно книжные шифры работают заменяя слова в исходном тексте на местоположение этих же слов в книге. Это будет работать до тех пор пока не встретится слово, которого не будет в книге, тогда сообщение не может быть закодировано. Альтернативный подход, который обходит эту проблему, состоит в том, чтобы заменять отдельные символы, а не слова. Однако, такой способ имеет побочный эффект: зашифрованный текст становится очень большого размера. (обычно используется от 4 до 6 цифр для шифрования каждого символа или слога).

Именно это способ показан в начале фильма Семнадцать мгновений весны .

Криптоанализ

Шифр простой замены легко вскрывается с помощью частотного анализа, так как не меняет частоты использования символов в сообщении.

Однозвучные шифры сложнее для вскрытия, хотя они и не скрывают всех статистических свойств текста.

Многоалфавитные шифры шифруют каждый символ с помощью некоторого одноалфавитного шифра. Стойкость такого шифра сильно зависит от количества используемых шифров простой замены. Но при использовании компьютера криптоаналитик не испытает трудностей при вскрытии.

См. также

    Литература

    • Bruce Schneier «Applied Cryptography, Second Edition», ISBN 0-471-12845-7
    • «Введение в криптографию» под ред. В. В. Ященко - М.: МЦНМО-ЧеРо, 2000, ISBN 5-900916-40-5

    Wikimedia Foundation . 2010 .

Методы шифрования заменой (подстановкой) основаны на том, что символы исходного текста, обычно разделенные на блоки и записанные в одном алфавите, заменяются одним или несколькими символами другого алфавита в соответствии с принятым правилом преобразования.

Одноалфавитная замена

Одним из важных подклассов методов замены являются одноалфавитные (или моноалфавитные) подстановки, в которых устанавливается однозначное соответствие между каждым знаком a i исходного алфавита сообщений A и соответствующим знаком e i зашифрованного текста E . Одноалфавитная подстановка иногда называется также простой заменой, так как является самым простым шифром замены.

Примером одноалфавитной замены является шифр Цезаря, рассмотренный ранее. В рассмотренном в "Основные понятия криптографии" примере первая строка является исходным алфавитом, вторая (с циклическим сдвигом на k влево) – вектором замен.

В общем случае при одноалфавитной подстановке происходит однозначная замена исходных символов их эквивалентами из вектора замен (или таблицы замен). При таком методе шифрования ключом является используемая таблица замен.

Подстановка может быть задана с помощью таблицы, например, как показано на рис. 2.3 .


Рис. 2.3.


Рис. 2.4.

Полученный таким образом текст имеет сравнительно низкий уровень защиты, так как исходный и зашифрованный тексты имеют одинаковые статистические закономерности. При этом не имеет значения, какие символы использованы для замены – перемешанные символы исходного алфавита или таинственно выглядящие знаки.

Зашифрованное сообщение может быть вскрыто путем так называемого частотного криптоанализа . Для этого могут быть использованы некоторые статистические данные языка, на котором написано сообщение.

Известно, что в текстах на русском языке наиболее часто встречаются символы О, И . Немного реже встречаются буквы Е, А . Из согласных самые частые символы Т, Н, Р, С . В распоряжении криптоаналитиков имеются специальные таблицы частот встречаемости символов для текстов разных типов – научных, художественных и т.д.

Криптоаналитик внимательно изучает полученную криптограмму, подсчитывая при этом, какие символы сколько раз встретились. Вначале наиболее часто встречаемые знаки зашифрованного сообщения заменяются, например, буквами О . Далее производится попытка определить места для букв И, Е, А . Затем подставляются наиболее часто встречаемые согласные. На каждом этапе оценивается возможность "сочетания" тех или иных букв. Например, в русских словах трудно найти четыре подряд гласные буквы, слова в русском языке не начинаются с буквы Ы и т.д. На самом деле для каждого естественного языка (русского, английского и т.д.) существует множество закономерностей, которые помогают раскрыть специалисту зашифрованные противником сообщения.

Возможность однозначного криптоанализа напрямую зависит от длины перехваченного сообщения. Посмотрим, с чем это связано. Пусть, например, в руки криптоаналитиков попало зашифрованное с помощью некоторого шифра одноалфавитной замены сообщение:

ТНФЖ.ИПЩЪРЪ

Это сообщение состоит из 11 символов. Пусть известно, что эти символы составляют целое сообщение, а не фрагмент более крупного текста. В этом случае наше зашифрованное сообщение состоит из одного или нескольких целых слов. В зашифрованном сообщении символ Ъ встречается 2 раза. Предположим, что в открытом тексте на месте зашифрованного знака Ъ стоит гласная О, А, И или Е . Подставим на место Ъ эти буквы и оценим возможность дальнейшего криптоанализа таблица 2.1

Таблица 2.1. Варианты первого этапа криптоанализа
Зашифрованное сообщение
Т Н Ф Ж . И П Щ Ъ Р Ъ
После замены Ъ на О
О О
После замены Ъ на А
А А
После замены Ъ на И
И И
После замены Ъ на Е
Е Е

Все приведенные варианты замены могут встретиться на практике. Попробуем подобрать какие-нибудь варианты сообщений, учитывая, что в криптограмме остальные символы встречаются по одному разу ( таблица 2.2).

Таблица 2.2. Варианты второго этапа криптоанализа
Зашифрованное сообщение
Т Н Ф Ж . И П Щ Ъ Р Ъ
Варианты подобранных дешифрованных сообщений
Ж Д И С У М Р А К А
Д Ж О Н А У Б И Л И
В С Е Х П О Б И Л И
М Ы П О Б Е Д И Л И

Оценим размер такой таблицы замен. Если исходный алфавит содержит N символов, то вектор замен для биграммного шифра должен содержать N 2 пар "откр. текст – зашифр. текст" . Таблицу замен для такого шифра можно также записать и в другом виде: заголовки столбцов соответствуют первой букве биграммы, а заголовки строк – второй, причем ячейки таблицы заполнены заменяющими символами. В такой таблице будет N строк и N столбцов ( таблица 2.4).

Таблица 2.4. Другой вариант задания таблицы замен для биграммного шифра
а б ... я
а кх цу ... ...
б пу пш ... ...
в жа вь ... ...
... ... ... ... ...
ю ... ... ... ек
я ис ... ... рт

Возможны варианты использования триграммного или вообще n-граммного шифра. Такие шифры обладают более высокой криптостойкостью, но они сложнее для реализации и требуют гораздо большего количества ключевой информации (большой объем таблицы замен). В целом, все n-граммные шифры могут быть вскрыты с помощью частотного криптоанализа, только используется статистика встречаемости не отдельных символов, а сочетаний из n символов.

Поскольку шифров в мире насчитывается огромное количество, то рассмотреть все шифры невозможно не только в рамках данной статьи, но и целого сайта. Поэтому рассмотрим наиболее примитивные системы шифрации, их применение, а так же алгоритмы расшифровки. Целью своей статьи я ставлю максимально доступно объяснить широкому кругу пользователей принципов шифровки \ дешифровки, а так же научить примитивным шифрам.

Еще в школе я пользовался примитивным шифром, о котором мне поведали более старшие товарищи. Рассмотрим примитивный шифр «Шифр с заменой букв цифрами и обратно».

Нарисуем таблицу, которая изображена на рисунке 1. Цифры располагаем по порядку, начиная с единицы, заканчивая нулем по горизонтали. Ниже под цифрами подставляем произвольные буквы или символы.

Рис. 1 Ключ к шифру с заменой букв и обратно.

Теперь обратимся к таблице 2, где алфавиту присвоена нумерация.

Рис. 2 Таблица соответствия букв и цифр алфавитов.

Теперь зашифруем словоК О С Т Е Р :

1) 1. Переведем буквы в цифры:К = 12, О = 16, С =19, Т = 20, Ё = 7, Р = 18

2) 2. Переведем цифры в символы согласно таблицы 1.

КП КТ КД ПЩ Ь КЛ

3) 3. Готово.

Этот пример показывает примитивный шифр. Рассмотрим похожие по сложности шрифты.

1. 1. Самым простым шифром является ШИФР С ЗАМЕНОЙ БУКВ ЦИФРАМИ. Каждой букве соответствует число по алфавитному порядку. А-1, B-2, C-3 и т.д.
Например слово «TOWN » можно записать как «20 15 23 14», но особой секретности и сложности в дешифровке это не вызовет.

2. Также можно зашифровывать сообщения с помощью ЦИФРОВОЙ ТАБЛИЦЫ. Её параметры могут быть какими угодно, главное, чтобы получатель и отправитель были в курсе. Пример цифровой таблицы.

Рис. 3 Цифровая таблица. Первая цифра в шифре – столбец, вторая – строка или наоборот. Так слово «MIND» можно зашифровать как «33 24 34 14».

3. 3. КНИЖНЫЙ ШИФР
В таком шифре ключом является некая книга, имеющаяся и у отправителя и у получателя. В шифре обозначается страница книги и строка, первое слово которой и является разгадкой. Дешифровка невозможна, если книги у отправителя и корреспондента разных годов издания и выпуска. Книги обязательно должны быть идентичными.

4. 4. ШИФР ЦЕЗАРЯ (шифр сдвига, сдвиг Цезаря)
Известный шифр. Сутью данного шифра является замена одной буквы другой, находящейся на некоторое постоянное число позиций левее или правее от неё в алфавите. Гай Юлий Цезарь использовал этот способ шифрования при переписке со своими генералами для защиты военных сообщений. Этот шифр довольно легко взламывается, поэтому используется редко. Сдвиг на 4. A = E, B= F, C=G, D=H и т.д.
Пример шифра Цезаря: зашифруем слово « DEDUCTION » .
Получаем: GHGXFWLRQ . (сдвиг на 3)

Еще пример:

Шифрование с использованием ключа К=3 . Буква «С» «сдвигается» на три буквы вперёд и становится буквой «Ф». Твёрдый знак, перемещённый на три буквы вперёд, становится буквой «Э», и так далее:

Исходный алфавит:А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

Шифрованный:Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я А Б В

Оригинальный текст:

Съешь же ещё этих мягких французских булок, да выпей чаю.

Шифрованный текст получается путём замены каждой буквы оригинального текста соответствующей буквой шифрованного алфавита:

Фэзыя йз зьи ахлш пвёнлш чугрщцкфнлш дцосн, жг еютзм ъгб.

5. ШИФР С КОДОВЫМ СЛОВОМ
Еще один простой способ как в шифровании, так и в расшифровке. Используется кодовое слово (любое слово без повторяющихся букв). Данное слово вставляется впереди алфавита и остальные буквы по порядку дописываются, исключая те, которые уже есть в кодовом слове. Пример: кодовое слово – NOTEPAD.
Исходный:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Замена:N O T E P A D B C F G H I J K L M Q R S U V W X Y Z

6. 6. ШИФР АТБАШ
Один из наиболее простых способов шифрования. Первая буква алфавита заменяется на последнюю, вторая – на предпоследнюю и т.д.
Пример: « SCIENCE » = HXRVMXV

7. 7. ШИФР ФРЕНСИСА БЭКОНА
Один из наиболее простых методов шифрования. Для шифрования используется алфавит шифра Бэкона: каждая буква слова заменяется группой из пяти букв «А» или «B» (двоичный код).

a AAAAA g AABBA m ABABB s BAAAB y BABBA

b AAAAB h AABBB n ABBAA t BAABA z BABBB

c AAABA i ABAAA o ABBAB u BAABB

d AAABB j BBBAA p ABBBA v BBBAB

e AABAA k ABAAB q ABBBB w BABAA

f AABAB l ABABA r BAAAA x BABAB

Сложность дешифрования заключается в определении шифра. Как только он определен, сообщение легко раскладывается по алфавиту.
Существует несколько способов кодирования.
Также можно зашифровать предложение с помощью двоичного кода. Определяются параметры (например, «А» - от A до L, «В» - от L до Z). Таким образом, BAABAAAAABAAAABABABB означает TheScience of Deduction ! Этот способ более сложен и утомителен, но намного надежнее алфавитного варианта.

8. 8. ШИФР БЛЕЗА ВИЖЕНЕРА.
Этот шифр использовался конфедератами во время Гражданской войны. Шифр состоит из 26 шифров Цезаря с различными значениями сдвига (26 букв лат.алфавита). Для зашифровывания может использоваться tabula recta (квадрат Виженера). Изначально выбирается слово-ключ и исходный текст. Слово ключ записывается циклически, пока не заполнит всю длину исходного текста. Далее по таблице буквы ключа и исходного текста пересекаются в таблице и образуют зашифрованный текст.

Рис. 4 Шифр Блеза Виженера

9. 9. ШИФР ЛЕСТЕРА ХИЛЛА
Основан на линейной алгебре. Был изобретен в 1929 году.
В таком шифре каждой букве соответствует число (A = 0, B =1 и т.д.). Блок из n-букв рассматривается как n-мерный вектор и умножается на (n х n) матрицу по mod 26. Матрица и является ключом шифра. Для возможности расшифровки она должна быть обратима в Z26n.
Для того, чтобы расшифровать сообщение, необходимо обратить зашифрованный текст обратно в вектор и умножить на обратную матрицу ключа. Для подробной информации – Википедия в помощь.

10. 10. ШИФР ТРИТЕМИУСА
Усовершенствованный шифр Цезаря. При расшифровке легче всего пользоваться формулой:
L= (m+k) modN , L-номер зашифрованной буквы в алфавите, m-порядковый номер буквы шифруемого текста в алфавите, k-число сдвига, N-количество букв в алфавите.
Является частным случаем аффинного шифра.

11. 11. МАСОНСКИЙ ШИФР



12. 12. ШИФР ГРОНСФЕЛЬДА

По своему содержанию этот шифр включает в себя шифр Цезаря и шифр Виженера, однако в шифре Гронсфельда используется числовой ключ. Зашифруем слово “THALAMUS”, используя в качестве ключа число 4123. Вписываем цифры числового ключа по порядку под каждой буквой слова. Цифра под буквой будет указывать на количество позиций, на которые нужно сдвинуть буквы. К примеру вместо Т получится Х и т.д.

T H A L A M U S
4 1 2 3 4 1 2 3

T U V W X Y Z
0 1 2 3 4

В итоге: THALAMUS = XICOENWV

13. 13. ПОРОСЯЧЬЯ ЛАТЫНЬ
Чаще используется как детская забава, особой трудности в дешифровке не вызывает. Обязательно употребление английского языка, латынь здесь ни при чем.
В словах, начинающихся с согласных букв, эти согласные перемещаются назад и добавляется “суффикс” ay. Пример: question = estionquay. Если же слово начинается с гласной, то к концу просто добавляется ay, way, yay или hay (пример: a dog = aay ogday).
В русском языке такой метод тоже используется. Называют его по-разному: “синий язык”, “солёный язык”, “белый язык”, “фиолетовый язык”. Таким образом, в Синем языке после слога, содержащего гласную, добавляется слог с этой же гласной, но с добавлением согласной “с” (т.к. язык синий). Пример:Информация поступает в ядра таламуса = Инсифорсомасацисияся поссотусупасаетсе в ядсяраса тасаласамусусаса.
Довольно увлекательный вариант.

14. 14. КВАДРАТ ПОЛИБИЯ
Подобие цифровой таблицы. Существует несколько методов использования квадрата Полибия. Пример квадрата Полибия: составляем таблицу 5х5 (6х6 в зависимости от количества букв в алфавите).

1 МЕТОД. Вместо каждой буквы в слове используется соответствующая ей буква снизу (A = F, B = G и т.д.). Пример: CIPHER - HOUNIW.
2 МЕТОД. Указываются соответствующие каждой букве цифры из таблицы. Первой пишется цифра по горизонтали, второй - по вертикали. (A = 11, B = 21…). Пример: CIPHER = 31 42 53 32 51 24
3 МЕТОД. Основываясь на предыдущий метод, запишем полученный код слитно. 314253325124. Делаем сдвиг влево на одну позицию. 142533251243. Снова разделяем код попарно.14 25 33 25 12 43. В итоге получаем шифр. Пары цифр соответствуют букве в таблице: QWNWFO.

Шифров великое множество, и вы так же можете придумать свой собственный шифр, однако изобрести стойкий шифр очень сложно, поскольку наука дешифровки с появлением компьютеров шагнула далеко вперед и любой любительский шифр будет взломан специалистами за очень короткое время.

Методы вскрытия одноалфавитных систем (расшифровка)

При своей простоте в реализации одноалфавитные системы шифрования легко уязвимы.
Определим количество различных систем в аффинной системе. Каждый ключ полностью определен парой целых чисел a и b, задающих отображение ax+b. Для а существует j(n) возможных значений, где j(n) - функция Эйлера, возвращающая количество взаимно простых чисел с n, и n значений для b, которые могут быть использованы независимо от a, за исключением тождественного отображения (a=1 b=0), которое мы рассматривать не будем.
Таким образом получается j(n)*n-1 возможных значений, что не так уж и много: при n=33 в качестве a могут быть 20 значений(1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32), тогда общее число ключей равно 20*33-1=659. Перебор такого количества ключей не составит труда при использовании компьютера.
Но существуют методы упрощающие этот поиск и которые могут быть использованы при анализе более сложных шифров.
Частотный анализ
Одним из таких методов является частотный анализ. Распределение букв в криптотексте сравнивается с распределением букв в алфавите исходного сообщения. Буквы с наибольшей частотой в криптотексте заменяются на букву с наибольшей частотой из алфавита. Вероятность успешного вскрытия повышается с увеличением длины криптотекста.
Существуют множество различных таблиц о распределении букв в том или ином языке, но ни одна из них не содержит окончательной информации - даже порядок букв может отличаться в различных таблицах. Распределение букв очень сильно зависит от типа теста: проза, разговорный язык, технический язык и т.п. В методических указаниях к лабораторной работе приведены частотные характеристики для различных языков, из которых ясно, что буквы буквы I, N, S, E, A (И, Н, С, Е, А) появляются в высокочастотном классе каждого языка.
Простейшая защита против атак, основанных на подсчете частот, обеспечивается в системе омофонов (HOMOPHONES) - однозвучных подстановочных шифров, в которых один символ открытого текста отображается на несколько символов шифротекста, их число пропорционально частоте появления буквы. Шифруя букву исходного сообщения, мы выбираем случайно одну из ее замен. Следовательно простой подсчет частот ничего не дает криптоаналитику. Однако доступна информация о распределении пар и троек букв в различных естественных языках.

Наиболее известными и часто используемыми шифрами являются шифры замены. Они характеризуются тем, что отдельные части сообщения (буквы, слова, ...) заменяются на какие-либо другие буквы, числа, символы и т. д. При этом замена осуществляется так, чтобы потом по шифрованному сообщению можно было однозначно восстановить передаваемое сообщение.

Пусть, например, зашифровывается сообщение на русском языке и при этом замене подлежит каждая буква сообщения. Формально в этом случае шифр замены можно описать следующим образом. Для каждой буквы а исходного алфавита строится некоторое множество символов так, что множества попарно не пересекаются при а то есть любые два различные множества не содержат

одинаковых элементов. Множество называется множеством Шифр-обозначений для буквы а.

является ключом шифра замены. Зная ее, можно осуществить как зашифрование, так и расшифрование.

При зашифровании каждая буква а открытого сообщения, начиная с первой, заменяется любым символом из множества Если в сообщении содержится несколько букв ее, то каждая из них заменяется на любой символ из За счет этого с помощью одного ключа (1) можно получить различные варианты зашифрованного сообщения для одного и того же открытого сообщения. Например, если ключом является таблица

то сообщение «я знаком с шифрами замены» может быть зашифровано, например, любым из следующих трех способов:

Так как множества попарно не пересекаются, то по каждому символу шифрованного сообщения можно однозначно определить, какому множеству он принадлежит, и, следовательно, какую букву открытого сообщения он заменяет. Поэтому расшифрование возможно и открытое сообщение определяется единственным образом.

Часто состоит из одного элемента. Например, в романе Верна «Путешествие к центру Земли» в руки профессора Лиденброка попадает пергамент с рукописью из знаков рунического письма. Каждое множество состоит из одного элемента. Элемент каждого множества выбирается из набора символов вида

В рассказе А. Конан Дойла «Пляшущие человечки» каждый символ изображает пляшущего человечка в самых различных позах

На первый взгляд кажется, что чем хитрее символы, тем труднее вскрыть сообщение, не имея ключа. Это, конечно, не так. Если каждому символу однозначно сопоставить какую-либо букву или число, то легко перейти к зашифрованному сообщению из букв или чисел. В романе Верна «Путешествие к центру Земли» каждый рунический знак был заменен на соответствующую букву немецкого языка, что облегчило восстановление открытого сообщения. С точки зрения криптографов использование различных сложных символов не усложняет шифра. Однако, если зашифрованное сообщение состоит из букв или цифр, то вскрывать такое сообщение удобнее.

Рассмотрим некоторые примеры шифров замены. Пусть каждое множество состоит из одной буквы. Например,

Такой шифр называется шифром простой однобуквенной замены. По ключу (4) удобно проводить зашифрование и расшифрование: при зашифровании каждая буква открытого текста заменяется на соответствующую букву из второй строки (а на ) При расшифровании, наоборот, заменяется на а и т. д. При шифровании и расшифровании надо помнить вторую строчку в (4), то есть ключ.

Запомнить произвольный порядок букв алфавита достаточно сложно. Поэтому всегда пытались придумать какое-либо правило, по которому можно просто восстановить вторую строчку в (4).

Одним из первых шифров, известных из истории, был так называемый шифр Цезаря, для которого вторая строка в (4) является последовательностью, записанной в алфавитном порядке, но начинающейся не с буквы а:

В одной из задач (задача 4.4) используется шифр Цезаря. Запомнить ключ в этом случае просто - надо знать первую букву второй строки (4) (последовательность букв в алфавите предполагается известной). Однако такой шифр обладает большим недостатком. Число различных ключей равно числу букв в алфавите. Перебрав эти варианты, можно

однозначно восстановить открытое сообщение, так как при правильном выборе ключа получится «осмысленный» текст. В других случаях обычно получается «нечитаемый» текст. Задача 4.4 именно на это и рассчитана. Несмотря на то, что используется фраза на латинском языке, которого школьники не знают, многие участники олимпиады смогли указать открытое сообщение.

Другим примером шифра замены может служить лозунговый шифр. Здесь запоминание ключевой последовательности основано на лозунге - легко запоминаемом слове. Например, выберем слово-лозунг «учебник» и заполним вторую строку таблицы по следующему правилу: сначала выписываем слово-лозунг, а затем выписываем в алфавитном порядке буквы алфавита, не вошедшие в слово-лозунг. Вторая строка в (4) примет вид

В данном случае число вариантов ключа существенно больше числа букв алфавита.

Рассмотренные шифры имеют одну слабость. Если в открытом сообщении часто встречается какая-либо буква, то в шифрованном сообщении часто будет встречаться соответствующий ей символ или буква. Поэтому при вскрытии шифра замены обычно стараются наиболее часто встречающимся символам шифрованного сообщения поставить в соответствие буквы открытого сообщения с наибольшей предполагаемой частотой появления. Если шифрованное сообщение достаточно большое, то этот путь приводит к успеху, даже если вы не знаете ключа.

Кроме частоты появления букв, могут быть использованы другие обстоятельства, помогающие раскрыть сообщение. Например, может быть известна разбивка на слова, как в задаче 4.2, и расставлены знаки препинания. Рассматривая небольшое число возможных вариантов замены для предлогов и союзов, можно попытаться определить часть ключа. В этой задаче существенно используется, какие гласные или согласные могут быть удвоенными: «нн», «ее», «ии» и др.

При анализе шифрованного сообщения следует исходить из того, что число различных вариантов для части определяемого ключа не такое уж большое, если вы находитесь на правильном пути. В противном случае либо вы получите противоречие, либо число вариантов ключа будет сильно возрастать. Обычно, начиная с некоторого момента определение открытого сообщения становится делом техники. Так, в задаче 4.2, если вы определили «денно и нощно», то дальнейшее определение открытого текста не представляет труда.

Вообще-то можно сказать, что вскрытие шифров замены является искусством и достаточно трудно формализовать этот процесс.

Популярные у школьников криптограммы (типа рассмотренной в задаче 1.5) по сути дела являются шифром замены с ключом

шифрзамены в котором каждой цифре ставится в соответствие буква. При этом должны соблюдаться правила арифметики. Эти правила значительно облегчают определение открытого текста, так же, как правила синтаксиса и орфографии в задаче 4.2 облегчают нахождение четверостишия В. Высоцкого.

Любые особенности текста, которые могут быть вам известны, - ваши помощники. Например, в задаче 5.2 прямо сказано, что в тексте есть выражения «зпт», «тчк», как часто бывает в реальных телеграммах. И эта подсказка - путь к решению задачи.

Шифрование даже относительно небольших текстов на одном ключе для рассмотренных шифров замены создает условия для вскрытия открытых сообщений. Поэтому такие шифры пытались усовершенствовать. Одно из направлений - построение шифров разнозначной замены, когда каждой букве ставится в соответствие один или два символа. (Простейшим примером является шифр, определяемый в задаче 4.2.) Например,

Если шифрованное сообщение написано без пробелов между символами, то появляется дополнительная трудность при разбиении шифрованного сообщения на отдельные символы и слова.

Другое направление создания шифров замены состоит в том, чтобы множества шифробозначений содержали более одного элемента. Такие шифры получили название шифров многозначной замены. Они позволяют скрыть истинную частоту букв открытого сообщения, что существенно затрудняет вскрытие этих шифров. Главная трудность, которая возникает при использовании таких шифров, заключается в запоминании ключа. Надо запомнить не одну строчку, а для каждой буквы алфавита а - множество ее шифробозначений Как правило, элементами множеств являются числа. Из художественной литературы и кинофильмов про разведчиков вам известно, что во время второй мировой войны часто использовались так называемые книжные шифры. Множество шифробозначений для каждой буквы определяется всеми пятизначными наборами цифр, в каждом из которых первые две цифры указывают номер страницы, третья цифра - номер строки, четвертая и пятая цифры - номер места данной буквы в указанной

строке. Поэтому при поимке разведчика всегда пытались найти книгу, которая могла быть использована им в качестве ключа.

Мы не останавливаемся здесь на более сложных методах построения шифров замены. Приведенных примеров достаточно, чтобы оценить многообразие таких шифров. Но все они имеют серьезный недостаток - на одном ключе нельзя шифровать достаточно длинные сообщения. Поэтому, как правило, шифры замены используются в комбинации с другими шифрами. Чаще всего - с шифрами перестановки, о которых вы прочитаете в следующем разделе.

В заключение, следуя героям известных литературных произведений, вскроем некоторые шифры замены. Обратите внимание на то, какие неожиданные обстоятельства при этом используются. Действительно, вскрытие шифров - искусство.

Шифрами замены называют такие шифры, шифрование с помощью которых осуществляется путем замены каждого символа исходного текста другими символами (шифрообозначениями), при этом порядок символов не меняется. Формально шифр замены можно описать так: каждой букве ос исходного текста ставится в соответствие некоторое множество символов М а, которое называют множеством шифрообозначений для буквы а. Таблица соответствий и порядок выбора шифрообозначения из множества символов являются ключом шифра замены.

Если множества состоят из одного элемента, то такой шифр называют шифром простой замены.

В качестве ключа в системе Цезаря используется таблица, состоящая из двух строк (первая строка - алфавит исходного сообщения, вторая строка - тот же алфавит, но со сдвигом на несколько букв; при этом алфавитный порядок букв сохраняется).

При шифровании каждой буквы исходного текста ее заменяют буквой, которая находится под ней во второй строке таблицы. Ключ такого шифра легко запомнить по первой букве второй строки. Процесс дешифрации выполняется в обратном порядке - каждую букву шифротекста находят во второй строке таблицы и заменяют на букву над ней (с первой строки). Число ключей такого шифра не превышает количество букв алфавита (для русскоязычных текстов Т = 33).

Шифрами сложной замены называют такие шифры, шифрование с помощью которых осуществляется путем замены каждого символа исходного текста другими символами (шифрообозначениями), при этом порядок символов не меняется. Шифры сложной замены называют многоалфавитными, так как для шифрования каждого символа исходного текста используют свой шифр простой замены. Многоалфавитная подстановка обеспечивает цикличное использование в соответствии с ключом нескольких алфавитов замены, использование которых определяется местом зашифровываемого символа в исходном тексте.

Такое шифрование приводит к изменению статистики повторяемости символов в шифротексте по сравнению с исходным текстом, что лишает криптоаналитиков важной информации при попытке вскрытия шифра.

Этот шифр сложной замены реализуется с помощью таблицы шифрования (квадрата) Вижинера. Эта таблица используется как для шифрования, так и для дешифрования текстов (рис. 5.1).

> Матрица букв

шифрограмм

Столбец ключа

Строка букв

открытого

Рис. 5.1. Таблица Вижинера

Верхнюю строку подчеркнутых символов используют для поиска очередной буквы исходного текста, крайний левый столбец чисел - соответствующий ей числовой ключ (если ключ - некоторая буква ключевой фразы, то ее берут из соседнего числовому ключу столбца). На пересечении выбранных строки и столбца находят букву замены для шифротекста.

Для того чтобы зашифровать исходное сообщение, его записывают в строку и под каждой его буквой записывают подряд буквы ключевой фразы или цифры числового ключа. Если ключ оказался короче исходного текста, его циклически повторяют.

Задача 5.5

Пусть необходимо зашифровать следующий открытый текст : «ТО BE OR NOT ТО BE THAT IS THE QUESTION», используя секретный ключ «RELATIONS».

Решение.

Разобьем процесс шифрования на следующие этапы.

1. Записываем секретный ключ над открытым текстом столько раз, сколько потребуется, чтобы длина ключа совпала с длиной открытого текста, т.е. получим периодический ключ.

  • 2. Чтобы зашифровать открытый текст с помощью полученного периодического ключа и таблицы замены, приведенной выше, необходимо:
    • найти букву, стоящую на пересечении строки, названием которой является очередная буква открытого текста, и столбца, названием которого является очередной символ периодического ключа;
    • записать полученный символ криптограммы;
    • повторять предыдущие пункты до тех пор, пока не будет зашифрован весь текст.

После шифрования получим криптограмму:

«КЗ МЕ НЕЕ ВВЬ КБ МЕ МРСЮ А1 ХЭЕ,Ю5ЕЕ78У».

Для расшифровки такой криптограммы используется следующий алгоритм.

  • 1. Необходимо найти столбец, названием которого является очередной символ секретного ключа.
  • 2. В этом столбце нужно найти строку, содержащую очередной символ криптограммы.
  • 3. В качестве очередного символа открытого текста надо записать название полученной строки.

Дешифрование выполняют аналогично - под строкой шифро-текста записывают ключ, при необходимости циклически его повторяя. Каждую пару символов, расположенных в одном столбце, заменяют буквой исходного текста: по букве ключа находят строку в таблице 3, затем в этой строке находят букву шифротекста, которая определяет столбец; исходный символ - первая буква столбца.