Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Что такое уравнение?

Уравнение – одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. :) Так что же такое уравнение?

То, что это слово однокоренное со словами «равный», «равенство», возражений, думаю, ни у кого не вызывает. Уравнение – это два математических выражения, соединённых между собой знаком равенства «=». Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина . Или по-другому переменная величина . Или сокращённо просто «переменная». Переменных может быть одна или несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. Которая обычно обозначается буквой x . Или другими последними буквами латинского алфавита - y , z , t и так далее.

Мы пока тоже будем рассматривать уравнения с одной переменной. С двумя переменными или более – в специальном уроке.

Что значит решить уравнение?

Идём дальше. Переменная в выражениях, входящих в уравнение, может принимать любые допустимые значения. На то она и переменная. :) При каких-то значениях переменной получается верное равенство, а при каких-то – нет. Решить уравнение – это значит найти все такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство . Или, более научно, тождество . Например, 5=5, 0=0, -10=-10. И так далее. :) Или доказать, что таких значений переменной не существует.

Я специально акцентирую внимание на слове «исходное». Почему - будет ясно чуть ниже.

Эти самые значения переменной, при подстановке которых уравнение обращается в тождество, называются очень красиво - корнями уравнения . Если доказано, что таких значений нет, то в таком случае говорят, что уравнение не имеет корней .

Зачем нужны уравнения?

Для чего нам нужны уравнения? В первую очередь, уравнения – очень мощный и наиболее универсальный инструмент для решения задач . Самых разных. :) В школе, как правило, работают с текстовыми задачами . Это задачи на движение, на работу, на проценты и многие-многие другие. Однако применение уравнений не ограничивается одними лишь школьными задачками про бассейны, трубы, поезда и табуретки. :)

Без умения составлять и решать уравнения не решить ни одной сколь-нибудь серьёзной научной задачи - физической, инженерной или экономической. Например, рассчитать, куда попадёт ракета. Или ответить на вопрос, выдержит или не выдержит нагрузку какая-нибудь ответственная конструкция (лифт или мост, например). Или спрогнозировать погоду, рост (или падение) цен или доходов…

В общем, уравнение – ключевая фигура в решении самых разнообразных вычислительных задач.

Какие бывают уравнения?

Уравнений в математике несметное количество. Самых разных видов. Однако все уравнения можно условно разделить всего на 4 класса:

1) Линейные,

2) Квадратные,

3) Дробные (или дробно-рациональные),

4) Прочие.

Разные виды уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные – другим, дробные – третьим, тригонометрические, логарифмические, показательные и прочие – тоже решаются своими методами.

Прочих уравнений, разумеется, больше всего. Это и иррациональные, и тригонометрические, и показательные, и логарифмические, и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где неизвестным является не число, а функция. Или даже целое семейство функций. :) В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас – базовые приёмы, которые применимы для решения совершенно любых (да-да, любых!) уравнений. Называются эти приёмы равносильные преобразования уравнений . Их всего два. И нигде их не обойти. Так что знакомимся!

Как решать уравнения? Тождественные (равносильные) преобразования уравнений.

Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы суть всего уравнения не менялась . Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и в конечном счёте станет совсем не похоже на исходное. Такие преобразования в математике называются равносильными или тождественными . Среди всего многообразия тождественных преобразований уравнений выделяется два базовых . О них и пойдёт речь. Да-да, всего два! И каждое из них заслуживает отдельного внимания. Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% всех уравнений.

Итак, знакомимся!

Первое тождественное преобразование:

К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной).

Суть уравнения при этом останется прежней. Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знак. :)

Например, такое крутое уравнение:

Тут и думать нечего: переносим минус тройку вправо, меняя минус на плюс:

А что же происходит в действительности? А на самом деле вы прибавляете к обеим частям уравнения тройку ! Вот так:

Суть всего уравнения от прибавления к обеим частям тройки не меняется. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа – что уж получится.

Перенос слагаемых из одной части в другую – это сокращённый вариант первого тождественного преобразования. Ошибиться здесь можно лишь в одном – забыть сменить знак при переносе. Например, такое уравнение:

Дело нехитрое. Работаем прямо по заклинанию: с иксами влево, без иксов – вправо. Какое слагаемое с иксом у нас справа? Что? 2x? Неверно! Справа у нас -2x (минус два икс)! Поэтому в левую часть это слагаемое перенесётся с плюсом :

Полдела сделано, иксы собрали слева. Осталось перенести единицу вправо. Опять вопрос – с каким знаком? Слева перед единицей ничего не написано – значит, подразумевается, что перед ней стоит плюс . Поэтому вправо единичка перенесётся уже с минусом :

Вот почти и всё. Слева приводим подобные, а справа – считаем. И получаем:

А теперь проанализируем наши махинации с переносом слагаемых. Что мы сделали, когда перенесли -2x влево? Да! Мы прибавили к обеим частям нашего злого уравнения выражение 2x. Я же говорил, что прибавлять (отнимать) мы имеем право любое число и даже выражение с иксом! Лишь бы одно и то же. :) А когда перенесли единичку вправо? Совершенно верно! Мы отняли от обеих частей уравнения единичку. Вот и всё.) Вот и вся суть первого равносильного преобразования.

Или такой пример – для старшеклассников:

Уравнение логарифмическое. Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование – переносим слагаемое с переменной (то есть, -log 3 x) влево, а числовое выражение log 3 4 переносим вправо. Со сменой знака, разумеется:

Вот и всё. Кто дружит с логарифмами, тот в уме дорешает уравнение и получит:

Что? Хотите синусы? Пожалуйста, вот вам синусы:

Снова выполняем первое тождественное преобразование - переносим sin x влево (с минусом), а -1/4 переносим вправо (с плюсом):

Получили простейшее тригонометрическое уравнение с синусом, решить которое для знающих также не составляет труда.

Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак. Поэтому надо уметь его делать на автомате. Главное – не забывать менять знак при переносе! Продолжаем знакомиться с тождественными преобразованиями уравнений.)

Второе тождественное преобразование:

Обе части уравнения можно умножить (разделить) на одно и то же неравное нулю число или выражение.

Это тождественное преобразование мы тоже постоянно применяем, когда нам в уравнении мешают какие-то коэффициенты и мы хотим от них избавиться. Безопасно для самого уравнения. :) Например, такое злое уравнение:

Тут каждому ясно, что x = 3 . А как вы догадались? Подобрали? Или ткнули пальцем в небо и угадали?

Чтобы не подбирать и не гадать (мы с вами всё-таки математики, а не гадалки:)), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.

Вот так:

Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Вся левая часть и вся правая часть:

Слева четвёрки благополучно сокращаются и остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, естественно, тройка. :)

Или такое уравнение:

Что делать с одной седьмой? Перенести вправо? Не-а, нельзя! Одна седьмая с иксом умножением связана. Коэффициент, понимаешь. :) Нельзя коэффициент оторвать и перенести отдельно от икса. Только всё выражение (1/7)x целиком. Но – незачем. :) Снова вспоминаем про умножение/деление. Что нам мешает? Дробь 1/7, не так ли? Вот и давайте избавимся от неё. Как? А в результате какого действия у нас пропадает дробь? Дробь у нас пропадает при умножении на число, равное её знаменателю! Вот и умножим обе части нашего уравнения на 7:

Слева семёрки сократятся и останется как раз одинокий икс, а справа, если вспомнить таблицу умножения, получится 21:

Теперь пример для старшеклассников:

Чтобы добраться до икса и тем самым решить наше злое тригонометрическое уравнение, нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. :) Вот и делим на 2 всю левую часть:

Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКА требует. Делим:

Получили справа табличное значение косинуса. И теперь уравнение решается за милую душу.)

Всё понятно с умножением/делением? Отлично! Но… внимание! В данном преобразовании, несмотря на всю его простоту, кроется источник очень досадных ошибок! Называется он потеря корней и приобретение посторонних корней .

Выше я уже сказал, что обе части уравнения можно умножать (делить) на любое число или выражение с иксом . Но с одной важной оговоркой: выражение, на которое умножаем (делим) должно быть отлично от нуля . Именно этот пунктик, который многие поначалу просто игнорируют, и приводит к таким досадным промахам. Собственно, смысл этого ограничения понятен: на ноль умножать глупо, а делить вообще нельзя. Разберёмся, что к чему? Начнём с деления и с потери корней .

Допустим, есть у нас такое вот такое уравнение:

Здесь прямо-таки руки чешутся взять и поделить обе части уравнения на общую скобку (x-1):

Допустим, в задании на ЕГЭ сказано найти сумму корней этого уравнения. Что в ответ писать будем? Тройку? Если вы решили, что тройку, то вы попали в засаду . Под названием «потеря корней». :) В чём же дело?

А давайте в исходном уравнении раскроем скобки и соберём всё слева:

Получили классическое квадратное уравнение. Решаем через дискриминант (или через теорему Виета) и получаем два корня:

Стало быть, сумма корней равна 1+3 = 4. Четыре, а не три! Куда у нас «пропал» корень

x = 1

При первом способе решения? А единичка у нас пропала как раз во время деления обеих частей на скобочку (x-1). Почему так произошло? А всё потому, что при x = 1 у нас обнуляется эта самая скобочка (x-1). А делить мы имеем право только на отличное от нуля выражение! Как можно было бы избежать потери этого корня? И вообще потери корней? Для этого, во-первых, перед делением на какое-то выражение с иксом всегда дописываем условие, что это выражение отлично от нуля. И находим нули этого выражения . Вот так (на примере нашего уравнения):

А во-вторых, чтобы какие-то корни у нас не пропали в процессе деления, мы должны отдельно проверить в качестве кандидатов в корни все нули нашего выражения (того, на которое делим) . Как? Просто подставить их в исходное уравнение и посчитать. В нашем случае проверяем единичку:

Всё честно. Значит, единичка – корень!

А вообще, на будущее, всегда старайтесь избегать деления на выражение с иксом. Потеря корней – штука очень опасная и досадная! Применяйте любые другие способы – раскрытие скобок и особенно разложение на множители . Разложение на множители - самый простой и безопасный способ избежать потери корней. Для этого собираем всё слева, потом выносим общий множитель (на который так хотим «сократить») за скобки, раскладываем на множители и дальше приравниваем каждый получившийся множитель к нулю. Например, наше уравнение можно было бы вполне безобидно решить не только приведением к квадратному, но и разложением на множители. Смотрите сами:

Переносим влево всё выражение (x-1) целиком. Со знаком минус:

Выносим (x-1) за скобку как общий множитель и раскладываем на множители:

Произведение равно нулю, когда хотя бы один из множителей равен нулю . Приравниваем теперь (в уме!) каждую скобку к нулю и получаем наши законные два корня:

И ни один корень не потерялся!

Разберём теперь противоположную ситуацию – приобретение посторонних корней. Такая ситуация возникает при умножении обеих частей уравнения на выражение с иксом. Сплошь и рядом встречается при решении дробно-рациональных уравнений. Например, такое несложное уравнение:

Дело знакомое – умножаем обе части на знаменатель, чтобы избавиться от дроби и получить уравнение в линеечку:

Приравниваем каждый множитель к нулю и получаем два корня:

Вроде бы, всё хорошо. Но попробуем сделать элементарную проверку. И если при x = 0 у нас всё славненько срастётся, получится тождество 2=2, то при x = 1 получится деление на ноль. Чего делать нельзя категорически. Не годится единичка в качестве корня нашего уравнения. В таких случаях говорят, что x = 1 – так называемый посторонний корень . Единичка является корнем нашего нового уравнения без дроби x(x-1) = 0, но не является корнем исходного дробного уравнения. Как же появляется этот посторонний корень? Он появляется при домножении обеих частей на знаменатель x-1. Который при x = 1 как раз обращается в ноль! А мы имеем право умножать только на отличное от нуля выражение!

Как же быть? Вообще не умножать? Тогда мы совсем ничего решить не сможем. Каждый раз проверку делать? Можно. Но зачастую трудоёмко, если исходное уравнение слишком накрученное. В таких случаях спасают три волшебные буквы - ОДЗ. О бласть Д опустимых З начений. И чтобы исключить появление посторонних корней, при умножении на выражение с иксом всегда надо дополнительно записывать ОДЗ. В нашем случае:

Вот теперь при этом ограничении можно смело умножать обе части на знаменатель. Все вредные последствия от такого умножения (т.е. посторонние корни) мы исключим по ОДЗ. И нашу единичку безжалостно выкинем.

Итак, появление посторонних корней не так опасно, как потеря: ОДЗ – штука мощная. И жёсткая. Она нам всегда отсеет всё лишнее. :) Мы с ОДЗ будем дружить и подробнее познакомимся в отдельном уроке.

Вот и все тождественные преобразования.) Всего два. Однако у неопытного ученика могут возникать некоторые трудности, связанные с последовательностью их применения: в каких-то примерах начинают с домножения (или деления), в каких-то – с переноса. Например, такое линейное уравнение:

С чего начинать? Можно начать с переноса:

А можно сначала поделить обе части на пятёрку, а затем – переносить. Тогда числа попроще станут и считать будет легче:

Как видим, и так, и сяк можно. Вот и возникает у некоторых учеников вопрос: «Как правильно?» Ответ: «По-всякому правильно!» Кому как удобнее. :) Лишь бы ваши действия не противоречили правилам математики. А последовательность этих самых действий зависит исключительно от личных предпочтений и привычек решающего. Однако, с опытом такие вопросы отпадут сами собой, и в итоге не математика будет командовать вами, а вы – математикой. :)

В заключение хочу отдельно сказать о так называемых условно тождественных преобразованиях , справедливых при некоторых условиях . Например, возведение обеих частей уравнения в одну и ту же степень. Или извлечение корня из обеих частей. Если показатель степени нечётный, то ограничений никаких – возводите и извлекайте без опасений. А вот если чётный, то такое преобразование будет тождественным только если обе части уравнения неотрицательны . Об этих подводных камнях мы подробно поговорим в теме про иррациональные уравнения.

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Сервис для решения уравнений онлайн поможет вам решить любое уравнение. Используя наш сайт, вы получите не просто ответ уравнения, но и увидите подробное решение, то есть пошаговое отображение процесса получения результата. Наш сервис будет полезен старшеклассникам общеобразовательных школ и их родителям. Ученики смогут подготовиться к контрольным, экзаменам, проверить свои знания, а родители – проконтролировать решение математических уравнений своими детьми. Умение решать уравнения – обязательное требование к школьникам. Сервис поможет вам самообучаться и повышать уровень знаний в области математических уравнений. С его помощью вы сможете решить любое уравнение: квадратное, кубическое, иррациональное, тригонометрическое и др. Польза онлайн сервиса бесценна, ведь кроме верного ответа вы получаете подробное решение каждого уравнения. Преимущества решения уравнений онлайн. Решить любое уравнение онлайн на нашем сайте вы можете абсолютно бесплатно. Сервис полностью автоматический, вам ничего не придется устанавливать на свой компьютер, достаточно будет только ввести данные и программа выдаст решение. Любые ошибки в расчетах или опечатки исключены. С нами решить любое уравнение онлайн очень просто, поэтому обязательно используйте наш сайт для решения любых видов уравнений. Вам необходимо только ввести данные и расчет будет выполнен за считанные секунды. Программа работает самостоятельно, без человеческого участия, а вы получаете точный и подробный ответ. Решение уравнения в общем виде. В таком уравнении переменные коэффициенты и искомые корни связаны между собой. Старшая степень переменной определяет порядок такого уравнения. Исходя из этого, для уравнений используют различные методы и теоремы для нахождения решений. Решение уравнений данного типа означает нахождение искомых корней в общем виде. Наш сервис позволяет решить даже самое сложное алгебраическое уравнение онлайн. Вы можете получить как общее решение уравнения, так и частное для указанных вами числовых значений коэффициентов. Для решения алгебраического уравнения на сайте достаточно корректно заполнить всего два поля: левую и правую части заданного уравнения. У алгебраических уравнений с переменными коэффициентами бесконечное количество решений, и задав определенные условия, из множества решений выбираются частные. Квадратное уравнение. Квадратное уравнение имеет вид ax^2+bx+с=0 при а>0. Решение уравнений квадратного вида подразумевает нахождение значений x, при которых выполняется равенство ax^2+bx+с=0. Для этого находится значение дискриминанта по формуле D=b^2-4ac. Если дискриминант меньше нуля, то уравнение не имеет действительных корней (корни находятся из поля комплексных чисел), если равен нулю, то у уравнения один действительный корень, и если дискриминант больше нуля, то уравнение имеет два действительных корня, которые находятся по формуле: D= -b+-sqrt/2а. Для решения квадратного уравнения онлайн вам достаточно ввести коэффициенты такого уравнения (целые числа, дроби или десятичные значения). При наличии знаков вычитания в уравнении необходимо поставить минус перед соответствующими членами уравнения. Решить квадратное уравнение онлайн можно и в зависимости от параметра, то есть переменных в коэффициентах уравнения. С этой задачей отлично справляется наш онлайн сервис по нахождению общих решений. Линейные уравнения. Для решения линейных уравнений (или системы уравнений) на практике используются четыре основных метода. Опишем каждый метод подробно. Метод подстановки. Решение уравнений методом подстановки требует выразить одну переменную через остальные. После этого выражение подставляется в другие уравнения системы. Отсюда и название метода решения, то есть вместо переменной подставляется ее выражение через остальные переменные. На практике метод требует сложных вычислений, хотя и простой в понимании, поэтому решение такого уравнения онлайн поможет сэкономить время и облегчить вычисления. Вам достаточно указать количество неизвестных в уравнении и заполнить данные от линейных уравнений, далее сервис сделает расчет. Метод Гаусса. В основе метода простейшие преобразования системы с целью прийти к равносильной системе треугольного вида. Из нее поочередно определяются неизвестные. На практике требуется решить такое уравнение онлайн с подробным описанием, благодаря чему вы хорошо усвоите метод Гаусса для решения систем линейных уравнений. Запишите в правильном формате систему линейных уравнений и учтите количество неизвестных, чтобы безошибочно выполнить решение системы. Метод Крамера. Этим методом решаются системы уравнений в случаях, когда у системы единственное решение. Главное математическое действие здесь – это вычисление матричных определителей. Решение уравнений методом Крамера проводится в режиме онлайн, результат вы получаете мгновенно с полным и подробным описанием. Достаточно лишь заполнить систему коэффициентами и выбрать количество неизвестных переменных. Матричный метод. Этот метод заключается в собрании коэффициентов при неизвестных в матрицу А, неизвестных – в столбец Х, а свободных членов в столбец В. Таким образом система линейных уравнений сводится к матричному уравнению вида АхХ=В. У этого уравнения единственное решение только если определитель матрицы А отличен от нуля, иначе у системы нет решений, либо бесконечное количество решений. Решение уравнений матричным методом заключается в нахождении обратной матрицы А.