Из истории электродинамики

Курс общей физики (лекции)

Раздел II Электродинамика

Москва, 2003

Лекция 1 «Основы электростатики»

План лекции

1.Введение. Предмет классической электродинамики.

a. Из истории электродинамики.

b. Электродинамика и научно-технический прогресс.

2.Электрические заряды.

a. Свойства электрических зарядов.

b. Закон Кулона.

3.Электрическое поле.

a. Идеи близко – и дальнодействия.

b. Напряжённость электрического поля. Поле точечного заряда. Графическое представление электрических полей.

4.Принцип суперпозиции электрических полей.

a. Поле диполя.

b. Поле бесконечной заряженной нити.

Введение. Предмет классической электродинамики

Из истории электродинамики

Разнообразные электрические и магнитные явления, которые люди наблюдают с незапамятных времён, всегда пробуждали их любопытство и интерес. Однако, «наблюдать» ещё не значит «исследовать».

Первые научные шаги в изучении электричества и магнетизма были сделаны только в конце 16 века врачом английской королевы Елизаветы Уильямом Гильбертом (1540 – 1603). В своей монографии «О магните, магнитных телах и о большом магните - Земля», Гильберт впервые ввёл понятие «магнитное поле Земли»… Экспериментируя с различными материалами, он обнаружил, что свойством притягивать легкие предметы обладает не только янтарь, потёртый о шёлк, но и многие другие тела: алмаз, хрусталь, смола, сера и т.д. Эти вещества он назвал «электрические», то есть «как янтарь». Так возник термин «электричество».

Первую теорию электрических явлений попытался создать французский исследователь Шарль Дюфэ (1698 – 1739). Он установил, что существует электричество двух родов: «Один род, - писал он, - я назвал «стеклянным» электричеством, другой - «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное…» (1733 г.).

Дальнейшее развитие теория электричества получила в работах американского учённого Бенджамина Франклина (1706 – 1790). Он ввёл понятие «положительное» и «отрицательное» электричество, установил закон сохранения электрического заряда, исследовал «атмосферное электричество», предложил идею громоотвода. Целый ряд созданных им экспериментальных установок стали классикой и уже более 200 лет украшают физические лаборатории учебных заведений (например, «колесо Франклина»).

В 1785 году французский исследователь Шарль Кулон (1736 – 1806) экспериментально установил закон взаимодействия неподвижных электрических зарядов и позднее - магнитных полюсов. Закон Кулона - фундамент электростатики. Он позволил, наконец-то, установить единицу измерения электрического заряда и магнитных масс. Открытие этого закона стимулировало разработку математической теории электрических и магнитных явлений.

Впрочем, долгое время (ещё со времён Гильберта) считалось, что электричество и магнетизм не имеют ничего общего. Только в 1820 году датчанин Ганс Эрстед (1777 – 1851) обнаружил влияние электрического тока на магнитную стрелку, которое он объяснил тем, что «вокруг проволоки с током образуется магнитный вихрь». Иными словами Эрстед установил, что электрический ток является источником магнитного поля. Это положение стало первым из двух основных законов электродинамики. Второе было установлено экспериментально английским физиком Майклом Фарадеем (1791 – 1867). В 1831 году он впервые наблюдал явление «магнитоэлектрической индукции», когда в проводящем контуре возникал индукционный электрический ток при изменении магнитного потока, пронизывающего этот контур.

В конце 19-го столетия разрозненные результаты исследований электромагнитных явлений обобщил молодой шотландский физик Джемс Кларк Максвелл (1831 – 1879). Он создал классическую теорию электродинамики, в которой в частности предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, вычислил объемную плотность энергии электромагнитной волны, рассчитал давление, которое должна производить электромагнитная волна при падении на поглощающую поверхность.

Лекция 1

Предмет классической электродинамики. Электрическое поле. Напряженность электрического поля.

Предмет электродинамики. Электродинамика - раздел физики, изучающий взаимодействие электрически заряженных частиц и особый вид материи, порождаемый этими частицами – электромагнитное поле .

1. ЭЛЕКТРОСТАТИКА

Электростатика – раздел электродинамики, изучающий взаимодействие неподвижных заряженных тел . Электрическое поле, осуществляющее это взаимодействие, называется электростатическим .

1.1. Электрические заряды.

Способы получения зарядов. Закон сохранения электрического заряда.

В природе имеется два рода электрических зарядов, условно названных положительными и отрицательными. Исторически положительными принято называть заряды, подобные тем, которые возникают при натирании стекла о шелк; отрицательными – заряды, подобные тем, которые возникают при натирании янтаря о мех. Заряды одного знака отталкиваются друг от друга, заряды разных знаков – притягиваются (рис.1.1).

По своей сути электрические заряды атомистичны (дискретны). Это означает, что в природе существует мельчайший, далее не делимый заряд, получивший название элементарного. Величина элементарного заряда по абсолютной величине в СИ:

Электрические заряды присущи многим элементарным частицам, в частности, электронам и протонам, входящим в состав различных атомов, из которых построены все тела в природе. Следует, однако, отметить, что согласно современным представлениям сильновзаимодействующие частицы – адроны (мезоны и барионы) – построены из так называемых кварков – особых частиц, несущих дробный заряд. В настоящее время известно шесть видов кварков - u, d, s, t, b и c – по первым буквам слов: up -верхний, down -нижний, side-way -боковой (или strange -странный), top -вершинный, bottom - крайний и charm -очарованный. Эти кварки разбиваются на пары: (u,d), (c,s), (t,b). Кварки u, c, t имеют заряд +2/3, а заряд кварков d, s, b равен – 1/3. Каждому кварку соответствует свой антикварк . Кроме того, каждый из кварков может находиться в одном из трех цветных состояний (красном, желтом и синем). Мезоны состоят из двух кварков, барионы – из трех. В свободном состоянии кварки не наблюдаются . Это позволяет считать, что элементарным зарядом в природе является все же целочисленный заряд е , а не дробный заряд кварков. Заряд макроскопических тел образуется совокупностью элементарных зарядов и является, таким образом, целым кратным е .

Для проведения опытов с электрическими зарядами используют различные способы их получения. Самый простой и самый древний способ – натирание одних тел другими. При этом само по себе трение здесь не играет принципиальной роли. Электрические заряды всегда возникают при плотном контакте поверхностей соприкасающихся тел. Трение (притирание) помогает лишь устранить неровности на поверхности соприкасающихся тел, мешающих их плотному прилеганию друг к другу, при котором создаются благоприятные условия для перехода зарядов от одного тела к другому. Этот способ получения электрических зарядов лежит в основе действия некоторых электрических машин, например, электростатического генератора Ван де Графа (Van de Graaff R., 1901-1967), применяемого в физике высоких энергий.

Другой способ получения электрических зарядов основан на использовании явления электростатической индукции . Суть его иллюстрируется рис.1.2. Поднесем к разделенному на две половины незаряженному металлическому телу (не касаясь его) другое тело, заряженное, скажем, положительно. Благодаря смещению некоторой доли имеющихся в металле свободных отрицательно заряженных электронов, левая половина исходного тела приобретет избыточный отрицательный заряд, а правая - такой же по величине, но противоположный по знаку положительный заряд. Если теперь в присутствии внешнего заряженного тела развести обе половины в разные стороны и удалить заряженное тело, то каждая из них окажется заряженной . В результате мы получим два новых тела, заряженных равными по величине и противоположными по знаку зарядами.


В нашем конкретном случае полный заряд исходного тела до и после опыта не изменился – остался равным нулю:

q = q - + q + = 0

1.2. Взаимодействие электрических зарядов.

Закон Кулона. Применение закона Кулона для расчета сил взаимодействия протяженных заряженных тел.

Закон взаимодействия электрических зарядов был установлен в 1785 г. Шарлем Кулоном (CoulombSh., 1736-1806). Кулон измерял силу взаимодействия двух небольших заряженных шариков в зависимости от величины зарядов и расстояния между ними с помощью специально сконструированных им крутильных весов (рис.1.3). В результате своих опытов Кулон установил, что сила взаимодействия двух точечных зарядов прямо пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними, при этом направление действия силы совпадает с прямой, проходящей через оба заряда :

Другими словами, можем написать:

Коэффициент пропорциональности k зависит от выбора единиц измерения входящих в эту формулу величин:

В общепринятой сейчас Международной системе единиц измерения (СИ) закон Кулона записывается, следовательно, в виде:

Необходимо еще раз подчеркнуть, что в таком виде закон Кулона формулируется только для точечных зарядов, то есть таких заряженных тел, размерами которых можно пренебречь по сравнению с расстоянием между ними. Если это условие не выполняется, то закон Кулона должен быть записан в дифференциальной форме для каждой пары элементарных зарядов dq1 и dq2, на которые «разбиваются» заряженные тела:

Тогда полная сила взаимодействия двух макроскопических заряженных тел будет представлена в виде:

Интегрирование в этой формуле производится по всем зарядам каждого тела.
Пример. Найти силу F, действующую на точечный заряд Q со стороны бесконечно протяженной прямолинейной заряженной нити (рис.1.4). Расстояние от заряда до нити a, линейная плотность заряда нити τ.

Искомая сила F = Fx= Qτ/(2πε0a).

1.3. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
Взаимодействие электрических зарядов осуществляется через особый вид материи, порождаемой заряженными частицами - электрическое поле. Электрические заряды изменяют свойства окружающего их пространства. Проявляется это в том, что на помещенный вблизи заряженного тела другой заряд (назовем его пробным) действует сила (рис.1.5). По величине этой силы можно судить об «интенсивности» поля, созданного зарядом q. Для того, чтобы сила, действующая на пробный заряд, характеризовала электрическое поле именно в данной точке пространства, пробный заряд, очевидно, должен быть точечным.

Рис.1.5. К определению напряженности электрического поля.
Поместив пробный заряд qпр на некотором расстоянии r от заряда q (рис.1.5), мы обнаружим, что на него действует сила, величина которой

зависит от величины взятого пробного заряда qпр. Легко, однако, видеть, что для всех пробных зарядов отношение F/ qпр будет одно и тоже и зависит лишь от величин q и r , определяющих поле заряда q в данной точке r. Естественно, поэтому, принять это отношение за величину, характеризующую «интенсивность» или, как говорят, напряженность электрического поля (в данном случае поля точечного заряда):
.
Таким образом, напряженность электрического поля является его силовой характеристикой. Численно она равна силе, действующий на пробный заряд qпр = +1, помещенный в данное поле.
Напряженность поля – вектор. Его направление совпадает с направлением вектора силы, действующей на точечный заряд, помещенный в это поле. Следовательно, если в электрическое поле напряженностью поместить точечный заряд q, то на него будет действовать сила:

Размерность напряженности электрического поля в СИ: .
Электрическое поле удобно изображать с помощью силовых линий. Силовая линия – линия, вектор касательной к которой в каждой точке совпадает с направлением вектора напряженности электрического поля в этой точке. Принято считать, что силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность) и нигде не прерываются. Примеры силовых линий некоторых электрических полей приведены на рис.1.6.
Рис.1.6. Примеры изображения электрических полей с помощью силовых линий: точечного заряда (положительного и отрицательного), диполя, однородного электрического поля.
Электрическое поле подчиняется принципу суперпозиции (сложения), который можно сформулировать следующим образом: напряженность электрического поля, созданного в некоторой точке пространства системой зарядов, равна векторной сумме напряженностей электрических полей, созданных в этой же точке пространства каждым из зарядов в отдельности:

Пример. Найти напряженность электрического поля Е диполя (системы двух жестко связанных точечных зарядов противоположного знака) в точке, находящейся на расстоянии r1 от заряда - q и на расстоянии r2 от заряда +q (рис.1.7). Расстояние между зарядами (плечо диполя) равно l.

Рис.1.7. К расчету напряженности электрического поля системы двух точечных зарядов.

История развития классической электродинамики является поучительным примером того, как математизация естественно научной дисциплины и переход к изящному (хотя и достаточно сложному) языку описания повлекли за собой качественный скачок в понимании целого ряда явлений природы, часть из которых была первоначально предсказана теоретически (“на кончике пера”), а потом получила блестящее экспериментальное подтверждение. В настоящей теме будет содержаться достаточно большое количество математических формул, приводимых лишь с целью иллюстрации красоты и компактности языка математики.

Непрерывные распределения зарядов. Входящие в выражения для электростатических и магнитостатических полей (9_4) и (9_8) суммы в случае макроскопических заряженных тел содержат очень большое число слагаемых, соответствующих вкладам в поля от точечных зарядов. Их вычисление неудобно с чисто “технической” точки зрения: математическая операция суммирования более трудоемка, чем, например, интегрирование (сказанное относится к аналитическим расчетам, при компьютерном счете суммирование предпочтительнее взятия интегралов, однако в 19 веке подобной альтернативы в математике не существовало). Переход к интегрированию требовал приближенной замены дискретного распределения элементарных зарядов на непрерывное , характеризуемое плотностью электрического заряда (отношение величины заряда к объему содержащего его небольшого, но макроскопического элемента пространства):

Естественно, что замена (1) приводила к “сглаживанию” рассчитываемых макроскопических полей по сравнению с реальными микроскопическими, сильно изменяющимися на сравнимых с размером атома расстояниях. Описанный переход к непрерывному распределение зарядов существенно упрощал расчеты, не снижая их практическую ценность (наука и техника 19 века еще не доросли до эффектов, происходящих на микроскопическом уровне организации материи).

Математический формализм. Переход к непрерывным распределениям зарядов и токов позволил переписать законы электро и магнитостатики сразу в нескольких математических формах, эквивалентных по физическому смыслу, но существенно различающихся по технике выполнения конкретных расчетов:

интегральные формулировки:


дифференциальные формулировки:

(3)
;

расчет полей через скалярный и векторный
потенциалы :


Т.о. адекватное описание одних и тех же законов естествознания возможно на различных языках математики .

Операторы . В начале 20 века в математике были введены новые объекты - операторы , без использования которых современная физика была бы немыслима. Понятие оператора является естественным обобщением традиционного для классической математики понятия функции. Если под функцией понимается закон (правило, отображение), по которому одному числу (набору чисел) ставится в соответствие другое число (набор чисел), то под оператором подразумевают закон, по которому одному объекту (группе объектов) ставится в соответствие другой объект (группа). Наиболее часто встречаются операторы, действующие на функции (операторы умножения на число, дифференцирования, интегрирования и т.д.) или векторы (оператор поворота, проектирования и т.д.). Весьма полезной оказалась идея определения математических операций над операторами. Например, под произведением двух операторов подразумевается оператор, выполняющий последовательно действия каждого из перемножаемых операторов. Для операции умножения операторов в общем случае не выполняется свойство коммутативности:

(5)
.

Использование языка операторов существенно сокращает запись многих математических формул и делает их более “элегантными”. Так введение лишь одного дифференциального оператора “набла”


при помощи стандартным образом определенных операций скалярного (,) и векторного [ , ] умножения позволяет записать системы уравнений (3) и (4) в весьма компактной форме:

(3’)
;

(4’)
,
.

В последних равенствах использован оператор Лапласа:

(7)
.

Помимо краткости записи преимущество операторного метода состоит в том, что. с самим оператором набла можно обращаться почти так же, как с обычным вектором, что, несомненно, облегчает громоздкие выкладки.

Закон электромагнитной индукции Фарадея. Долгое время электрические и магнитные явления считались независимыми, хотя даже на уровне магнитостатики это не совсем верно: магнитостатическое поле порождается постоянными токами, существование которых в веществе невозможно без наличия электрического поля. Фарадей экспериментальным путем установил, что изменяющееся во времени магнитное поле может порождать электрическое . Это электрическое поле в отличие от порождаемого зарядами потенциального электростатического является вихревым, т.е. его линии представляют собой замкнутые кривые (рис. 11_1). Открытый Фарадеем закон индукции впоследствии имел колоссальное практическое значение, поскольку открыл весьма удобный и дешевый способ преобразования механической энергии движения источников магнитного поля в электрическую, ныне лежащий в основе промышленного производства электроэнергии.

С точки зрения математической записи уравнений для поля открытое Фарадеем явление требует видоизменения системы уравнений (6):

(10)
.

Гипотеза Максвелла. Рассмотрев совместно систему уравнений (7) и (10) Максвелл обратил внимание на следующие ее недостатки:

1. Указанная система несовместна с законом сохранения заряда.

2. Система оказалась весьма несимметричной даже для случая описания электромагнитного поля в пустом пространстве (=0 и j=0 ).

Несоответствие уравнений закону сохранения заряда было достаточным аргументом для того, чтобы усомниться в их истинности, поскольку законы сохранения носят весьма общий характер. Оказалось, что существует множество способов видоизменения системы уравнений (7), (10), приводящих их в соответствие с законом сохранения. Максвеллом был выбран простейший из возможных путь, приводящий систему к симметричному виду в случае ее использования для описания полей в пустом пространстве. В последнее уравнение было добавлено слагаемое, описывающее возможность генерации вихревого магнитного поля изменяющимся электрическим (“ток смещения”):

(11)

.

Чисто математическими следствиями из видоизмененной системы уравнений Максвелла были утверждение о сохранении энергии в электромагнитных процессах и теоретический вывод о возможности независимого от зарядов и токов существования поля в виде электромагнитных волн в пустом пространстве. Это последнее предсказание нашло блестящее экспериментальное подтверждение в знаменитых опытах Герца и Попова, положивших основу современной радиосвязи. Рассчитываемая из системы (11) скорость распространения электромагнитных волн оказалась равной экспериментально измеренной скорости распространения света в вакууме, что означало объединение практически ранее независимых разделов физики электромагнетизма и оптики в одну законченную теорию.

Проблема существования магнитного монополя. Колоссальный успех теории Максвелла продемонстрировал возможность теоретического поиска новых законов природы на основе анализа математических уравнений, описывающих ранее известные закономерности, с обязательной экспериментальной проверкой таким образом “угадываемых” результатов.

Симметричная для описания электромагнитных полей в пустом пространстве система уравнений Максвелла (11) существенно “теряет свою красоту” при учете электрических зарядов и токов: создаваемое электрическими зарядами потенциальное поле Е не имеет аналога в магнитных взаимодействиях. Эта ассиметрия послужила поводом для постановки множества экспериментов по поиску магнитных монополей (или магнитных зарядов) - гипотетических частиц, являющихся источником потенциального магнитного поля и теоретических исследований их предполагаемых свойств. До настоящего времени надежных экспериментальных данных о существовании магнитных монополей не получено.

Противоречия между электродинамикой и классической физикой. Сформулированные в виде законченной теории и выдержавшие экспериментальную проверку законы электромагнетизма Максвелла оказались в противоречии с принципами, лежащими в основе классического миропонимания Галлилея - Ньютона:

1. Удовлетворяющие принципу относительности Галилея классические силы могут зависеть от времени, расстояний между телами и их относительных скоростей, т.е. величин, не изменяющихся при переходе из одной инерциальной системы отсчета в другую. Магнитостатические поля и связанные с ними силы Лоренца являются функциями скоростей зарядов по отношению к наблюдателю и различны в разных инерциальных системах отсчета. Т.о. явления природы, обусловленные электромагнитными взаимодействиями, с точки зрения классической физики в различных инерциальных системах отсчета должны протекать по-разному.

2. Получаемая в результате решения уравнений Максвелла скорость распространения электромагнитных волн в пустом пространстве оказалась независящей от скоростей движения как источника этих волн, так и наблюдателя. Этот вывод полностью противоречило классическому закону сложения скоростей.

Все попытки видоизменить уравнения электромагнетизма так, чтобы привести их в согласие с принципами классического естествознания приводили к теоретическому предсказанию эффектов, ненаблюдаемых на эксперименте, и были признаны несостоятельными.

Преобразования Лоренца. Поскольку уравнения Максвелла не были инвариантными относительно преобразований Галилея, т.е. вопреки требованиям принципа относительности изменяли свою форму при переходе из одной инерциальной системы отсчета в другую, по правилам, задаваемым соотношениями:

(12) ,

Лоренцем был поставлен естественный вопрос об отыскании таких преобразований координат и времени, которые не изменяли бы уравнений Максвелла и были при этом максимально простыми. Эта задача была им решена как чисто математическая:

(13) .

Сравнивая преобразования Галилея (12) и Лоренца (13), легко заметить, что последние переходят в классические в случае скоростей, малых по сравнению со скоростью света с . Т.о. предложенные Лоренцем соотношения удовлетворяли принципу соответствия , согласно которому новая теория должна согласовываться со старой о областях, где последняя была надежно проверена на экспериментах. Кроме того, следующий из преобразований Лоренца релятивистский закон сложения скоростей оставлял скорость света инвариантной относительно переходя в любую инерциальную систему отсчета, движущуюся со скоростью, меньшей с .

Опыты Майкельсона. Следующее из уравнений Максвелла утверждение о постоянстве скорости света при переходах в другие системы отсчета полностью противоречило классическим представлениям. Вставал естественный вопрос о его экспериментальной проверке. Весьма изящный эксперимент был осуществлен Майкельсоном с помощью специально сконструированного им прибора - интерферомета , позволяющего сравнивать времена распространения световых сигналов вдоль двух взаимно перпендикулярных отрезков прямых, ограниченных на концах зеркалами (рис. 11_2). Идея опыта состояла в попытке зарегистрировать различие скоростей распространения света вдоль разных плеч интерферометра, вызванное орбитальным движением Земли. Опыты с интерферометром Майкельсона дали отрицательные результаты: скорость света с высокой точностью оказалась независящей от соотношения направлений его распространения и движения Земли .

Многочисленные попытки спасти классический закон сложения скоростей путем введения гипотетической среды - эфира , в которой распространяются световые колебания потерпели полную неудачу свойства предполагаемой Среды оказывались весьма экзотическими, никаких экспериментальных подтверждений ее реального существования получено не было.

Выход из возникшей на рубеже веков в естествознании тупиковой ситуации был предложен А. Эйнштейном, создавшим специальную теорию относительности (СТО), в которой на основе двух хорошо проверенных на эксперименте постулатов (утверждений) строится внутренне непротиворечивая (хотя и весьма странная с точки зрения классического естествознания и житейского опыта) концепция, объясняющая преобразования Лоренца и предсказывающая ряд новых явлений, реально зарегистрированных в природе.

ОПРЕДЕЛЕНИЕ

Электромагнитные поля и электромагнитные взаимодействия исследует раздел физики, называемый электродинамикой .

Классическая электродинамика изучает и описывает свойства электромагнитных полей. Рассматривает законы, по которым электромагнитные поля взаимодействуют с телами, обладающими электрическим зарядом.

Базовые понятия электродинамики

Основой электродинамики неподвижной среды являются уравнения Максвелла. Электродинамика оперирует такими основными понятиями как электромагнитное поле, электрический заряд, электромагнитный потенциал, вектор Пойнтинга.

Электромагнитным полем называют особый вид материи, который проявляется при воздействии одного заряженного тела на другое. Часто при рассмотрении электромагнитного поля выделяют его составляющие: электрическое поле и магнитное поле. Электрическое поле создает электрический заряд или переменное магнитное поле. Магнитное поле возникает при движении заряда (заряженного тела) и при наличии переменного во времени электрического поля.

Электромагнитный потенциал - это физическая величина, определяющая распределение электромагнитного поля в пространстве.

Электродинамику разделяют на: электростатику; магнитостатику; электродинамику сплошной среды; релятивистскую электродинамику.

Вектор Пойнтинга (вектор Умова — Пойнтинга) - это физическая величина, являющаяся вектором плотности потока энергии электромагнитного поля. Величина данного вектора равна энергии, которая переносится в единицу времени сквозь единичную площадь поверхности, которая перпендикулярна направлению распространения электромагнитной энергии.

Электродинамика составляет основу для изучения и развития оптики (как раздела науки), физики радиоволн. Этот раздел науки является фундаментом для радиотехники и электротехники.

Классическая электродинамика, при описании свойств электромагнитных полей и принципов их взаимодействия, использует систему уравнений Максвелла (в интегральной или дифференциальной формах), дополняя ее системой материальных уравнений, граничными и начальными условиями.

Структурные уравнения Максвелла

Система уравнений Максвелла имеет такое же значение в электродинамике как законы Ньютона в классической механике. Уравнения Максвелла были получены в результате обобщения многочисленных экспериментальных данных. Выделают структурные уравнения Максвелла, записывая их в интегральном или дифференциальном виде и материальные уравнения, которые связывают векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

Структурные уравнения Максвелла в интегральном виде (в системе СИ):

где - вектор напряженности магнитного поля; — вектор плотности электрического тока; - вектор электрического смещения. Уравнение (1) отображает закон создания магнитных полей. Магнитное поле возникает при движении заряда (электрический ток) или при изменении электрического поля. Это уравнение - обобщение закона Био-Савара-Лапласа. Уравнение (1) носит название теоремы о циркуляции магнитного поля.

где - вектор индукции магнитного поля; - вектор напряжённости электрического поля; L - замкнутый контур, по которому происходит циркуляция вектора напряженности электрического поля. Другое название уравнения (2) — это закон электромагнитной индукции. Выражение (2) означает то, что вихревое электрическое поле порождается благодаря переменному магнитному полю.

где - электрический заряд; - плотность заряда. Уравнение (3) называют теоремой Остроградского — Гаусса. Электрические заряды являются источниками электрического поля, существуют свободные электрические заряды.

Уравнение (4) свидетельствует о том, что магнитное поле является вихревым. Магнитных зарядов в природе не существует.

Структурные уравнения Максвелла в дифференциальном виде (система СИ):

где - вектор напряженности электрического поля; - вектор магнитной индукции.

где — вектор напряженности магнитного поля; - вектор диэлектрического смещения; - вектор плотности тока.

где - плотность распределения электрического заряда.

Структурные уравнения Максвелла в дифференциальной форме определяют электромагнитное поле в любой точке пространства. Если заряды и токи распределены в пространстве непрерывно, то интегральная и дифференциальная формы уравнений Максвелла эквивалентны. Однако если имеются поверхности разрыва, то интегральная форма записи уравнений Максвелла является более общей.

Для достижения математической эквивалентности интегральной и дифференциальной форм уравнений Максвелла дифференциальную запись дополняют граничными условиями.

Из уравнений Максвелла следует, что переменное магнитное поле порождает переменное электрическое поле и наоборот, то есть эти поля неразрывны и образуют единое электромагнитное поле. Источниками электрического поля могут быть либо электрические заряды, либо переменное во времени магнитное поле. Магнитные поля возбуждаются движущимися электрическими зарядами (токами) или переменными электрическими полями. Уравнения Максвелла не являются симметричными относительно электрического и магнитного полей. Это происходит из-за того, что электрические заряды существуют, а магнитных нет.

Материальные уравнения

Систему структурных уравнений Максвелла дополняют материальными уравнениями, которые отражают связь векторов c параметрами, характеризующими электрические и магнитные свойства вещества.

где - относительная диэлектрическая проницаемость, - относительная магнитная проницаемость, — удельная электропроводность, - электрическая постоянная, - магнитная постоянная. Среда в таком случае считается изотропной, неферромагнитной, несегнетоэлектрической.

Примеры решения задач

ПРИМЕР 1

Задание Получите дифференциальную форму уравнения непрерывности из системы уравнений Максвелла.
Решение В качестве основы для решения задачи используем уравнение:

где - площадь произвольной поверхности, на которую опирается замкнутый контур L. Из (1.1) имеем:

Рассмотрим бесконечно малый контур, тогда

Так как поверхность является замкнутой, то выражение (1.2) можно переписать как:

Запишем еще одно уравнение Максвелла:

Продифференцируем уравнение (1.5) по времени, имеем:

Принимая во внимание выражение (1.4), уравнение (1.5) представим в виде:

Мы получили уравнение (1.5) непрерывности в интегральной форме. Для того, чтобы перейти к дифференциальной форме уравнения непрерывности перейдем к пределу:

Мы получили уравнение непрерывности в дифференциальной форме: