Диаметр молекулы воды равен примерно 0 0000000 Зсм.
Диаметр молекулы воды, вычисленный с помощью числа Аво-гадро, равен трем ангстремам. Подобная определенность объективно присуща молекуле любого вещества. Значит, структура выступает как пространственное расположение частиц в молекуле.
Диаметр молекулы воды составляет 0 29нм (2 9 А), что сопоставимо с размерами пор и дефектов большинства неметаллических материалов. Это обусловливает ее достаточно высокую проникающую способность, особенно в пористые силикатные материалы и композиты.
Диаметр молекулы воды равен всего 2 5 10 - 10 м, и водяной пар проходит сквозь мельчайшие поры. Плотные, непористые материалы не пропускают водяные пары и негигроскопичны. К ним относятся ситаллы, малощелочное стекло, вакуумно-плотная керамика, эпоксидные пластмассы и неполярные полимеры.
Стеклопластик на эпоксиполиэфирном связующем после 9 ч кипячения в дистиллированной воде.| Структура химически стойкого стеклопластика на основе смолы ПН-16 после экспонирования в течение 1000 ч I в кипящей воде (7500 х. Если диаметр молекулы воды равен 0 276 нм, то диаметр ионной атмосферы, определяющий эффективный размер ионов в растворе 0 6 % - ного NaCl, составляет примерно 1 нм. Увеличение концентрации раствора электролита вызывает рост толщины ионной атмосферы.
Поперечник их в местах расширения превышает диаметр молекул воды. Плавление льда сопровождается разрывом связей между некоторыми молекулами и провалом их в каналы структуры льда. Повышение температуры сопровождается дальнейшим разрушением структуры.
На поверхности последних образуется тонкая пленка толщиной в два-три диаметра молекул воды. При своем возникновении выделяет теплоту смачивания.
При толщине слоя адсорбированной влаги, равной 10 - 30 диаметрам молекул воды, по Б. В. Дерягину, образуется сольватный слой практически без выделения тепла. Этот слой, как указывает Ф. Е. Колясев, также имеет аномальные физико-химические свойства по сравнению с жидкостью в объеме.
Это объясняется тем, что материалы обладают пористой структурой и размеры пор превышают диаметр молекул воды. Кроме того, вдоль выводов элементов на границе соприкосновения материалов с различными коэффициентами линейного расширения образуются капилляры.
Физически связанная вода удерживается на поверхности минеральных частиц силами молекулярного сцепления и имеет форму тончайших пленок толщиной до нескольких сотен диаметров молекулы воды.
Толшина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - Ю 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Воды в породах. Связанные воды удерживаются на поверхности минеральных частиц породы силами молекулярного сцепления, образуя слой, толщина которого может достигать нескольких сот диаметров молекулы воды. Внешняя, большая, часть этого слоя представлена рыхло связанной (лиосорбиро-ванной) водой.

Как видно из таблицы, отношение R - г, т, е, расстояния между двумя сферами гидратного комплекса к диаметру молекулы воды 2га, во многих случаях равно единице, или R - r - 2ra; иными словами, в таких комплексах молекулы воды окружают центральный ион, будучи расположены вокруг оболочкой, толщиной в молекулу, в один слой.
Толщина пленки воды на поверхности колеблется в пределах 0 5 - 3 0 - 10 - 6 см. Если учесть, что диаметр молекулы воды равняется ЗА, то, следовательно, на поверхности в среднем образуется слой воды, равный 100 молекулам. Для создания водоотталкивающего слоя на поверхности керамики необходимо образовавшийся слой воды выдержать при относительной влажности 60 - 90 % в течении 4 час.
Кроме того, для экстраполяции к гг оо не может быть использована обратная функция только гг из-за влияния члена, определяемого радиусом или диаметром молекулы воды. Более полный расчет энтальпии гидратации, подобный предложенному Букингемом , в котором учтены члены, связанные с ион-дипольными, диполь-дипольными и ди-поль-квадрупольными взаимодействиями, и влияние индуцированных дипольных моментов, приводит к еще более сложному показателю степени функции обратной величины ионного радиуса. Холливел и Найбург провели также несколько более изящный расчет, основанный на учете возможности координационных чисел 6 или 4 в основной гидратной оболочке и моделях твердой сферы и мягкой сферы для контакта ион - растворитель.
Влагопоглощение таких гетерогенных систем, как стеклопластики, можно рассматривать как две стороны одного процесса - проникновение подвижной среды с малым диаметром молекул (диаметр молекул воды равен 2 7 А) внутрь органического материала вследствие существования в нем молекулярных дырок, а также микропор на поверхности раздела волокно - смола и других дефектов структуры. Если микроскопические и субмикроскопические поры, трещины и капилляры в основном зависят от технологических причин и носят случайный характер, то межмолекулярные дырки всегда присущи органическим материалам. Поэтому для полимеров с большим диаметром молекулярных образований проницаемость для водяных паров является по существу неизбежной. У полимеров с кристаллической структурой, у кристаллических предельных углеводородов и жестких малополярных полимеров количество поглощаемой влаги будет ничтожно.
Для многоатомных ионов (например, для МпО) ионный радиус полагается равным кристаллографическому радиусу, а для одноатомных ионов к кристаллографическому радиусу добавляется диаметр молекулы воды.
Толщина пленки связанной воды при максимальной молекулярной влагоемкости составляет не менее 0 005 - 0 01 мкм, что соответствует примерно 20 - 40 диаметрам молекул воды.
Гельмгольцем в 1853 г. Он полагал, что двойной электрический слой состоит из двух слоев зарядов противоположного знака, находящихся друг от друга на расстоянии порядка диаметра молекулы воды: слоя зарядов на металле и слоя притянутых к нему ионов. Одновременно предполагалось, что заряды в обоих этих слоях равномерно размазаны вдоль поверхности, так что можно провести полную аналогию между двойным слоем и обычным плоским конденсатором.
Если предположить, что диаметр иона гидроксония равен диаметру молекулы воды, то расстояние между двумя ионами нептуния получится равным 10 3 А при использовании для радиуса ионов нептуния и диаметра молекулы воды величин, приведенных в работе Коена, Сулливана, Амиса и Хиндмана.
Первая простейшая модель двойного электрического слоя была предложена Гельмгольцем в 1853 г. Согласно Гельмголь-цу, двойной слой на границе металлический электрод - раствор представляет собой два слоя зарядов, расположенных на расстоянии порядка диаметра молекулы воды. Один слой зарядов находится на металле, другой - в растворе и состоит из притянутых к электроду противоположно заряженных ионов. Следует сразу оговорить, что предположение о размазанном заряде справедливо только для металлической обкладки. Для ионной обкладки оно выполняется тем лучше, чем более концентрированным является раствор и чем больше плотность зарядов на обкладках.
Таким образом, теория Борна является хорошим первым приближением, конечно, если не считать, что в качестве эффективных радиусов ионов принимаются величины, которые, как указали Или и Эванс , превышают радиусы в кристалле на половину диаметра молекул воды или атома кислорода. Улучшение простой электростатической теории может заключаться в рассмотрении кварцеподобной структуры воды вместо однородного диэлектрика. При этом необходимо ввести дополнительные энергетические члены, учитывающие взаимодействие иона с диполями растворителя, и межмолекулярное отталкивание, возрастающее при изменении ориентации диполей растворителя вблизи иона.
В работах 82, 83 ] было показано, что основной вклад в свободную энергию системы полипептид - растворитель вносят взаимодействия с ближайшими молекулами растворителя. Грубо говоря, если d - диаметр молекулы воды, то при расстояниях между рассматриваемой парой атомов rd / o (/ о - сумма их ван-дер-ваальсовых радиусов) молекулы воды вытесняются и вклад в свободную энергию становится равным нулю. С другой стороны, если мы будем сближать один атом с другим, то он вытеснит определенное количество молекул растворителя, пропорциональное объему этого атома U, но если расстояние станет меньше d r0, то количество вытесняемого растворителя практически не увеличится. Такого рода рассуждения привели Гибсона и Шерага к поиску аналитических выражений для энергии гидратации.
Исходя из предположения, что частички твердой фазы покрываются мономолекулярным слоем воды, определяют количество адсорб-ционно связанной воды. Толщина мономолекулярного слоя должна быть равна диаметру молекулы воды (h 2 76 10 - 8 см), так как каждый атом кислорода окружен тетраэдрически четырьмя другими атомами кислорода на расстоянии 2 76 А.
У металлов с диаметром атомов 2 76 А водородное перенапряжение оказывается наименьшим, а кислородное перенапряжение - наибольшим. Величина 2 76 А совпадает с диаметром молекулы воды. Плотнейшее заполнение поверхности электрода диполями воды повышает градиент потенциала в приэлектродном слое.
Наиболее прочно с твердой фазой почвы связан молекулярный слой воды. Толщина слоя полимолекулярной адсорбции может достигать нескольких сотен диаметров молекул воды. По мере удаления от твердой фазы связь воды становится менее прочной. Первые ряды молекул образуют прочно связанную или гигроскопическую воду. Чем дисперснее почва, тем больше будет сорбирована вода. Гигроскопическая вода достигает плотности 1 4 г / см3, не содержит растворенных веществ, не способна проводить электрический ток и передвигаться в почве. Количество воды, которое почва или грунт могут удержать при данной температуре и влажности воздуха, определяет гигроскопическую влажность почвы.

Данные о зависимости интенсивности рассеяния [ рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, уч аст-вующей в водородной связи.
Данные о зависимости интенсивности рассеяния рентгеновских лучей в воде от угла между рассеянным излучением и падающим пучком лучей позволили показать, что в ближайшем окружении каждой молекулы воды в жидкости находится в среднем 4 4 - 4 8 молекул воды, что в общем согласуется с высказанным еще Берналом и Фаулером представлением о тетраэдрической структуре воды на очень близких расстояниях, правда, несколько искаженной по сравнению с кристаллической структурой льда. Эта структура существует еще на расстоянии примерно 1 6 диаметра молекулы воды от молекулы, рассматриваемой в качестве центральной, но уже на расстоянии 0 8 нм упорядоченность структуры жидкости практически исчезает. Прочность водородных связей в жидкой воде меньше, чем в кристалле льда, и связи эти могут довольно значительно изгибаться и растягиваться без разрыва при вращении одной молекулы относительно другой, участвующей в водородной связи.
Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды, Най.
Толщина слоя гигроскопической воды строго не установлена. Большинство исследователей считают этот слой полимолекулярным, так, по Б. В. Деряги-ну, толщина его составляет 23 - 27 диаметров молекул воды.
А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Гафеля.
Изотерма адсорбции тетра - МИ9ПВОД9Ь С энергией, близкой метплоктаыбензолсульфоната натрия к кДж / моль. Величина из водных растворов при температу - последней превышает уменьше-ре 25е С на аэросиле. ние мольной свободной энергии. Длина углеводородного радикала этого иона равна 18 1 А, диаметр ополярной группы в водном растворе при С9 ККМХ - 8 88 А, а диаметр молекулы воды - 3 1 А.
Строение двойного электрического слоя на границе металл - раствор впервые было описано русским ученым Р. А. Колли в 1878 г. По его представлениям, двойной слой подобен плоскому конденсатору, обкладки которого расположены на расстоянии диаметра молекулы воды. Наружная обкладка образована слоем адсорбированных ионов. Они показали, что тепловое движение приводит к десорбции части ионов с поверхности металла (рис. 49) 1, которые образуют диффузный (рассеянный) слой. Последний сжат до определенной толщины электрическим полем заряженного металла. Его толщина уменьшается с повышением заряда металла и концентрации ионов в растворе и увеличивается с повышением температуры. Толщина адсорбционного слоя равна радиусу гидратированного иона. Диффузный слой отсутствует, если металл не несет избыточного электрического заряда, а также в концентрированных растворах электролитов.
Физические свойства гидрофильных волокон, таких как шерсть, волосы, найлон, искусственный шелк, сильно зависят от количества адсорбированной воды. Эти изменения свойств волокон обусловлены большой поляризуемостью воды (и, следовательно, большими значениями индуцированного дипольного момента), способностью молекулы воды образовывать относительно сильные водородные связи и ее сравнительно небольшим размером - диаметр молекулы воды составляет примерно 2 7 А.
Пластмассовый корпус. Кроме того, вода - химически активное вещество, которое способствует образованию растворов солей, кислот, щелочей, коллоидных растворов. Поскольку диаметр молекул воды равен 3 А, влага способна проникать через микропоры и микротрещины защитных материалов и пленок.
График функции распределения. Успехи современной науки в этой области позволяют утверждать, что как размеры, так и массы отдельных молекул твердо установлены. Если условно представлять себе молекулы в виде шариков, то их диаметры в большинстве случаев составят несколько ангстрем. Например, диаметр молекулы воды (Н2О) равен 2 6 - 10 - 10 м 2 6 А.
Главнейшими из сил, определяющих энергию адсорбции цемента, являются электростатические силы взаимодействия между ионами поверхности частиц и диполями воды. Эти силы имеют незначительный ра-диус действия, не превышающий нескольких ангстремов. На расстояниях от поверхности частиц более диаметра молекул воды силы взаимодействия дополняются поляризационными или дисперсионными ван-дер-ваальсо-выми силами, обусловленными мгновенными диполями, возникающими благодаря движению электронов в молекуле.
Если силы взаимодействия молекул воды с материалом больше сил взаимодействия молекул воды друг с другом, то вода будет хорошо смачивать такой материал. Если на поверхности материала имеются дефекты структуры, соизмеримые с диаметром молекулы воды (0 29 нм), то молекулы воды могут внедриться в объем материала и при наличии такой же по размеру пористости (дефектности) в объеме материала будут диффундировать по механизму активированной диффузии, аналогично диффузии газов. Силикатные стекла способны вполне свободно поглощать пары воды, так как размер дефектов в них находится в пределах от 0 7 до 1 7 нм.

Уравнение Борна (IV.25), не учитывающее донорно-акцепторного взаимодействия иона с растворителем, дает неточный результат при расчете полной энергии гидратации, но оно вполне пригодно для вычисления энергии вторичной гидратации. Для расчета ДО в уравнение (IV.25) следует подставить радиус гидратного комплекса, который сложится из радиуса иона и диаметра молекулы воды.
Схема относительного расположения плоскостей, соответствующих разрывам диэлектрической проницаемости (г 0 и г Aj, адсорбции ионов (г г0 и наибольшему приближению неадсорбированных ионов (г h. Вследствие этого центры всех адсорбированных ионов должны лежать в одной плоскости (часто именуемой внутренней плоскостью Гельмгольца) на расстоянии z0 от поверхности электрода. С другой стороны, ионы, которые не могут адсорбироваться или еще не адсорбировались, прочно удерживают по меньшей мере одну оболочку из молекул воды. Расстояние их наибольшего приближения к поверхности, которое обозначается hQ, должно приблизительно равняться сумме ионного радиуса и диаметра молекулы воды.
Кобозев (1947), а также Бокрис (1951) установили зависимость между работой выхода электрона и перенапряжением водорода. Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием; около 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. Хомутов в своих последующих работах обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента Ь в формуле Тафеля.
Хомутов (1950), сопоставляя величину перенапряжения водорода с минимальным расстоянием между атомами в металлах, нашел, что наименьшее перенапряжение наблюдается на металлах с межатомным расстоянием, близким к 2 7 А; при его увеличении или уменьшении перенапряжение закономерно возрастает. В своих последующих работах он обратил внимание на то, что межатомное расстояние, при котором перенапряжение оказывается минимальным, близко к диаметру молекулы воды, и предложил модельный метод расчета коэффициента b в формуле Тафеля.
Окончательное выражение для функции / (t) не приводится из-за его громоздкого вида. Задавая различные значения ij, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что КГ 20 мкф / см2, Кт 38 мкф / см., а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.
Окончательное выражение для функции / (tyi) не приводится из-за его громоздкого вида. Задавая различные значения г, по уравнениям (23.14) и (23.15) можно определить соответствующие друг другу величины С и ф0 и, таким образом, построить С, ф0 - кривую. При расчете предполагалось, что Ki0 2Q Ф / м2, / Сг0 38 ф / м2, а средняя толщина плотного слоя d была принята равной диаметру молекулы воды.

И подраздела , в которой в общих чертах рассмотрели современные способы фильтрации, основанные на принципе сита. И намекнули, что мембранные очистители очищают воду с различным качеством, которое зависит от размера "ячеек", которые называются поры, в этих мембранах-ситах. Соответственно, микрофильтрация воды — это первая технология из мембранных систем очистки воды, которую мы рассмотрим.

Микрофильтрация воды — очистка воды на уровне крупных молекул (макромолекул), таких как частицы асбеста, краска, угольная пыль, цисты простейших, бактерии, ржавчина. Тогда как макрофильтрация ( воды) затрагивает песок, крупные частицы ила, крупные частицы ржавчины и т.д.

Можно ориентировочно сказать, что размеры частиц, которые отсеивает макрофильтрация — это частицы крупнее 1 микрометра (если используется специальный одномикронный картридж). Тогда как размер частиц, которые удаляет микрофильтрация — это частицы от 1 микрона до 0,1 микрона .

Вы можете задать вопрос: "Но если удаляются частицы до 0,1 микрона, то разве частицы размером в 100 микрон не смогут быть задержаны с помощью микрофильтрации? Зачем писать "от 1 микрона до 0,1 микрона" — это же противоречие?"

На самом деле особого противоречия нет. Действительно, микрофильтрация воды удалит как бактерий, так и огромные куски песка. Но цель микрофильтрации — это не удаление крупных кусков песка. Цель микрофильтрации — как "удалить частицы в указанном диапазоне размеров". Тогда как бо льшие частицы просто забьют очиститель и приведут к дополнительным затратам.

Итак, переходим к характеристике микрофильтрации воды.

Поскольку при микрофильтрации удаляются частицы размерами 0,1-1 микрон, то можно сказать, что микрофильтрация — это мембранная технология очистки воды, которая происходит на мембранах-ситах с диаметром ячеек-пор 0,1-1 микрон. То есть, на таких мембранах удаляются все вещества, которые больше 0,5-1 мкм:

То, насколько полно они удаляются, зависит от диаметра пор и действительного размера, скажем, бактерий. Так, если бактерия длинная, но тонкая, то она с лёгкостью пролезет через поры микрофильтрационной мембраны. А более толстая сферическая бактерия останется на поверхности "сита".

Чаще всего микрофильтрация применяется в пищевой промышленности (для обезжиривания молока, концентрирования соков) и в медицине (для первичной подготовки лекарственного сырья). Также микрофильтрация используется в промышленной очистке питьевой воды — преимущественно в западных странах (например, в Париже). Хотя ходят слухи, что одна из водоочистных станций в Москве также использует технологию микрофильтрации. Возможно, это правда 🙂

Но также существуют и бытовые фильтры на основе микрофильтрации.

Наиболее распространённый пример — трековые микрофильтрационные мембраны . Трековые от слова "трек", то есть след, и это название связано с тем, как мембраны данного типа изготавливаются. Процедура очень проста:

  1. Полимерная плёнка бомбардируется частицами, которые за счёт своей собственной большой энергии прожигают в плёнке следы — углубления примерно одинакового размера, поскольку частицы, которыми бомбардируется поверхность, имеют одинаковый размер.
  2. Затем эта полимерная плёнка протравливается в растворе, например, кислоты, чтобы следы от ударов частиц стали сквозными.
  3. Ну а потом простая процедура сушки и фиксации полимерной плёнки на подложке — и всё, трековая микрофильтрационная мембрана готова!

В результате эти мембраны отличаются фиксированным диаметром пор и незначительной пористостью по сравнению с другими мембранными системами очистки воды. И вывод: на данных мембранах будут удаляться частицы только под определённый размер.

Также существует более навороченый вариант микрофильтрационных бытовых мембран — микрофильтрационные мембраны с напылением из активированного угля . То есть, в перечисленные выше шаги входит ещё один шаг — нанесение тонкого слоя из . На этих мембранах удаляются не только бактерии и механические примеси, но и

  • запах,
  • органические вещества,
  • и т.д.

Нужно учитывать, что для микрофильтрационных мембран есть опасность . Так, бактерии, которые не прошли через мембрану, начинают жить на этой мембране и выдавать продукты своей жизнедеятельности в очищенную воду. То есть, возникает вторичное отравление воды . Для того, чтобы избежать этого, необходимо следовать инструкциям производителя по регулярной дезинфекции мембран.

Вторая опасность — это то, что бактерии начнут самостоятельно есть эти мембраны . И сделают в них огромные дырки, которые будут пропускать те вещества, которые мембрана должна задерживать. Чтобы этого не происходило, следует приобретать фильтры на основе устойчивого к бактериям вещества (например, керамические микрофильтрационные мембраны) или же быть готовым к частым заменам микрофильтрационных мембран.

Частая замена микрофильтрационных мембран подстёгивается так же тем, что они не оборудованы механизмом промывок . И поры мембраны попросту забиваются грязью. Мембраны выходят из строя.

В принципе, про микрофильтрацию всё. Микрофильтрация — достаточно качественный способ очистки воды. Однако,

Действительное назначение микрофильтрации — не подготовка воды для питья (в связи с опасностью бактериального загрязнения), а предварительная подготовка воды перед следующими стадиями.

Этап микрофильтрации снимает с последующих стадий водоочистки большую часть нагрузки.

По материалам Как выбрать фильтр для воды : http://voda.blox.ua/2008/07/Kak-vybrat-filtr-dlya-vody-22.html

ГЛАВА 4. ПЕРВОНАЧАЛЬНЫЕ СВЕДЕНИЯ КЛАСС О СТРОЕНИИ ВЕЩЕСТВА

Решение задач по данной теме должно помогать формированию у учащихся первоначальных понятий о молекулярном строении веществ.

В задачах необходимо рассмотреть прежде всего такие факты, научное объяснение которых неизбежно приводит к представлениям о том, что тела состоят из мельчайших частиц - молекул.

Далее следует решить ряд задач, дающих понятие о размерах молекул, а также их свойствах, движении и взаимодействии. Из-за недостаточной математической подготовки учащихся большинство задач должны быть качественными.

Значительное внимание необходимо уделить также экспериментальным задачам. Несложные экспериментальные задачи учащиеся могут выполнять и в домашних условиях.

Полученные сведения о молекулярном строении веществ затем используют для объяснения различия между твердым, жидким и газообразным состояниями вещества.

1. Существование молекул. Размеры молекул

Первоначальное понятие о молекулах и их размерах полезно уточнить и углубить с помощью задач, в которых даны фотографии молекул, полученные с помощью электронного микроскопа.

Решение задач, показывающих сложное строение молекул, необязательно. Но в ознакомительном плане, особенно в сильных по успеваемости классах, можно рассмотреть 2-3 задачи, показывающие, что молекулы сложных веществ состоят из более мелких частиц - атомов.

Наряду с качественными можно дать задачи на несложные расчеты абсолютных и относительных размеров молекул.

43. На рисунке 11 показана фотография частицы твердого тела, полученная с помощью электронного микроскопа. Какой

Рис. 11. (см. скан)

вывод можно сделать на основе этой фотографии о строении твердого тела? Пользуясь указанным на фотографии масштабом, определите размер одной частички - молекулы.

Решение. Внимание обращают на то, что все молекулы одинаковы, расположены в твердом теле в определенном порядке и имеюг такую плотную упаковку, что между ними остаются только незначительные промежутки.

Для определения диаметра молекул подсчитывают их число (50) на указанном расстоянии 0,00017 см, и, вычисляя, находят, что диаметр молекулы равен примерно 0,000003 см.

Нужно сказать учащимся, что это гигантская молекула. Молекула воды, например, имеет поперечник примерно в сто раз меньше.

44. Оптический микроскоп позволяет различить объекты размером около 0,00003 см. Можно ли в такой микроскоп увидеть капельку воды, по диаметру которой укладывается сто, тысяча, миллион молекул? Диаметр молекулы воды равен примерно

Следовательно, в оптический микроскоп можно увидеть только такую капельку воды, диаметр которой не менее чем в 1000 раз больше диаметра молекулы воды. Сами же молекулы воды нельзя увидеть в оптический микроскоп.

45. Число молекул в воздуха при нормальном давлении и 0°С составляет . Считая, что диаметр одной молекулы газа равен примерно 0,00000003 см, подсчитайте, какой длины получились бы «бусы», если бы все эти молекулы можно было плотно нанизать на невидимую нить.

Ответ. 8 млн. км.

46 (э). Опустите в воду вверх дном две пробирки и поместите в них оголенные провода, присоединенные к полюсам батарейки Пронаблюдайте за пузырьками газов и исследуйте их состав с помощью тлеющей лучинки. Откуда появились газы?

Решение. По яркому горению лучинки в одной пробирке и вспышке в другой заключают, что в одной пробирке находился кислород, а в другой - водород.

Поясняют, что газы появились при разложении молекулы воды. Следовательно, свойства молекулы при ее делении на более мелкие части не сохраняются. Учащимся можно сообщить, что вода разлагается на кислород и водород также при нагревании водяного пара до очень высокой температуры.