Этот вопрос уже давно подробно изучен, и наиболее широкое распространение получил метод полярных координат, предложенный Джорджем Боксом, Мервином Мюллером и Джорджем Марсальей в 1958 году. Данный метод позволяет получить пару независимых нормально распределенных случайных величин с математическим ожиданием 0 и дисперсией 1 следующим образом:

Где Z 0 и Z 1 - искомые значения, s = u 2 + v 2 , а u и v - равномерно распределенные на отрезке (-1, 1) случайные величины, подобранные таким образом, чтобы выполнялось условие 0 < s < 1.
Многие используют эти формулы, даже не задумываясь, а многие даже и не подозревают об их существовании, так как пользуются готовыми реализациями. Но есть люди, у которых возникают вопросы: «Откуда взялась эта формула? И почему получается сразу пара величин?». Далее я постараюсь дать наглядный ответ на эти вопросы.


Для начала напомню, что такое плотность вероятности, функция распределения случайной величины и обратная функция. Допустим, есть некая случайная величина, распределение которой задано функцией плотности f(x), имеющей следующий вид:

Это означает, что вероятность того, что значение данной случайной величины окажется в интервале (A, B), равняется площади затененной области. И как следствие, площадь всей закрашенной области должна равняться единице, так как в любом случае значение случайной величины попадет в область определения функции f.
Функция распределения случайной величины является интегралом от функции плотности. И в данном случае ее примерный вид будет такой:

Тут смысл в том, что значение случайной величины будет меньше чем A с вероятностью B. И как следствие, функция никогда не убывает, а ее значения лежат в отрезке .

Обратная функция - это функция, которая возвращает аргумент исходной функции, если в нее передать значение исходной функции. Например, для функции x 2 обратной будет функция извлечения корня, для sin(x) это arcsin(x) и т.д.

Так как большинство генераторов псевдослучайных чисел на выходе дают только равномерное распределение, то часто возникает необходимость его преобразования в какое-либо другое. В данном случае в нормальное Гауссовское:

Основу всех методов преобразования равномерного распределения в любое другое составляет метод обратного преобразования. Работает он следующим образом. Находится функция, обратная функции необходимого распределения, и в качестве аргумента передается в нее равномерно распределенная на отрезке (0, 1) случайная величина. На выходе получаем величину с требуемым распределением. Для наглядности привожу следующую картинку.

Таким образом, равномерный отрезок как бы размазывается в соответствии с новым распределением, проецируясь на другую ось через обратную функцию. Но проблема в том, что интеграл от плотности Гауссовского распределения вычисляется непросто, поэтому вышеперечисленным ученым пришлось схитрить.

Существует распределение хи-квадрат (распределение Пирсона), которое представляет собой распределение суммы квадратов k независимых нормальных случайных величин. И в случае, когда k = 2, это распределение является экспоненциальным.

Это означает, что если у точки в прямоугольной системе координат будут случайные координаты X и Y, распределенные нормально, то после перевода этих координат в полярную систему (r, θ) квадрат радиуса (расстояния от начала координат до точки) будет распределен по экспоненциальному закону, так как квадрат радиуса - это сумма квадратов координат (по закону Пифагора). Плотность распределения таких точек на плоскости будет выглядеть следующим образом:


Так как она равноценна во всех направлениях, угол θ будет иметь равномерное распределение в диапазоне от 0 до 2π. Справедливо и обратное: если задать точку в полярной системе координат с помощью двух независимых случайных величин (угла, распределенного равномерно, и радиуса, распределенного экспоненциально), то прямоугольные координаты этой точки будут являться независимыми нормальными случайными величинами. А экспоненциальное распределение из равномерного получить уже гораздо проще, с помощью того же метода обратного преобразования. В этом и заключается суть полярного метода Бокса-Мюллера.
Теперь выведем формулы.

(1)

Для получения r и θ нужно сгенерировать две равномерно распределенные на отрезке (0, 1) случайные величины (назовем их u и v), распределение одной из которых (допустим v) необходимо преобразовать в экспоненциальное для получения радиуса. Функция экспоненциального распределения выглядит следующим образом:

Обратная к ней функция:

Так как равномерное распределение симметрично, то аналогично преобразование будет работать и с функцией

Из формулы распределения хи-квадрат следует, что λ = 0,5. Подставим в эту функцию λ, v и получим квадрат радиуса, а затем и сам радиус:

Угол получим, растянув единичный отрезок до 2π:

Теперь подставим r и θ в формулы (1) и получим:

(2)

Эти формулы уже готовы к использованию. X и Y будут независимы и распределены нормально с дисперсией 1 и математическим ожиданием 0. Чтобы получить распределение с другими характеристиками достаточно умножить результат функции на среднеквадратическое отклонение и прибавить математическое ожидание.
Но есть возможность избавиться от тригонометрических функций, задав угол не прямо, а косвенно через прямоугольные координаты случайной точки в круге. Тогда через эти координаты можно будет вычислить длину радиус-вектора, а потом найти косинус и синус, поделив на нее x и y соответственно. Как и почему это работает?
Выберем случайную точку из равномерно распределенных в круге единичного радиуса и обозначим квадрат длины радиус-вектора этой точки буквой s:

Выбор осуществляется заданием случайных прямоугольных координат x и y, равномерно распределенных в интервале (-1, 1), и отбрасыванием точек, которые не принадлежат кругу, а также центральной точки, в которой угол радиус-вектора не определен. То есть должно выполниться условие 0 < s < 1. Тогда, как и в случае с Гауссовским распределением на плоскости, угол θ будет распределен равномерно. Это очевидно - количество точек в каждом направлении одинаково, значит каждый угол равновероятен. Но есть и менее очевидный факт - s тоже будет иметь равномерное распределение. Полученные s и θ будут независимы друг от друга. Поэтому мы можем воспользоваться значением s для получения экспоненциального распределения, не генерируя третью случайную величину. Подставим теперь s в формулы (2) вместо v, а вместо тригонометрических функций - их расчет делением координаты на длину радиус-вектора, которая в данном случае является корнем из s:

Получаем формулы, как в начале статьи. Недостаток этого метода - отбрасывание точек, не вошедших в круг. То есть использование только 78,5% сгенерированных случайных величин. На старых компьютерах отсутствие тригонометрических функций всё равно давало большое преимущество. Сейчас, когда одна команда процессора за мгновение вычисляет одновременно синус и косинус, думаю, эти методы могут еще посоревноваться.

Лично у меня остается еще два вопроса:

  • Почему значение s распределено равномерно?
  • Почему сумма квадратов двух нормальных случайных величин распределена экспоненциально?
Так как s - это квадрат радиуса (для простоты радиусом я называю длину радиус-вектора, задающего положение случайной точки), то сначала выясним, как распределены радиусы. Так как круг заполнен равномерно, очевидно, что количество точек с радиусом r пропорционально длине окружности радиуса r. А длина окружности пропорциональна радиусу. Значит плотность распределения радиусов возрастает равномерно от центра окружности к её краям. А функция плотности имеет вид f(x) = 2x на интервале (0, 1). Коэффициент 2 для того, чтобы площадь фигуры под графиком равнялась единице. При возведении такой плотности в квадрат, она превращается в равномерную. Так как теоретически в данном случае для этого необходимо функцию плотности разделить на производную от функции преобразования (то есть от x 2). А наглядно это происходит так:

Если аналогичное преобразование сделать для нормальной случайной величины, то функция плотности ее квадрата окажется похожей на гиперболу. А сложение двух квадратов нормальных случайных величин уже гораздо более сложный процесс, связанный с двойным интегрированием. И то, что в результате получится экспоненциальное распределение, лично мне тут остаётся проверить практическим методом или принять как аксиому. А кому интересно, предлагаю ознакомиться с темой поближе, почерпнув знаний из этих книжек:

  • Вентцель Е.С. Теория вероятностей
  • Кнут Д.Э. Искусство Программирования, том 2

В заключение приведу пример реализации генератора нормально распределенных случайных чисел на языке JavaScript:

Function Gauss() { var ready = false; var second = 0.0; this.next = function(mean, dev) { mean = mean == undefined ? 0.0: mean; dev = dev == undefined ? 1.0: dev; if (this.ready) { this.ready = false; return this.second * dev + mean; } else { var u, v, s; do { u = 2.0 * Math.random() - 1.0; v = 2.0 * Math.random() - 1.0; s = u * u + v * v; } while (s > 1.0 || s == 0.0); var r = Math.sqrt(-2.0 * Math.log(s) / s); this.second = r * u; this.ready = true; return r * v * dev + mean; } }; } g = new Gauss(); // создаём объект a = g.next(); // генерируем пару значений и получаем первое из них b = g.next(); // получаем второе c = g.next(); // снова генерируем пару значений и получаем первое из них
Параметры mean (математическое ожидание) и dev (среднеквадратическое отклонение) не обязательны. Обращаю ваше внимание на то, что логарифм натуральный.

Глава 6. Непрерывные случайные величины.

§ 1. Плотность и функция распределения непрерывной случайной величины.

Множество значений непрерывной случайной величины несчетно и обычно представляет собой некоторый промежуток конечный или бесконечный.

Случайная величина x(w),заданная в вероятностном пространстве {W, S,P}, называется непрерывной (абсолютно непрерывной) W, если существует неотрицательная функция такая, что при любых х функцию распределения Fx(x) можно представить в виде интеграла

Функция называется функцией плотности распределения вероятностей .

Из определения вытекают свойства функции плотности распределения :

1..gif" width="97" height="51">

3. В точках непрерывности плотность распределения равна производной функции распределения: .

4. Плотность распределения определяет закон распределения случайной величины, т. к. определяет вероятность попадания случайной величины на интервал :

5.Вероятность того, что непрерывная случайная величина примет конкретное значение равна нулю: . Поэтому справедливы следующие равенства:

График функции плотности распределения называется кривой распределения , и площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Тогда геометрически значение функции распределения Fx(x) в точке х0 есть площадь, ограниченная кривой распределения и осью абсцисс и лежащая левее точки х0.

Задача 1. Функция плотности непрерывной случайной величины имеет вид:

Определить константу C, построить функцию распределения Fx(x) и вычислить вероятность .

Решение. Константа C находится из условия Имеем:

откуда C=3/8.

Чтобы построить функцию распределения Fx(x), отметим, что интервал делит область значений аргумента x (числовую ось) на три части: https://pandia.ru/text/78/107/images/image017_17.gif" width="264" height="49">

так как плотность x на полуоси равна нулю. Во втором случае

Наконец, в последнем случае, когда x>2,

Так как плотность обращается в нуль на полуоси . Итак, получена функция распределения

Вероятность вычислим по формуле . Таким образом,

§ 2. Числовые характеристики непрерывной случайной величины

Математическое ожидание для непрерывно распределенных случайных величин определяется по формуле https://pandia.ru/text/78/107/images/image028_11.gif" width="205" height="56 src=">,

если интеграл, стоящий справа, абсолютно сходится.

Дисперсия x может быть вычислена по формуле , а также, как и в дискретном случае, по формуле https://pandia.ru/text/78/107/images/image031_11.gif" width="123" height="49 src=">.

Все свойства математического ожидания и дисперсии , приведенные в главе 5 для дискретных случайных величин, справедливы и для непрерывных случайных величин.

Задача 2 . Для случайной величины x из задачи 1 вычислить математическое ожидание и дисперсию.

Решение.

И значит,

https://pandia.ru/text/78/107/images/image035_9.gif" width="184" height="69 src=">

График плотности равномерного распределения см. на рис. .

Рис.6.2. Функция распределения и плотность распределения. равномерного закона

Функция распределения Fx(x) равномерно распределенной случайной величины равна

Fx(x)=

Математическое ожидание и дисперсия ; .

Показательное (экспоненециальное) распределение. Непрерывная случайная величина x, принимающая неотрицательные значения, имеет показательное распределение с параметром l>0, если плотность распределения вероятностей случайной величины равна

рx(x)=

Рис. 6.3. Функция распределения и плотность распределения показательного закона.

Функция распределения показательного распределения имеет вид

Fx(x)=https://pandia.ru/text/78/107/images/image041_8.gif" width="17" height="41">.gif" width="13" height="15"> и , если ее плотность распределения равна

.

Через обозначается множество всех случайных величин, распределенных по нормальному закону с параметрами параметрами и .

Функция распределения нормально распределенной случайной величины равна

.

Рис. 6.4. Функция распределения и плотность распределения нормального закона

Параметры нормального распределения суть математическое ожидание https://pandia.ru/text/78/107/images/image048_6.gif" width="64 height=24" height="24">

В частном случае, когда https://pandia.ru/text/78/107/images/image050_6.gif" width="44" height="21 src="> нормальное распределение называется стандартным , и класс таких распределений обозначается https://pandia.ru/text/78/107/images/image052_6.gif" width="119" height="49">,

а функция распределения

Такой интеграл не вычислим аналитически (не берется в «квадратурах»), и потому для функции составлены таблицы. Функция связана с введенной в главе 4 функцией Лапласа

,

следующим соотношением . В случае же произвольных значений параметров https://pandia.ru/text/78/107/images/image043_5.gif" width="21" height="21 src="> функция распределения случайной величины связана с функцией Лапласа с помощью соотношения:

.

Поэтому вероятность попадания нормально распределенной случайной величины на интервал можно вычислять по формуле

.

Неотрицательная случайная величина x называется логарифмически нормально распределенной, если ее логарифм h=lnx подчинен нормальному закону. Математическое ожидание и дисперсия логарифмически нормально распределенной случайной величины равны Мx= и Dx=.

Задача 3. Пусть задана случайная величина https://pandia.ru/text/78/107/images/image065_5.gif" width="81" height="23">.

Решение. Здесь и https://pandia.ru/text/78/107/images/image068_5.gif" width="573" height="45">

Распределение Лапласа задается функцией fx(x)=https://pandia.ru/text/78/107/images/image070_5.gif" width="23" height="41"> и эксцесс равен gx=3.

Рис.6.5. Функция плотности распределения Лапласа.

Случайная величина x распределена по закону Вейбулла , если она имеет функцию плотности распределения, равную https://pandia.ru/text/78/107/images/image072_5.gif" width="189" height="53">

Распределению Вейбулла подчиняются времена безотказной работы многих технических устройств. В задачах данного профиля важной характеристикой является интенсивность отказа (коэффициент смертности) l(t) исследуемых элементов возраста t, определяемый соотношением l(t)=. Если a=1, то распределение Вейбулла превращается в экспоненциальное распределение, а если a=2 - в так называемое распределение Рэлея.

Математическое ожидание распределения Вейбулла: -https://pandia.ru/text/78/107/images/image075_4.gif" width="219" height="45 src=">, где Г(а) - функция Эйлера. .

В различных задачах прикладной статистики часто встречаются так называемые «усеченные» распределения. Например, налоговые органы интересуются распределением доходов тех лиц, годовой доход которых превосходит некоторый порог с0, установленный законами о налогообложении. Эти распределения оказываются приближенно совпадающими с распределением Парето. Распределение Парето задается функциями

Fx(x)=P(x.gif" width="44" height="25"> случайной величины x и монотонная дифференцируемая функция ..gif" width="200" height="51">

Здесь https://pandia.ru/text/78/107/images/image081_4.gif" width="60" height="21 src=">.

Задача 4. Случайная величина равномерно распределена на отрезке . Найти плотность случайной величины .

Решение. Из условия задачи следует, что

Далее, функция является монотонной и дифференцируемой функцией на отрезке и имеет обратную функцию , производная которой равна Следовательно,

§ 5. Пара непрерывных случайных величин

Пусть заданы две непрерывные случайные величины x и h. Тогда пара (x, h) определяет «случайную» точку на плоскости. Пару (x, h) называют случайным вектором или двумерной случайной величиной.

Совместной функцией распределения случайных величин x и h и называется функция F(x, y)=Phttps://pandia.ru/text/78/107/images/image093_3.gif" width="173" height="25">. Совместной плотностью распределения вероятностей случайных величин x и h называется функция такая, что .

Смысл такого определения совместной плотности распределения заключается в следующем. Вероятность того, что «случайная точка» (x, h) попадет в область на плоскости, вычисляется как объем трехмерной фигуры – «криволинейного» цилиндра, ограниченного поверхностью https://pandia.ru/text/78/107/images/image098_3.gif" width="211" height="39 src=">

Простейшим примером совместного распределения двух случайных величин является двумерное равномерное распределение на множестве A . Пусть задано ограниченное множество М с площадью Оно определяется как распределение пары (x, h), задаваемое с помощью следующей совместной плотности:

Задача 5. Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.

Решение. Площадь указанного треугольника равна (см. рис. № ?). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна

Событие соответствует множеству на плоскости, т. е. полуплоскости. Тогда вероятность

На полуплоскости B совместная плотность равна нулю вне множества https://pandia.ru/text/78/107/images/image102_2.gif" width="15" height="17">. Таким образом, полуплоскость B разбивается на два множества и https://pandia.ru/text/78/107/images/image110_1.gif" width="17" height="23"> и , причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому

Если задана совместная плотность распределения для пары (x, h), то плотности и составляющих x и h называются частными плотностями и вычисляются по формулам:

https://pandia.ru/text/78/107/images/image116_1.gif" width="224" height="23 src=">

Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что

Задача 6. В условиях предыдущей задачи определить, независимы ли составляющие случайного вектора x и h?

Решение . Вычислим частные плотности и . Имеем:

https://pandia.ru/text/78/107/images/image119_1.gif" width="283" height="61 src=">

Очевидно, что в нашем случае https://pandia.ru/text/78/107/images/image121_1.gif" width="64" height="25"> - совместная плотность величин x и h, а j(х, у) - функция двух аргументов, тогда

https://pandia.ru/text/78/107/images/image123_1.gif" width="184" height="152 src=">

Задача 7. В условиях предыдущей задачи вычислить .

Решение. Согласно указанной выше формуле имеем:

.

Представив треугольник в виде

https://pandia.ru/text/78/107/images/image127_1.gif" width="479" height="59">

§ 5. Плотность суммы двух непрерывных случайных величин

Пусть x и h - независимые случайные величины с плотностями https://pandia.ru/text/78/107/images/image128_1.gif" width="43" height="25">. Плотность случайной величины x + h вычисляется по формуле свертки

https://pandia.ru/text/78/107/images/image130_0.gif" width="39" height="19 src=">. Вычислить плотность суммы .

Решение. Так как x и h распределены по показательному закону с параметром , то их плотности равны

Следовательно,

https://pandia.ru/text/78/107/images/image134_0.gif" width="339 height=51" height="51">

Если x<0, то в этой формуле аргумент https://pandia.ru/text/78/107/images/image136_0.gif" width="65" height="25">отрицателен, и потому . Поэтому Если же https://pandia.ru/text/78/107/images/image140_0.gif" width="359 height=101" height="101">

Таким образом, мы получили ответ:

https://pandia.ru/text/78/107/images/image142_0.gif" width="40" height="41 "> нормально распределена с параметрами 0 и 1. Случайные величины x1 и x2 независимы и имеют нормальные распределения с параметрами а1, и а2, соответственно. Доказать, что x1 + x2 имеет нормальное распределение. Случайные величины x1, x2, ... xn распределены и независимы и имеют одинаковую функцию плотности распределения

.

Найти функцию распределения и плотность распределения величин:

а) h1 = min {x1 , x2, ...xn} ; б) h(2) = max {x1,x2, ... xn }

Случайные величины x1, x2, ... xn независимы и равномерно распределены на отрезке [а, b]. Найти функции распределения и функции плотности распределения величин

x(1) = min {x1,x2, ... xn} и x(2)= max{x1, x2, ...xn}.

Доказать, что Мhttps://pandia.ru/text/78/107/images/image147_0.gif" width="176" height="47">.

Случайная величина распределена по закону Коши Найти: а) коэффициент а; б) функцию распределения; в) вероятность попадания на интервал (-1, 1). Показать, что математическое ожидание x не существует. Случайная величина подчинена закону Лапласа с параметром l (l>0): Найти коэффициент а; построить графики плотности распределения и функции распределения; найти Mx и Dx; найти вероятности событий {|x|< и {çxç<}. Случайная величина x подчинена закону Симпсона на отрезке [-а, а], т. е. график её плотности распределения имеет вид:

Написать формулу для плотности распределения, найти Мx и Dx.

Вычислительные задачи.

Случайная точка А имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния r точки до центра круга. Показать, что величина r2 равномерно распределена на отрезке .

Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:
Вычислить константу C, функцию распределения F(x), , дисперсию и вероятность Случайная величина имеет функцию распределения

Вычислить плотность случайной величины, математическое ожидание, дисперсию и вероятность Проверить, что функция =
может быть функцией распределения случайной величины. Найти числовые характеристики этой величины: Mx и Dx. Случайная величина равномерно распределена не отрезке . Выписать плотность распределения. Найти функцию распределения. Найти вероятность попадания случайной величины на отрезок и на отрезок . Плотность распределения x равна

.

Найти постоянную с, плотность распределения h = и вероятность

Р (0,25

Время безотказной работы ЭВМ распределено по показательному закону с параметром l = 0,05 (отказа в час), т. е. имеет функцию плотности

р(х) =.

Решение определенной задачи требует безотказной работы машины в течение 15 минут. Если за время решения задачи произошел сбой, то ошибка обнаруживается только по окончании решения, и задача решается заново. Найти: а) вероятность того, что за время решения задачи не произойдет ни одного сбоя; б) среднее время, за которое будет решена задача.

Стержень длины 24 см ломают на две части; будем считать, что точка излома распределена равномерно по всей длине стержня. Чему равна средняя длина большей части стержня? Отрезок длины 12 см случайным образом разрезается на две части. Точка разреза равномерно распределена по всей длине отрезка. Чему равна средняя длина малой части отрезка? Случайная величина равномерно распределена на отрезке . Найти плотность распределения случайной величины а) h1 = 2x + 1; б) h2 =-ln(1-x); в) h3 = .

Показать, что если x имеет непрерывную функцию распределения

F(x) = P(x

Найти функцию плотности и функцию распределения суммы двух независимых величин x и h c равномерными законами распределения на отрезках и соответственно. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины независимы и имеют показательное распределение с плотностью . Найти плотность распределения их суммы. Найти распределение суммы независимых случайных величин x и h, где x имеет равномерное на отрезке распределение, а h имеет показательное распределение с параметром l. Найти Р, если x имеет: а) нормальное распределение с параметрами а и s2 ; б) показательное распределение с параметром l; в) равномерное распределение на отрезке [-1;1]. Совместное распределение x, h является равномерным в квадрате
К ={х, у): |х| +|у|£ 2}. Найти вероятность. Являются ли x и h независимыми? Пара случайных величин x и h равномерно распределена внутри треугольника K=. Вычислить плотность x и h. Являются ли эти случайные величины независимыми? Найти вероятность . Случайные величины x и h независимы и равномерно распределены на отрезках и [-1,1]. Найти вероятность . Двумерная случайная величина (x, h) равномерно распределена в квадрате с вершинами (2,0), (0,2), (-2, 0), (0,-2). Найти значение совместной функции распределения в точке (1, -1). Случайный вектор (x, h) равномерно распределен внутри круга радиуса 3 с центром в начале координат. Написать выражение для совместной плотности распределения. Определить, зависимы ли эти случайные величины. Вычислить вероятность . Пара случайных величин x и h равномерно распределена внутри трапеции с вершинами в точках (-6,0), (-3,4), (3,4), (6,0). Найти совместную плотность распределения для этой пары случайных величин и плотности составляющих. Зависимы ли x и h? Случайная пара (x, h) равномерно распределена внутри полукруга . Найти плотности x и h, исследовать вопрос об их зависимости. Совместная плотность двух случайных величин x и h равна .
Найти плотности x, h. Исследовать вопрос о зависимости x и h. Случайная пара (x, h) равномерно распределена на множестве . Найти плотности x и h, исследовать вопрос об их зависимости. Найти М(xh). Случайные величины x и h независимы и распределены по показательному закону с параметром Найти

Как было сказано ранее, примерами распределений вероятностей непрерывной случайной величины Х являются:

  • равномерное распределение вероятностей непрерывной случайной величины;
  • показательное распределение вероятностей непрерывной случайной величины;
  • нормальное распределение вероятностей непрерывной случайной величины.

Дадим понятие равномерного и показательного законов распределения, формулы вероятности и числовые характеристики рассматриваемых функций.

Показатель Раномерный закон распределения Показательный закон распределения
Определение Равномерным называется распределение вероятностей непрерывной случайной величины X, плотность которого сохраняет постоянное значение на отрезке и имеет вид Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью, имеющей вид

где λ – постоянная положительная величина
Функция распределения
Вероятность попадания в интервал
Математическое ожидание
Дисперсия
Среднее квадратическое отклонение

Примеры решения задач по теме «Равномерный и показательный законы распределения»

Задача 1.

Автобусы идут строго по расписанию. Интервал движения 7 мин. Найти: а) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее двух минут; б) вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус не менее трех минут; в) математическое ожидание и среднее квадратическое отклонение случайной величины X – времени ожидания пассажира.

Решение. 1. По условию задачи непрерывная случайная величина X={время ожидания пассажира} равномерно распределена между приходами двух автобусов. Длина интервала распределения случайной величины Х равна b-a=7, где a=0, b=7.

2. Время ожидания будет менее двух минут, если случайная величина X попадает в интервал (5;7). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(5 < Х < 7) = (7-5)/(7-0) = 2/7 ≈ 0,286.

3. Время ожидания будет не менее трех минут (т.е. от трех до семи мин.), если случайная величина Х попадает в интервал (0;4). Вероятность попадания в заданный интервал найдем по формуле: Р(х 1 <Х<х 2)=(х 2 -х 1)/(b-a) .
Р(0 < Х < 4) = (4-0)/(7-0) = 4/7 ≈ 0,571.

4. Математическое ожидание непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: М(Х)=(a+b)/2 . М(Х) = (0+7)/2 = 7/2 = 3,5.

5. Среднее квадратическое отклонение непрерывной, равномерно распределенной случайной величины X – времени ожидания пассажира, найдем по формуле: σ(X)=√D=(b-a)/2√3 . σ(X)=(7-0)/2√3=7/2√3≈2,02.

Задача 2.

Показательное распределение задано при x ≥ 0 плотностью f(x) = 5e – 5x. Требуется: а) записать выражение для функции распределения; б) найти вероятность того, что в результате испытания X попадает в интервал (1;4); в) найти вероятность того, что в результате испытания X ≥ 2 ; г) вычислить M(X), D(X), σ(X).

Решение. 1. Поскольку по условию задано показательное распределение , то из формулы плотности распределения вероятностей случайной величины X получаем λ = 5. Тогда функция распределения будет иметь вид:

2. Вероятность того, что в результате испытания X попадает в интервал (1;4) будем находить по формуле:
P(a < X < b) = e −λa − e −λb .
P(1 < X < 4) = e −5*1 − e −5*4 = e −5 − e −20 .

3. Вероятность того, что в результате испытания X ≥ 2 будем находить по формуле: P(a < X < b) = e −λa − e −λb при a=2, b=∞.
Р(Х≥2) = P(1< X < 4) = e −λ*2 − e −λ*∞ = e −2λ − e −∞ = e −2λ - 0 = e −10 (т.к. предел e −х при х стремящемся к ∞ равен нулю).

4. Находим для показательного распределения:

  • математическое ожидание по формуле M(X) =1/λ = 1/5 = 0,2;
  • дисперсию по формуле D(X) = 1/ λ 2 = 1/25 = 0,04;
  • среднее квадратическое отклонение по формуле σ(Х) = 1/λ = 1/5 = 1,2.

Равномерное распределение. Случайная величина X имеет смысл координаты точки, выбранной наудачу на отрезке

[а, Ь. Равномерную плотность распределения случайной величины X (рис. 10.5, а) можно определить как:

Рис. 10.5. Равномерное распределение случайной величины: а - плотность распределения; б - функция распределения

Функция распределения случайной величины X имеет вид:

График функции равномерного распределения показан на рис. 10.5, б.

Преобразование Лапласа равномерного распределения вычислим по (10.3):

Математическое ожидание и дисперсия легко вычисляются непосредственно из соответствующих определений:

Аналогичные формулы для математического ожидания и дисперсии можно также получить с использованием преобразования Лапласа по формулам (10.8), (10.9).

Рассмотрим пример системы сервиса, которую можно описать равномерным распределением.

Движение транспорта на перекрестке регулируется автоматическим светофором, в котором 1 мин горит зеленый свет и 0,5 мин - красный. Водители подъезжают к перекрестку в случайные моменты времени с равномерным распределением, не связанным с работой светофора. Найдем вероятность того, что автомобиль проедет перекресток, не останавливаясь.

Момент проезда автомобиля через перекресток распределен равномерно в интервале 1 + 0,5 = 1,5 мин. Автомобиль проедет через перекресток, не останавливаясь, если момент проезда перекрестка попадает в интервал времени . Для равномерно распределенной случайной величины в интервале вероятность попадания в интервал равна 1/1,5=2/3. Время ожидания Г ож есть смешанная случайная величина. С вероятностью 2/3 она равна нулю, а с вероятностью 0,5/1,5 принимает любое значение между 0 и 0,5 мин. Следовательно, среднее время и дисперсия ожидания у перекрестка

Экспоненциальное (показательное) распределение. Для экспоненциального распределения плотность распределения случайной величины можно записать как:

где А называют параметром распределения.

График плотности вероятности экспоненциального распределения дан на рис. 10.6, а.

Функция распределения случайной величины с экспоненциальным распределением имеет вид


Рис. 10.6. Экспоненциальное распределение случайной величины: а - плотность распределения; б - функция распределения

График функции экспоненциального распределения показан на рис. 10.6, 6.

Преобразование Лапласа экспоненциального распределения вычислим по (10.3):

Покажем, что для случайной величины X, имеющей экспоненциальное распределение, математическое ожидание равно среднеквадратическому отклонению а и обратно параметру А,:

Таким образом, для экспоненциального распределения имеем: Можно также показать, что

т.е. экспоненциальное распределение полностью характеризуется средним значением или параметром X .

Экспоненциальное распределение обладает рядом полезных свойств, которые используются при моделировании систем сервиса. Например, оно не имеет памяти. Когда , то

Другими словами, если случайная величина соответствует времени, то распределение оставшейся длительности не зависит от времени, которое уже прошло. Данное свойство иллюстрирует рис. 10.7.


Рис. 10.7.

Рассмотрим пример системы, параметры функционирования которой можно описать экспоненциальным распределением.

При работе некоторого прибора в случайные моменты времени возникают неисправности. Время работы прибора Т от его включения до возникновения неисправности распределено по экспоненциальному закону с параметром X. При обнаружении неисправности прибор сразу поступает в ремонт, который продолжается время / 0 . Найдем плотность и функцию распределения промежутка времени Г, между двумя соседними неисправностями, математическое ожидание и дисперсию, а также вероятность того, что время Т х будет больше 2t 0 .

Так как ,то


Нормальное распределение. Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

Из (10.48) следует, что нормальное распределение определяется двумя параметрами - математическим ожиданием т и дисперсией а 2 . График плотности вероятности случайной величины с нормальным распределением при т= 0, а 2 =1 показан на рис. 10.8, а.


Рис. 10.8. Нормальный закон распределения случайной величины при т = 0, ст 2 = 1: а - плотность вероятности; 6 - функция распределения

Функция распределения описывается формулой

График функции распределения вероятности нормально распределенной случайной величины при т = 0, а 2 = 1 показан на рис. 10.8, б.

Определим вероятность того, что X примет значение, принадлежащее интервалу (а, р):

где - функция Лапласа, и вероятность того,

что абсолютное значение отклонения меньше положительного числа 6:

В частности, при т = 0 справедливо равенство:

Как видно, случайная величина с нормальным распределением может принимать как положительные значения, так и отрицательные. Поэтому для вычисления моментов необходимо использовать двустороннее преобразование Лапласа

Однако этот интеграл не обязательно существует. Если он существует, вместо (10.50) обычно используют выражение

которое называют характеристической функцией или производящей функцией моментов.

Вычислим по формуле (10.51) производящую функцию моментов нормального распределения:

После преобразования числителя подэкспоненциального выражения к виду получим

Интеграл

так как является интегралом нормальной плотности вероятности с параметрами т + so 2 и а 2 . Следовательно,

Дифференцируя (10.52), получим

Из данных выражений можно найти моменты:

Нормальное распределение широко распространено на практике, так как, согласно центральной предельной теореме, если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.

Рассмотрим пример системы, параметры которой можно описать нормальным распределением.

Предприятие изготовляет деталь заданного размера. Качество детали оценивается путем измерения ее размера. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением а - Юмкм. Найдем вероятность того, что ошибка измерения не будет превышать 15 мкм.

По (10.49) находим

Для удобства использования рассмотренных распределений сведем полученные формулы в табл. 10.1 и 10.2.

Таблица 10.1. Основные характеристики непрерывных распределений

Таблица 10.2. Производящие функции непрерывных распределений

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к непрерывным?
  • 2. Что такое преобразование Лапласа-Стилтьеса? Для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием преобразования Лапласа-Стилтьеса?
  • 4. Чему равно преобразование Лапласа суммы независимых случайных величин?
  • 5. Как вычислить среднее время и дисперсию времени перехода системы из одного состояния в другое с использованием сигнальных графов?
  • 6. Дайте основные характеристики равномерного распределения. Приведите примеры его использования в задачах сервиса.
  • 7. Дайте основные характеристики экспоненциального распределения. Приведите примеры его использования в задачах сервиса.
  • 8. Дайте основные характеристики нормального распределения. Приведите примеры его использования в задачах сервиса.