Рассмотрим систему, состоящую из одинаковых частиц и находящуюся в термодинамическом равновесии. Вследствие теплового движения и межмолекулярных взаимодействий энергия каждой из частиц (при неизменной общей энергии системы) с течением времени меняется, отдельные же акты изменения энергии молекул - случайные события. Для описания свойств системы предполагается, что энергия каждой из частиц через случайные взаимодействия может изменяться от до

Для описания распределения частиц по энергиям рассмотрим ось координат, на которой будем откладывать значения энергии частиц, и разобьем ее на интервалы (рис. 3.7). Точки этой оси соответствуют различным возможным значениям энергии молекул. В пределах каждого интервала энергия меняется от до Мысленно зафиксируем для данного момента времени распределение всех частиц по энергиям. Фиксированное состояние системы будет характеризоваться определенным расположением точек на оси энергий. Пусть эти точки чем-либо выделяются, например свечением. Тогда совокупностью темных точек, а их будет большинство, на оси энергии определятся только возможные, но не реализовавшиеся энергетические состояния молекул. Вслед за фиксированным моментом времени энергия молекул из-за случайных взаимодействий будет меняться: число изображающих точек останется то же, но их положения на оси изменятся. В таком мысленном эксперименте изображающие точки скачками и очень часто будут менять свое

место на оси энергии. Фиксируя их через определенные промежутки времени, наблюдатель пришел бы к следующему заключению: при термодинамическом равновесии число изображающих точек на каждом из выделенных участков энергии остается с достаточной точностью одинаковым. Числа же заполнений энергетических интервалов зависят от их положения на выбранной оси.

Пусть все выделенные энергетические интервалы пронумерованы. Тогда на интервал с энергией от до придется среднее число частиц Число частиц системы и их общая (внутренняя) энергия определяются суммированием по всем энергетическим интервалам:

Отношение есть вероятностная характеристика интервала энергии. Естественно предположить, что при данной температуре вероятность есть функция энергии молекул (зависит от положения интервала на оси энергии). В общем случае указанная вероятность зависит также от температуры. Отыскание зависимости является одной из основных задач статистической физики.

Функция называется функцией распределения частиц по энергиям. Методами статистической физики с введением определенных предположений найдено:

где А - постоянная величина, постоянная Больцмана универсальная газовая постоянная, число Авогадро),

Согласно (29.2) для любой системы, находящейся в равновесии и подчиняющейся законам классической статистики, число молекул, обладающих энергией пропорционально экспоненциальному множителю

Просуммировав правую и левую части равенства (29.2) по всем энергетическим интервалам, найдем: что позволяет переписать выражение (29.2) в ином виде:

Величина называется статистической суммой. Как (29.2), так и (29.3) имеют фундаментальное значение для решения ряда физических задач методами статистической физики. Если выражением (29.2) определяются заполнения молекулами энергетических интервалов в условиях термодинамического равновесия системы при данной температуре, то (29.3) дает нам сведения о вероятности таких заполнений. Оба соотношения носят название формул Больцмана.

Разделим (29.3) на

Если есть выбранный интервал энергии, то - интервал энергии в единицах т. е. безразмерный интервал энергии. Как указывалось выше, есть вероятность, величину же следует трактовать как плотность вероятности - вероятность попадания молекул в единичный безразмерный энергетический интервал Перейдя к пределу (при Т = const), получим:

Интеграл, входящий в последнее выражение, равен единице, поэтому

где обозначение плотности вероятности

В общем случае энергия частицы может иметь ряд слагаемых, при слагаемых Соответственно (29.5) принимает вид

Таким образом, вероятность распределения частиц по их полной энергии определяется произведением величин каждое из которых согласно закону умножения вероятностей следует трактовать как вероятность распределения по одной из слагаемых энергии Вывод можно сформулировать так: при термодинамическом равновесии распределения частиц по слагаемым энергии являются статистически независимыми и выражаются формулами Больцмана.

На основе сделанного вывода можно расчленить сложную картину движения и взаимодействия молекул и рассматривать ее по частям, выделяя отдельные составляющие энергии. Так, при наличии гравитационного поля можно рассматривать распределение частиц в этом поле независимо от их распределения по кинетической энергии. Точно так же можно независимо исследовать вращательное движение сложных молекул и колебательное движение их атомов.

Формула Больцмана (29.2) является основой так называемой классической статистической физики, в которой считается, что энергия частиц может принимать непрерывный ряд значений. Оказывается, что поступательное движение молекул газов и жидкостей, за исключением молекул жидкого гелия, достаточно точно описывается классической статистикой вплоть до температур, близких к 1 К. Некоторые свойства твердых тел при достаточно высоких температурах также поддаются анализу с помощью формул Больцмана. Классические распределения являются частными случаями более общих квантовых статистических закономерностей. Применимость формул Больцмана в такой же мере ограничена квантовыми явлениями, как и применимость классической механики к явлениям микромира.

В основе больцмановской статистики лежит предположение о том, что изменение энергии молекулы является случайным событием и что попадание молекулы в тот или иной энергетический интервал не зависит от заполнения интервала другими частицами. Соответственно формулы Больцмана можно применять только к решению таких задач, для которых выполняется указанное условие.

В заключение используем выражение (29.5) для определения числа молекул, которые могут обладать энергией, равной или большей Для этого необходимо определить интеграл:

Интегрирование приводит к соотношению

Таким образом, по плотности вероятности можно определить число молекул с энергиями что важно для ряда приложений.

Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне

(), - молярная масса газа, - газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле. При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе.

Распределение Больцмана - это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различныхуровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства.

Барометрическая формула - зависимость давления или плотности газа от высоты в поле тяжести. Для идеального газа, имеющего постоянную температуру T и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения g одинаково), барометрическая формула имеет следующий вид:

где p - давление газа в слое, расположенном на высоте h , p 0 - давление на нулевом уровне (h = h 0), M - молярная масса газа, R - газовая постоянная, T - абсолютная температура. Из барометрической формулы следует, что концентрация молекул n (или плотность газа) убывает с высотой по тому же закону:

где M - молярная масса газа, R - газовая постоянная.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной kT . Чем выше температура T , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести mg (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести mg может изменяться за счёт двух величин: ускорения g и массы частиц m .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как mgh – это потенциальная энергия U , то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

, (2.5.3)

это закон распределения частиц по потенциальным энергиям – распределение Больцмана. Здесь n 0 – число молекул в единице объёма там, где U = 0.

закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова

Выражение (45.2) называется барометрической формулой. Она позволяет найти атмос­ферное давление в зависимости от высоты или, измерив давление, найти высоту: Так как высоты обозначаются относительно уровня моря, где давление считается нормаль­ным, то выражение (45.2) может быть записано в виде

(45.3)

где р - давление на высоте h.

Барометрическую формулу (45.3) можно преобразовать, если воспользоваться вы­ражением (42.6) p = nkT :

где n – концентрация молекул на высоте h , n 0 – то же, на высоте h = 0. Так как M= m 0 N A (N A – постоянная Авогадро, т 0 масса одной молекулы), a R = kN A , то

(45.4)

где m 0 gh =П - потенциальная энергия молекулы в поле тяготения, т. е.

Выражение (45.5) называется распределением Больцмана для внешнего потенциаль­ного поля. Из вето следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (45.5) справедливо в любом вне­шнем потенциальном поле, а не только в поле сил тяжести.

24. Закон равномерного распределения энергии по степеням свободы. Число степеней свободы. Средняя кинетическая энергия теплового движения молекул.

На среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится Это есть закон Больцмана о равномерном распределении средней кинетической энергии по степеням свободы. Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий). Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражениемКинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с Ek дается соотношениемИз уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекулВнутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия U тела зависит наряду с температурой T также и от объема V: U = U (T, V). Принято говорить, что внутренняя энергия является функцией состояния.

До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.

Выведем закон изменения давления с высотой предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно p, то на высоте h + dh оно равно p + dp (при dh > 0, dp < 0, так как p уменьшается с увеличением h ).

Разность давления на высотах h и h+dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh .

Плотность на высоте h , и так как , то = const.

Тогда

Из уравнения Менделеева-Клапейрона.

С изменением высоты от h 1 до h 2 давление изменяется от p 1 до p 2

Пропотенцируем данное выражение (

Барометрическая формула, показывает, как меняется давление с высотой

n концентрация молекул на высоте h,

n 0 концентрация молекул на высоте h =0.

Потенциальная энергия молекул в поле тяготения

Распределение Больцмана во внешнем потенциальном поле. Из него следует, что при T = const плотность газа больше там, где меньше потенциальная энергия молекул.

24.Реальный газ - газ, который не описывается уравнением состояния идеального газа Клапейрона - Менделеева.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева - Клапейрона:

где p - давление; V - объем; T - температура; Z r = Z r (p,T) - коэффициент сжимаемости газа; m - масса; М - молярная масса; R - газовая постоянная.Также существует такое понятие как критическая температура, если газ находится при температуре выше критической (индивидуальна для каждого газа, например для углекислого газа примерно 304 К), то его уже невозможно превратить в жидкость, какое бы давление к нему не прилагалось. Данное явление возникает вследствие того, что при критической температуре силы поверхностного натяжения жидкости равны нулю. Если продолжать медленно сжимать газ при температуре большей критической, то после достижения им объёма, равного приблизительно четырем собственным объёмам молекул, составляющих газ, сжимаемость газа начинает резко падать.



25. Фазовые переходы. Фазовые переходы 1 и 2 рода. Диаграммы состояния вещества. Тройная точка. Классификация фазовых переходов При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём (т.е. плотность), количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов). Наиболее распространённые примеры фазовых переходов первого рода: плавление и затвердевание, кипение и конденсация, сублимация и десублимация При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их вторые производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества.

Тройная точка - точка на фазовой диаграмме, где сходятся три линии фазовых переходов. Тройная точка - это одна из характеристик химического вещества. Обычно тройная точка определяется значением температуры и давления, при котором вещество может равновесно находится в трёх (отсюда и название) агрегатных состояниях - твёрдом, жидком и газообразном. В этой точке сходятся линии плавления, кипения и сублимации.

ДИАГРАММА СОСТОЯНИЯ(фазовая диаграмма) - диаграмма, изображающая зависимость устойчивого фазового состояния одно- или многокомпонентного вещества от термодинамич. параметров, определяющих это состояние (темп-ры T , давления P , напряжённостей магн. H или электрич. E полей, концентрации с и др.). Каждая точка Д. с. (фигуративная точка) указывает на фазовый состав вещества при заданных значениях термодинамич. параметров (координатах этой точки). В зависимости от числа внеш. параметров Д. с. может быть двумерной, трёхмерной и многомерной. При исследовании равновесия фаз в условиях перем. давления строят изобарич. и изоконцентрац. сечения и проекции на плоскости T-P или Р-с . Наиб. полно изучены изобарич. Т-с сечения Т-Р-с Д. с., соответствующие атм. давлению.

26. Особенности поверхностного слоя жидкости. Коэффициент поверхностного натяжения.

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах (см. §3.6), и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком.

Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесиифаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости.