Cтраница 1


Рабочая обменная емкость катионита зависит от рода катио-иита, общей степени минерализации воды, соотношения и размера карбонатной и некарбонатной жесткости, скорости фильтрования.  

Рабочая обменная емкость катионита зависит от вида улавливаемых из воды катионов, солевого состава обрабатываемой воды, значения рН % воды, высоты слоя катионита, скорости фильтрования, режима эксплуатации катионитовых фильтров и удельного расхода на регенерацию поваренной соли.  

Рабочая обменная емкость катионита зависит от вида улавливаемых из воды катионов, соотношения солевых компонентов в обрабатываемой воде, значения рН воды, высоты слоя катионита, скорости фильтрования, режима эксплуатации катионитных фильтров и удельного расхода регенерирующего реагента.  

Рабочая обменная емкость катионита является величиной переменной, которая зависит от условий эксплуатации, состава исходной воды и от природы обменного катионита.  

На рабочую обменную емкость катионита оказывают влияние также анионный состав воды и величина его общего солесодержания. Влияние этих факторов проявляется в различной степени для одного и того же катионита при Н - и Na-катионировании, а также для различных катионитов. Если при Na-катионировании анионный состач не оказывает существенного влияния на рабочую обменную емкость сульфоугля, то при Н - катионировании он приобретает решающее значение.  

Различают полную и рабочую обменную емкость катионита. Последняя зависит от типа катионита, полноты его регенерации, общего содержания солей в исходной воде и высоты фильтрующего слоя.  

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать.  

Для восстановления рабочей обменной емкости катионита необходимо извлечь из него задержанные катионы, заменив их обменными катионами. Процесс восстановления обменной емкости истощенного катионита называется его регенерациой. Вследствие относительно большой концентрации катионов натрия в регенерационном растворе происходит замена ими поглощенных ранее катионов кальция и магния.  

На величину рабочей обменной емкости катионита значительное влияние оказывает высота фильтрующего слоя. С увеличением ее возрастает время контактирования умягчаемой воды с катио-нитом и поэтому возрастает степень его использования.  

Для поддержания нормальной рабочей обменной емкости катионита последний регулярно должен освобождаться от мелких фракций.  

Влияние на рабочую обменную емкость катионита оказывает скорость фильтрования, сказываясь в одинаковой степени на разных катионах независимо от их природы. При больших скоростях фильтрования рабочая обменная емкость катионита снижается вследствие уменьшения продолжительности контакта между водой и катионитом. Однако в катионитных фильтрах первой ступени, где скорость фильтрования обычно не превышает 15 - 20 м / ч, а высота загрузки 2 0 - 2 8 м, влияние скорости на рабочую обменную емкость незначительно. В Н - катионитных фильтрах второй ступени скорость фильтрования достигает 30 - 50 м / ч при высоте слоя катионита 1 5 м; поэтому для них фактор влияния скорости является ощутимым и должен учитываться при расчете этих фильтров.  

В некоторых случаях рабочая обменная емкость катионита снижается вследствие неравномерного фильтрования воды по площади фильтра из-за образования в слое катионита местных уплотнений или неравномерного скопления загрязнений. В уплотненных или загрязненных участках катионита скорость фильтрования воды ниже, вследствие чего его обменная способность недоиспользуется, что приводит к общему снижению ее для фильтра. Неравномерная скорость фильтрования приводит к преждевременному проскоку жесткой воды в местах с высокими скоростями воды; этот фактор вызывает также и неравномерность регенерации отдельных участков катионита. Все это приводит к снижению общей рабочей обменной емкости фильтра. Снижение рабочей обменной емкости может происходить вследствие отложения карбоната кальция на зернах катионита в установках с предварительным известкованием. Для восстановления рабочей обменной емкости фильтра следует удалить отложения, образовавшиеся на зернах катионита, путем промывки его раствором соляной кислоты.  

С увеличением скорости фильтрования рабочая обменная емкость катионита снижается.  

Рис.Сравнение полной динамической ПДОЕ и динамической обменной емкости ДОЕ. Заштрихованная площадь А соответствует ДОЕ, а вся площадь над кривой с учетом проскока солей - ПДОЕ

Селективность

Под селективностью понимают способность избирательно сорбировать ионы из растворов сложного состава. Селективность определяется типом ионогенных групп, числом поперечных связей матрицы ионита, размером пор и составом раствора. Для большинства ионитов селективность невелика, однако разработаны специальные образцы, имеющие высокую способность к извлечению определенных ионов.

Механическая прочность

Показывает способность ионита противостоять механическим воздействиям. Иониты проверяются на истираемость в специальных мельницах или по весу груза, разрушающего определенное число частиц. Все полимеризационные иониты имеют высокую прочность. У поликонденсационных она существенно ниже. Увеличение степени сшивки полимера повышает его прочность, но ухудшает скорость ионного обмена.

Осмотическая стабильность.

Наибольшее разрушение частиц ионитов происходит при изменении характеристик среды, в которой они находятся. Поскольку все иониты представляют собой структурированные гели, их объем зависит от солесодержания, рН среды и ионной формы ионита. При изменении этих характеристик объем зерна изменяется. Вследствие осмотического эффекта объем зерна в концентрированных растворах меньше, чем в разбавленных. Однако это изменение происходит не одновременно, а по мере выравнивания концентраций «нового» раствора по объему зерна. Поэтому внешний слой сжимается или расширяется быстрее, чем ядро частицы; возникают большие внутренние напряжения и происходит откалывание верхнего слоя или раскалывание всего зерна. Это явление называется «осмотический шок». Каждый ионит способен выдерживать определенное число циклов таких изменений характеристик среды. Это называется его осмотической прочностью или стабильностью.

Наибольшее изменение объема происходит у слабокислотных катионитов. Наличие в структуре зерен ионита макропор увеличивает его рабочую поверхность, ускоряет перенабухание и дает возможность «дышать» отдельным слоям. Поэтому наиболее осмотически стабильны сильнокислотные катиониты макропористой структуры, а наименее - слабокислотные катиониты.

Осмотическая стабильность определяется как количество целых зерен, отнесенное к общему первоначальному их числу, после многократной (150 раз) обработки навески ионита попеременно в растворе кислоты и щелочи с промежуточной отмывкой обессоленной водой.

Химическая стабильность

Все иониты обладают определенной стойкостью к растворам кислот, щелочей и окислителей. Все полимеризационные иониты имеют большую химическую стойкость, чем поликонденсационные. Катиониты более стойки, чем аниониты. Среди анионитов слабоосновные устойчивее к действию кислот, щелочей и окислителей, чем сильноосновные.

Температурная устойчивость

Температурная устойчивость катионитов выше, чем анионитов. Слабокислотные катиониты работоспособны при температуре до 130 ° С, сильнокислотные типа КУ-2-8 - до 100-120 ° С, а большинство анионитов - не выше 60, максимум 80 ° С. При этом, как правило, Н- или ОН-формы ионитов менее стойки, чем солевые.

Полная (общая) обменная емкость катионита определяется при нейтрализации раствором NaOH или КОН в статических или динамических условиях и выражается в эквивалентах на 1 г сухого или 1 дм 3 набухшего катионита.

Реакции обмена катионов (К- катионит) имеют вид:

Вещества, не диссоциирующие в растворах, адсорбируются ионитами, как на активном угле, по законам молекулярной адсорбции.

Полная обменная емкость различных марок сильнокислотных катионитов, применяемых в сахарной промышленности, колеблется от 4 до 6 мг-экв/г. Например, отечественный катионит КУ-2-8/Н, Na ионная форма/ имеет полную обменную емкость 5,1 /Н/мг-экв/г.

Цель анализа - оценить качество и пригодность катионита для очистки сахарных растворов.

Принцип метода анализа основан на титровании образовавшейся в результате реакции ионного обмена кислоты 0,1 н. раствором NaOH в присутствии метилоранжа как индикатора.

Реактивы:

5%-ный раствор NaCl;

0,1 н. раствор NaOH;

Индикатор - метилоранж.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250см с оттянутым концом;

Капельная воронка;

Мерная колба вместимостью 200 см 3 ;

Мерный цилиндр вместимостью 100 см 3 ;

Бюретка для титрования;

Химический стакан;

Катионообменная смола.

Ход определения

5 г приготовленного для анализа катионита в Н-форме переводят в стеклянную колонку диаметром 18 мм с помощью дистиллированной воды, избыток воды спускают через резиновую трубку с зажимом, одетую на оттянутый конец нижней части колонки. Для предотвращения уноса катионита на стеклянную решетку колонки помещают тампон из стеклянной ваты.

После этого из капельной воронки, установленной над колонкой с катионом, в течение 30 мин равномерно пропускают 100 см 3 5%-ного раствора химически чистого NaCl, поддерживая уровень раствора над слоем катионита равным 1 см. Затем катионит промывают двойным по его объему количеством воды. Фильтрат и промывные воды собирают в мерную колбу, где доводят их объем до 200 см 3 . Из этого объема отбирают 50 см 3 в отдельный стакан и титруют 0,1н. раствором NaОН в присутствии метилоранжа как индикатора.

Расчеты:

1. Для получения сравнимых результатов обменную емкость катионита выражают через миллиграмм-эквивалент ионов / или число активных групп/, приходящихся на 1 г сухого ионита. Поэтому, если расход 0,1н. раствора NaOH для нейтрализации кислоты, выделенной 1 г абсолютно сухого катионита, можно выразить формулой

,

а в 1 см 3 1 н. раствора NaОН содержится 0,1 мг-экв, то полная обменная емкость катионита может быть рассчитана из формулы

где Ек - полная обменная емкость, в мг-экв/г абсолютно сухого катионита;

b - общее количество фильтрата, см 3 ;

V - количество 0,1 н. раствора NaOH, пошедшее на титрование фильтрата, см 3 ;

a – количество фильтрата, отобранного для титрования, см 3 ;

g – количество сухогого катионита, взятого для определения его полной обменной емкости, г;

W – влажность катионита, %. Определяют методом высушивания в течение 3-х часов при температуре 95-100ºС.

2. Обменную емкость катионита можно выразить также по натрию. В этом случае расчет ведется по формуле

или, так как 1 см 3 0,1 н. раствора NaОН содержит 0,0023 г натрия, то
.

Cтраница 3


Большая скорость обмена ионов позволяет при этом применять фильтрующие слои весьма малой высоты (5 - 25 мм) и достигать использования 50 - 90 % полной обменной емкости ионитов вместо 20 - 50 %, используемых в обычных насыпных фильтрах при обычном фракционном составе ионитов в фильтрующих слоях большой высоты (выше 900 мм) при условии получения фильтрата равноценного качества.  

Кривые титрования, полученные с помощью потенцио-метрического метода, позволяют дать основную химическую характеристику ионита: наличие активных групп и степень их диссоциации в зависимости от рН среды, полную обменную емкость ионита, определяемую суммой всех активных групп, входящих в состав ионита и вступающих в реакцию, обменную емкость по отдельным активным группам, обменную емкость ионитов при постоянном значении рН среды, а также позволяет определить, к какому типу относится исследуемый ионит - кислотному или основному. Кривые титрования получают при постоянной концентрации соли, так как обменная способность ионита зависит от рН среды и концентрации обменивающегося иона в растворе.  

Чередование ионного обмена с реакциями восстановления или осаждения с целью превращения адсорбированных на ионитах веществ в недиссоциированную и нерастворимую форму, позволяет сконцентрировать в итого такое количество адсорбируемого вещества, которое в 10 - 15 раз превышает полную обменную емкость ионита. Особенно это показательно при концентрировании на ионитах благородных металлов, ионы которых легко восстанавливаются до металла и в таком виде оседают на ионитах.  

Обменная емкость - это мера способности ионита поглощать ионы из раствора. Полная обменная емкость ионита (ПОЕ) определяется максимальным числом миллиграмм-эквивалентов ионов, которые могут быть поглощены 1 г воздушно-сухого ионита. Так, например, у катионита КУ-2 величина ПОЕ составляет около.  

В зависимости от условий определения различают полную (ПОЕ), статическую (СОЕ) и динамическую (рабочую) обменную емкость (ДОЕ, РОЕ) ионита. Полная обменная емкость ионита характеризуется общим числом активных групп ионита в единице объема смолы.  

Эффективность использования ионообменного динамического метода для очистки растворов обеспечивается в основном применением ионитов высокой емкости. Поскольку полная обменная емкость ионитов в динамических условиях, как известно, реализуется неполностью, при выборе оптимальных условий проведения процесса задача сводится к уменьшению разницы между полной обменной емкостью колонны и емкостью колонны до проскока ионов в фильтрат. С другой стороны, практически не менее важно выбрать ионит, потому что при данных кинетических условиях наклон фронта иона, появляющегося в фильтрате первым, определяется в том числе и природой этого иона. Для целей очистки растворов следует поэтому выбирать иониты, характеризующиеся не только высокой обменной емкостью, но и большим значением константы обмена наименее сорбируемого иона. Качественный состав для выбора ионита не имеет значения, поскольку одна из особенностей динамики обмена смеси заключается в том, что наклон фрон та менее сорбируемого иона не зависит от свойств других компонентов смеси. Эти положения определяют целесообразность применения для цели обессоливания растворов ионитов с большим числом поперечных связей и делают нежелательным использование слабокислотных ионитов в водородной форме.  

Емкость ионита выражают числом миллиэквивалентов (мэкв. При определении полной обменной емкости ионита устанавливают содержание в нем всех обмениваемых групп. Для этого используют небольшие колонки, например центрифужные колонки типа показанной на рис. 5.7, или воронки с бумажными фильтрами.  

В соответствии с доннановским принципом соблюдения электронейтральности внутри зерна максимальное количество обменно поглощаемых противоионов определяется количеством ионогенных групп, введенных в матрицу. Следовательно, полную обменную емкость ионита можно теоретически рассчитать , исходя из эквивалентного веса элементарного звена полимера, содержащего одну ионогенную группу. Например, для сульфированной смолы на основе стирола и дивинилбензола элементарное звено соответствует формуле С8Н85Оз, следовательно, теоретическая весовая емкость его будет 1000 / 184 2 5 43 мг-экв на 1 г сухой смолы в Н - форме.  

Если фильтрование продолжается до момента полного выравнивания концентраций поглощаемого иона в исходной воде и фильтрате, то при этом используется практически вся емкость поглощения ионита по данному иону. Такой режим соответствует использованию полной обменной емкости ионита ОЕП.  

Если продолжить пропускание раствора через слой ионита, то наступит момент, когда концентрации растворов-исходного и вытекающего из фильтра - сравняются. Это дает возможность вычислить полную обменную емкость ионита.  

Если продолжить пропускание раствора через слой ионита, то наступит момент, когда концентрации растворов - исходного и вытекающего из фильтра - сравняются. Это дает возможность вычислить полную обменную емкость ионита.  


Перспективным направлением является применение смешанного слоя катионитов и анионитов на намывных фильтрах - так называемый паудекс-процесс. У таких фильтров получается значительно большее использование полной обменной емкости ионитов.  

На вторую ступень натрий-катионирования поступает вода с содержанием 7,5 мг-экв/дм3 катионов натрия. Тогда соотношение концентраций С2 Na /Жо = 7,52 /0,1 = 562. В этом случае обменная емкость катио-

нита принимается по технологическим данным из табл. 2.12 и составляет Ер = 250 г-экв/м3 .

Таблица 2.14

Коэффициент снижения обменной емкости катионита

С2 Na /Жо

С2 Na /Жо

С2 Na /Жо

5. Число регенераций каждого фильтра в сутки «n» рассчитывается по формуле:

n = А / f Нсл Ер а = 139,2 / (3,14 1,5 250 1) ≈ 0,1 регенерация в сутки или 1 раз в течение 10 суток.

6. Расход 100%-й поваренной соли на одну регенерацию фильтра определяется уравнением:

Qс = (Ер f Нсл qс ) /1000 = (250 3,14 1,5 350)/1000 = 412 кг, где

qс – удельный расход соли на регенерацию г/г-экв, равный 350 г/г-экв. 7. Суточный расход технической соли на регенерацию фильтров

рассчитывается по уравнению:

Qт.с = (Qс n а 100) / 93 = (412 0.1 1 100) /93 = 44,3 кг/сут, где в этом выражении «93» – содержание NaCI в технической соли, %.

8. Расход воды на одну регенерацию натрий-катионитового фильтра слагается из следующих составляющих:

а) расхода воды на взрыхляющую промывку фильтра, м3 , определяемого из соотношения:

Qвзр = i f 60 t /1000 = 4 3,14 60 30/1000 = 23 м3 , где

i, t – интенсивность и длительность взрыхляющей промывки соответственно, принимаемые по табл. 2.12.

б) расхода воды на приготовление регенерационного раствора соли, м3 :

Qр.р = (Qс 100) / (1000 bρ) = 412 100/1000 10 1,071 = 3,85 м3 ,

где b – концентрация регенерационного раствора, %. Концентрация регенерационного раствора для первой ступени натрий-катионирования составляет 5…8 %, для второй ступени ионирования 8…12 %. Прини-

маем концентрацию регенерационного раствора равным b = 10 %,

ρ – плотность 10%-го регенерационного раствора, т/м3 , принимается по таблице плотностей водных растворов, Приложение 3, и составля-

ет ρ = 1,071 т/м3 для b = 10 %.

в) расхода воды на отмывку катионита от продуктов регенерации, м3

Qотм = q f Нсл = 6 3,14 1,5 = 29 м3 , где

q – удельный расход воды на отмывку катионита, равный 6 м3 /м3 , определяемый по табл. 2.12.

Тогда расход воды на одну регенерацию составит: Qс.н = Qвзр + Qр.р + Qотм = 23 + 3,85 + 29 ≈ 56 м3 .

9. Среднечасовой расход воды на собственные нужды натрийкатионитовых фильтров второй ступени определяется в соответствии с выражением:

Qс.н.NaII (час) = (Qс.н. а n)/ 24 = (56 1 0,1) / 24 = 0,23 м3 /ч.

Примем с запасом Qс.н. (час) = 0,5 м3 /ч.

Это количество воды будет подвергаться первичному натрийкатионированию для собственных нужд натрий-катионитовых фильтров второй ступени.

2.8.3. Расчет натрий-катионитовых фильтров первой ступени

1. Через эти фильтры будет пропускаться следующее количество

QNaI = 58 + 0,5 = 58,5 м3 /ч.

2. На первичные натрий-катионитовые фильтры вода поступает после предвключенных водород-катионитовых фильтров, регенерированных недостатком кислоты (с «голодной» регенерацией). Общая жест-

кость водород-катионированной воды составляет:

Жо = Жнк + Щост = 1 + 0,7 = 1,7 мг-экв/дм3 ,

где Жнк – исходная некарбонатная жесткость воды, поступающей на Н-катионитовые фильтры; мг-экв/ дм3 ; Щост – остаточная после декарбонизации щелочность, мг-экв/дм3 .

3. Скорость фильтрования через основные натрий-катионитовые фильтры допускается в пределах 15…30 м/ч. Следовательно, необходимая площадь фильтрования должна составлять:

58,5/15…58,5/30 = 3,9…1,95 м2 .

Из существующих стандартных фильтров (табл. 2.10) выбираем фильтры, у которых:

диаметр – D = 2000 мм;

площадь фильтрования каждого – f = 3,14 м2 ; высота слоя сульфоугля Нсл = 1,8 м.

4. Принимаем их к установке в количестве 3 шт. с таким расчетом, чтобы в наихудшем случае один из них был в полезной работе, один – на регенерации и один, не загруженный сульфоуглем, служил для гидроперегрузки угля и замены катионитного фильтра, выключаемого на ремонт или ревизию. Нормально, таким образом, будут работать два фильтра, а = 2.

5. Устанавливаются скорости фильтрования в нормальном и форсированном режимах.

При этом нормальная скорость фильтрования составляет:

wн = QNaI / (f а) = 58,5/ (3,14 2) = 9,3 м/ч.

На периоды регенерации в работе будет оставаться один фильтр с максимальной скоростью фильтрования:

wмax = QNaI / = 58,5/ 3,14 = 18,6 м/ч.

6. По выражению (2.9) рассчитывается рабочая обменная емкость Ер катионита, в качестве которого выбран сульфоуголь с крупностью зерен 0,5…1,1 мм:

Ер = α β Еп – 0,5 q Жо ,

где q – удельный расход воды на отмывку сульфоугля, равный для первой ступени натрий-катионирования q = 4 м3 / м3 и определяемый по табл. 2.12.

По табл. 2.12 находится удельный расход соли на регенерацию сульфоугля qс . Для первой ступени натрий-катионирования при жесткости обрабатываемой воды до 5 мг-экв/дм3 он составляет qс = 120 мгэкв/дм3 .

По удельному расходу соли, пользуясь табл. 2.13, определяется коэффициент эффективности регенерации α = 0,67.

Коэффициент β находится по табл. 2.14 и при величине отношения СNa 2 /Жо = 7,52 /1,7 = 33 не определяется. Поэтому целесообразно принять рабочую обменную емкость сульфоугля при натрий-

катионировании в соответствии с данными табл. 2.15, согласно которым Ер = 200 г-экв/м3 .

Таблица 2.15

Рабочая обменная способность сульфоугля при натрий-катионировании

Удельный

Общая жесткость поступающей на фильтры воды, мг-экв/дм3

обрабаты-

регенера-

Фракционный состав сульфоугля, мм

Жо

7. Число регенераций каждого фильтра в сутки «n» равно:

n = (24 Жо QNa1 )/ (f Нсл Ер а) = 24 1,7 58,5/ 3,14 1,8 180 2 = 1,17.

Принимаем число регенераций n = 1 раз в сутки.

8. Расход 100%-й поваренной соли на одну регенерацию фильтра определяется уравнением:

Qс = (Ер f Нсл qс ) / 1000 = 200 3,14 1,8 120/ 1000 ≈ 136 кг. 9. Суточный расход технической соли составит:

Qт.с = (Qс n а 100) / 93 = (136 1 2 100) / 93 = 292,5 кг/сут. 10. Расход воды на взрыхляющую промывку фильтра равен:

Qвзр = (i f 60 t) /1000 = (4 3,14 60 30) /1000 = 23 м3 ,

где i, t – интенсивность и время взрыхления соответственно, эти величины определяются по табл. 2.12.

11. Расход воды на приготовление регенерационного раствора рассчитывается согласно выражению:

Qр.р = (Qc 100) / (1000 b ρ) = 136 100 / 1000 8 1,056 = 1,6 м3 ,

где b и ρ – концентрация и плотность регенерационного раствора, b = 8 %, табл. 4.8; ρ (при b = 8 %) = 1,056 т/м3 (Приложение 3).

12. Расход воды на отмывку катионита определяется по формуле: Q отм = q f Нсл = 4 3,14 1,8 = 23 м3 .

13. Тогда расход воды на одну регенерацию натрий-катионитового

фильтра слагается из составляющих:

Qс.н. = Qвзр + Qр.р. + Qотм = 23 + 1,6 + 23 ≈ 48 м3 .

14. Среднечасовой расход воды на собственные нужды натрий-ка- тионитовых фильтров определяется на основании:

Qс.н.NaI (час) = (Qс.н. n a) / 24 = 48 1 2 /24 = 4 м3 /ч.

2.8.4. Расчет предварительных водород-катионитовых фильтров с «голодной» регенерацией

1. Среднечасовой расход воды, поступающей на предварительные Н-катионитовые фильтры, должен обеспечивать требуемую производительность водоподготовительной установки на питание паровых котлов Q и собственные нужды Н-катионитовых и натрий-катионитовых

фильтров I и II ступеней:

Qгол = Q + Qс.н.NaI + Qс.н.NaII = 58 + 4,0 + 0,5 = 62,5 м3 /ч.

Кроме того, предварительные водород-катионитовые фильтры должны обеспечивать расход воды на горячее водоснабжение в количестве 272 м3 /ч и подпитку тепловых сетей в размере 13 м3 /ч:

ИТОГО: Qгол = 62,5 + 272 + 13 ≈ 348 м3 /ч.

2. При заданной производительности оценивается требуемая для этого общая площадь фильтрования:

F = Qгол / w = 348/10 = 34,8 м2 ,

где w – скорость фильтрования, которая, исходя из опыта эксплуатации водород-катионитовых фильтров с «голодной» регенерацией, находится в диапазоне значений 10…20 м/ч .

Принимаем скорость фильтрования равной w = 10 м/ч.

3. При известной общей площади фильтрования, зная характеристику стандартного фильтра, можно рассчитать необходимое количество фильтров по соотношению:

а = F/f = 34,8 / 6,95 = 5 штук, где

f – площадь фильтрования стандартного водород-катионитоваго фильтра при «голодной» регенерации, устанавливаемая по табл. 2.16.

Полагая, что при средней длительности каждой регенерации 2…2,5 часа одновременно будут находиться в регенерации два предварительных Н-катионитовых фильтра и один Н-катионитовый фильтр должен быть в резерве (для гидроперегрузки и подключения в работу на время ремонта одного из фильтров), принимаем к установке 8 предварительных Н-катионитовых фильтров с параметрами:

диаметр фильтра – D = 3400 мм; высота слоя – Нсл = 2,5 м;

площадь фильтрования – f = 6,95 м2 .

Таблица 2.16

Водород-катионитовые фильтры (при «голодной» регенерации)

Показатель

Диаметр стандартного фильтра, мм

Высота слоя

катионита,м

фильтрова-

ния, м2

Объем ка-

тионита, м3

4. Карбонатная жесткость (щелочность) исходной воды при прохождении через предварительные Н-катионитные фильтры, отрегенерированные теоретически необходимым количеством серной кислоты, будет снижаться в среднем с 9,0 до 0,7 мг-экв/дм3 .

Количество солей жесткости, удаляемых на фильтрах, определяется по формуле :

Агол = 24 Qгол (Жк – Жк.ост ) = 24 348 (9,0 – 0,7) = 69321,6 г-экв/сут.

5. Рабочая обменная способность сульфоугля при водород-катиони- ровании с «голодной» регенерацией принимается по табл. 2.17 по параметрам «К» и «А».

Для этого рассчитываются:

– характеристики катионного состава исходной воды «К»:

К = Na+ / Жо = 7,5 / 10 = 0,75 и

характеристики анионного состава исходной воды «А»:

А = HCO 3 ¯/ (CI¯ + SO4 2 ¯)= 9,0/ (5,5 + 3) = 1,06.

Для исходной воды данного состава при 0 ≤ К ≤ 1; 10 ≥ А ≥ 1 ра-

бочая обменная способность сульфоугля принимается равной Ер гол = 300 г-экв/м3 .

6. При этом число регенераций каждого фильтра в сутки составит:

n = Агол / (f Нсл Ер гол а) = 69321,6 / (9,1 2,5 300 5) = 2,66.

Принимаем число регенераций n = 3 р/сут.

7. Расход 100%-й серной кислоты на одну регенерацию определяются по уравнению:

Qк (гол) = (qк f Нсл Ер гол ) / 1000 = (45 6,95 2,5 300) / 1000 = 235 кг,

здесь qк = 45 г/г-экв – удельный расход серной кислоты при «голодном» режиме регенерации, который принимается по табл. 2.17.