Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

Уравнение первого порядка вида a 1 (x)y" + a 0 (x)y = b(x) называется линейным дифференциальным уравнением. Если b(x) ≡ 0 то уравнение называется однородным , в противном случае - неоднородным . Для линейного дифференциального уравнения теорема существования и единственности имеет более конкретный вид.

Назначение сервиса . Онлайн калькулятор можно использовать для проверки решения однородных и неоднородных линейных дифференциальных уравнений вида y"+y=b(x) .

=

Использовать замену переменных y=u*v
Использовать метод вариации произвольной постоянной
Находить частное решение при y() = .
Для получения решения исходное выражение необходимо привести к виду: a 1 (x)y" + a 0 (x)y = b(x) . Например, для y"-exp(x)=2*y это будет y"-2*y=exp(x) .

Теорема . Пусть a 1 (x) , a 0 (x) , b(x) непрерывны на отрезке [α,β], a 1 ≠0 для ∀x∈[α,β]. Тогда для любой точки (x 0 , y 0), x 0 ∈[α,β], существует единственное решение уравнения, удовлетворяющее условию y(x 0) = y 0 и определенное на всем интервале [α,β].
Рассмотрим однородное линейное дифференциальное уравнение a 1 (x)y"+a 0 (x)y=0 .
Разделяя переменные, получаем , или, интегрируя обе части, Последнее соотношение, с учетом обозначения exp(x) = e x , записывается в форме

Попытаемся теперь найти решение уравнения в указанном виде, в котором вместо константы C подставлена функция C(x) то есть в виде

Подставив это решение в исходное, после необходимых преобразований получаем Интегрируя последнее, имеем

где C 1 - некоторая новая константа. Подставляя полученное выражение для C(x), окончательно получаем решение исходного линейного уравнения
.

Пример . Решить уравнение y" + 2y = 4x . Рассмотрим соответствующее однородное уравнение y" + 2y = 0 . Решая его, получаем y = Ce -2 x . Ищем теперь решение исходного уравнения в виде y = C(x)e -2 x . Подставляя y и y" = C"(x)e -2 x - 2C(x)e -2 x в исходное уравнение, имеем C"(x) = 4xe 2 x , откуда C(x) = 2xe 2 x - e 2 x + C 1 и y(x) = (2xe 2 x - e 2 x + C 1)e -2 x = 2x - 1 + C 1 e -2 x - общее решение исходного уравнения. В этом решении y 1 (x) = 2x-1 - движение объекта под действием силы b(x) = 4x, y 2 (x) = C 1 e -2 x -собственное движение объекта.

Пример №2 . Найти общее решение дифференциального уравнения первого порядка y"+3 y tan(3x)=2 cos(3x)/sin 2 2x.
Это неоднородное уравнение. Сделаем замену переменных: y=u v, y" = u"v + uv".
3u v tg(3x)+u v"+u" v = 2cos(3x)/sin 2 2x или u(3v tg(3x)+v") + u" v= 2cos(3x)/sin 2 2x
Решение состоит из двух этапов:
1. u(3v tg(3x)+v") = 0
2. u"v = 2cos(3x)/sin 2 2x
1. Приравниваем u=0, находим решение для 3v tg(3x)+v" = 0
Представим в виде: v" = -3v tg(3x)

Интегирируя, получаем:

ln(v) = ln(cos(3x))
v = cos(3x)
2. Зная v, Находим u из условия: u"v = 2cos(3x)/sin 2 2x
u" cos(3x) = 2cos(3x)/sin 2 2x
u" = 2/sin 2 2x
Интегирируя, получаем:
Из условия y=u v, получаем:
y = u v = (C-cos(2x)/sin(2x)) cos(3x) или y = C cos(3x)-cos(2x) ctg(3x)

Первого порядка, имеющее стандартний вид $y"+P\left(x\right)\cdot y=0$, где $P\left(x\right)$ -- непрерывная функция , называется линейным однородным. Название "линейное" объясняется тем, что неизвестная функция $y$ и её первая производная $y"$ входят в состав уравнения линейно, то есть в первой степени. Название "однородное" объясняется тем, что в правой части уравнения находится нуль.

Такое дифференциальное уравнение можно решить методом разделения переменных. Представим его в стандартном виде метода: $y"=-P\left(x\right)\cdot y$, где $f_{1} \left(x\right)=-P\left(x\right)$ и $f_{2} \left(y\right)=y$.

Вычислим интеграл $I_{1} =\int f_{1} \left(x\right)\cdot dx =-\int P\left(x\right)\cdot dx $.

Вычислим интеграл $I_{2} =\int \frac{dy}{f_{2} \left(y\right)} =\int \frac{dy}{y} =\ln \left|y\right|$.

Запишем общее решение в виде $\ln \left|y\right|+\int P\left(x\right)\cdot dx =\ln \left|C_{1} \right|$, где $\ln \left|C_{1} \right|$ -- произвольная постоянная, взятая в удобном для дальнейших преобразований виде.

Выполним преобразования:

\[\ln \left|y\right|-\ln \left|C_{1} \right|=-\int P\left(x\right)\cdot dx ; \ln \frac{\left|y\right|}{\left|C_{1} \right|} =-\int P\left(x\right)\cdot dx .\]

Используя определение логарифма, получим: $\left|y\right|=\left|C_{1} \right|\cdot e^{-\int P\left(x\right)\cdot dx } $. Это равенство, в свою очередь, эквивалентно равенству $y=\pm C_{1} \cdot e^{-\int P\left(x\right)\cdot dx } $.

Заменив произвольную постоянную $C=\pm C_{1} $, получим общее решение линейного однородного дифференциального уравнения: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Решив уравнение $f_{2} \left(y\right)=y=0$, найдем особые решения. Обычной проверкой убеждаемся, что функция $y=0$ является особым решением данного дифференциального уравнения.

Однако это же решение можно получить из общего решения $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $, положив в нём $C=0$.

Таким образом, окончательный результат: $y=C\cdot e^{-\int P\left(x\right)\cdot dx } $.

Общий метод решения линейного однородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=0$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I=\int P\left(x\right)\cdot dx $.
  3. Записываем общее решение в виде $y=C\cdot e^{-I} $ и при необходимости выполняем упрощающие преобразования.

Задача 1

Найти общее решение дифференциального уравнения $y"+3\cdot x^{2} \cdot y=0$.

Имеем линейное однородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=3\cdot x^{2} $.

Вычисляем интеграл $I=\int 3\cdot x^{2} \cdot dx =x^{3} $.

Общее решение имеет вид: $y=C\cdot e^{-x^{3} } $.

Линейные неоднородные дифференциальные уравнения первого порядка

Определение

Дифференциальное уравнение первого порядка, которое можно представить в стандартном виде $y"+P\left(x\right)\cdot y=Q\left(x\right)$, где $P\left(x\right)$ и $Q\left(x\right)$ -- известные непрерывные функции, называется линейным неоднородным дифференциальным уравнением. Название "неоднородное" объясняется тем, что правая часть дифференциального уравнения отлична от нуля.

Решение одного сложного линейного неоднородного дифференциального уравнения может быть сведено к решению двух более простых дифференциальных уравнений. Для этого искомую функцию $y$ следует заменить произведением двух вспомогательных функций $u$ и $v$, то есть положить $y=u\cdot v$.

Выполняем дифференцирование принятой замены: $\frac{dy}{dx} =\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} $. Подставляем полученное выражение в данное дифференциальное уравнение: $\frac{du}{dx} \cdot v+u\cdot \frac{dv}{dx} +P\left(x\right)\cdot u\cdot v=Q\left(x\right)$ или $\frac{du}{dx} \cdot v+u\cdot \left[\frac{dv}{dx} +P\left(x\right)\cdot v\right]=Q\left(x\right)$.

Отметим, что если принято $y=u\cdot v$, то в составе произведения $u\cdot v$ одну из вспомогательных функций можно выбирать произвольно. Выберем вспомогательную функцию $v$ так, чтобы выражение в квадратных скобках обратилось в нуль. Для этого достаточно решить дифференциальное уравнение $\frac{dv}{dx} +P\left(x\right)\cdot v=0$ относительно функции $v$ и выбрать для неё простейшее частное решение $v=v\left(x\right)$, отличное от нуля. Это дифференциальное уравнение является линейным однородным и решается оно вышерассмотренным методом.

Полученное решение $v=v\left(x\right)$ подставляем в данное дифференциальное уравнение с учетом того, что теперь выражение в квадратных скобках равно нулю, и получаем еще одно дифференциальное уравнение, но теперь относительно вспомогательной функции $u$: $\frac{du}{dx} \cdot v\left(x\right)=Q\left(x\right)$. Это дифференциальное уравнение можно представить в виде $\frac{du}{dx} =\frac{Q\left(x\right)}{v\left(x\right)} $, после чего становится очевидно, что оно допускает непосредственное интегрирование. Для этого дифференциального уравнения необходимо найти общее решение в виде $u=u\left(x,\; C\right)$.

Теперь можно найти общее решение данного линейного неоднородного дифференциального уравнения первого порядка в виде $y=u\left(x,C\right)\cdot v\left(x\right)$.

Общий метод решения линейного неоднородного дифференциального уравнения первого порядка можно представить в виде следующего алгоритма:

  1. Для решения данного уравнения его сначала следует представить в стандартном виде метода $y"+P\left(x\right)\cdot y=Q\left(x\right)$. Если добиться этого не удалось, то данное дифференциальное уравнение должно решаться иным методом.
  2. Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx $, записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $, выполняем упрощающие преобразования и выбираем для $v\left(x\right)$ простейший ненулевой вариант.
  3. Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx $, посля чего записываем выражение в виде $u\left(x,C\right)=I_{2} +C$.
  4. Записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$ и при необходимости выполняем упрощающие преобразования.

Задача 2

Найти общее решение дифференциального уравнения $y"-\frac{y}{x} =3\cdot x$.

Имеем линейное неоднородное уравнение первого порядка в стандартном виде, для которого $P\left(x\right)=-\frac{1}{x} $ и $Q\left(x\right)=3\cdot x$.

Вычисляем интеграл $I_{1} =\int P\left(x\right)\cdot dx =-\int \frac{1}{x} \cdot dx=-\ln \left|x\right| $.

Записываем частное решение в виде $v\left(x\right)=e^{-I_{1} } $ и выполняем упрощающие преобразования: $v\left(x\right)=e^{\ln \left|x\right|} $; $\ln v\left(x\right)=\ln \left|x\right|$; $v\left(x\right)=\left|x\right|$. Вибираем для $v\left(x\right)$ простейший ненулевой вариант: $v\left(x\right)=x$.

Вычисляем интеграл $I_{2} =\int \frac{Q\left(x\right)}{v\left(x\right)} \cdot dx =\int \frac{3\cdot x}{x} \cdot dx=3\cdot x $.

Записываем выражение $u\left(x,C\right)=I_{2} +C=3\cdot x+C$.

Окончательно записываем общее решение данного линейного неоднородного дифференциального уравнения в виде $y=u\left(x,C\right)\cdot v\left(x\right)$, то есть $y=\left(3\cdot x+C\right)\cdot x$.


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид

\frac{dy}{dx}+p(x)y=q(x),

где p(x) и q(x) - заданные функции от x , непрерывные в той области, в которой требуется проинтегрировать уравнение (1).

Если q(x)\equiv0 , то уравнение (1) называется линейным однородным . Оно является уравнением с разделяющимися переменными и имеет общее решение

Y=C\exp\!\left(-\int{p(x)}\,dx\right)\!,

Общее решение неоднородного уравнения можно найти методом вариации произвольной постоянной , который состоит в том, что решение уравнения (1) ищется в виде

Y=C(x)\exp\!\left(-\int{p(x)}\,dx\right) , где C(x) - новая неизвестная функция от x .

Пример 1. Решить уравнение y"+2xy=2xe^{-x^2} .

Решение. Применим метод вариации постоянной. Рассмотрим однородное уравнение y"+2xy=0 , соответствующее данному неоднородному уравнению. Это уравнение с разделяющимися переменными. Его общее решение имеет вид y=Ce^{-x^2} .

Общее решение неоднородного уравнения ищем в виде y=C(x)e^{-x^2} , где C(x) - неизвестная функция от x . Подставляя, получаем C"(x)=2x , откуда C(x)=x^2+C . Итак, общее решение неоднородного уравнения будет y=(x^2+C)e^{-x^2} , где C - постоянная интегрирования.

Замечание. Может оказаться, что дифференциальное уравнение линейно относительно x как функция от y . Нормальный вид такого уравнения

\frac{dx}{dy}+r(y)x=\varphi(y).

Пример 2. Решить уравнение \frac{dy}{dx}=\frac{1}{x\cos{y}+\sin2y} .

Решение. Данное уравнение является линейным, если рассматривать x как функцию от y :

\frac{dx}{dy}-x\cos{y}=\sin{2y}.

Применяем метод вариации произвольной постоянной. Сначала решаем соответствующее однородное уравнение

\frac{dx}{dy}-x\cos{y}=0,

которое является уравнением с разделяющимися переменными. Его общее решение имеет вид x=Ce^{\sin{y}},~C=\text{const} .

Общее решение уравнения ищем в виде x=C(y)e^{\sin{y}} , где C(y) - неизвестная функция от y . Подставляя, получаем

C"(y)e^{\sin{y}}=\sin2y или C"(y)=e^{-\sin{y}}\sin2y.

Отсюда, интегрируя по частям, будем иметь

\begin{aligned}C(y)&=\int{e^{-\sin{y}}\sin2y}\,dy=2\int{e^{-\sin{y}}\cos{y}\sin{y}}\,dy=2\int\sin{y}\,d(-e^{-\sin{y}})=\\ &=-2\sin{y}\,e^{-\sin{y}}+2\int{e^{-\sin{y}}\cos{y}}\,dy=C-2(\sin{y}+1)e^{-\sin{y}},\end{aligned}

Итак,

C(y)=-2e^{-\sin{y}}(1+\sin{y})+C.


Подставляя это уравнение в x=C(y)e^{\sin{y}} , получаем общее решение исходного уравнения, а значит, и данного уравнения:

X=Ce^{\sin{y}}-2(1+\sin{y})

Исходное уравнение может быть проинтегрировано также следующим образом. Полагаем

Y=u(x)v(x),

где u(x) и v(x) - неизвестные функции от x , одна из которых, например v(x) , может быть выбрана произвольно.

Подставляя y=u(x)v(x) в , после преобразования получаем

Vu"+(pv+v")u=q(x).

Определяя v(x) из условия v"+pv=0 , найдем затем из vu"+(pv+v")u=q(x) функцию u(x) , а следовательно, и решение y=uv уравнения \frac{dy}{dx}+p(x)y=q(x) . В качестве v(x) можно взять любое частое решение уравнения v"+pv=0,~v\not\equiv0 .

Пример 3. Решить задачу Коши: x(x-1)y"+y=x^2(2x-1),~y|_{x=2}=4 .

Решение. Ищем общее решение уравнения в виде y=u(x)v(x) ; имеем y"=u"v+uv" . Подставляя выражение для y и y" в исходное уравнение, будем иметь

X(x-1)(u"v+uv")+uv=x^2(2x-1) или x(x-1)vu"+u=x^2(2x-1)

Функцию v=v(x) находим из условия x(x-1)v"+v=0 . Беря любое частное решение последнего уравнения, например v=\frac{x}{x-1} , и подставляя его, получаем уравнение u"=2x-1 , из которого находим функцию u(x)=x^2-x+C . Следовательно, общее решение уравнения x(x-1)y"+y=x^2(2x-1) будет

Y=uv=(x^2-x+C)\frac{x}{x-1}, или y=\frac{Cx}{x-1}+x^2.

Используя начальное условие y|_{x=2}=4 , получаем для нахождения C уравнение 4=\frac{2C}{2-1}+2^2 , откуда C=0 ; так что решением поставленной задачи Коши будет функция y=x^2 .

Пример 4. Известно, что между силой тока i и электродвижущей силой E в цепи, имеющей сопротивление R и самоиндукцию L , существует зависимость E=Ri+L\frac{di}{dt} , где R и L - постоянные. Если считать E функцией времени t , то получим линейное неоднородное уравнение для силы тока i :

\frac{di}{dt}+\frac{R}{L}i(t)=\frac{E(t)}{L}.

Найти силу тока i(t) для случая, когда E=E_0=\text{const} и i(0)=I_0 .

Решение. Имеем \frac{di}{dt}+\frac{R}{L}i(t)=\frac{E_0}{L},~i(0)=I_0 . Общее решение этого уравнения имеем вид i(t)=\frac{E_0}{R}+Ce^{-(R/L)t} . Используя начальное условие (13), получаем из C=I_0-\frac{E_0}{R} , так что искомое решение будет

I(t)=\frac{E_0}{R}+\left(I_0-\frac{E_0}{R}\right)\!e^{-(R/L)t}.

Отсюда видно, что при t\to+\infty сила тока i(t) стремится к постоянному значению \frac{E_0}{R} .

Пример 5. Дано семейство C_\alpha интегральных кривых линейного неоднородного уравнения y"+p(x)y=q(x) .

Показать, что касательные в соответственных точках к кривым C_\alpha , определяемым линейным уравнением, пересекаются в одной точке (рис. 13).


Решение. Рассмотрим касательную к какой-либо кривой C_\alpha в точке M(x,y) .Уравнение касательной в точке M(x,y) имеет вид

\eta-q(x)(\xi-x)=y , где \xi,\eta - текущие координаты точки касательной.

По определению, в соответственных точках x является постоянным, а y переменным. Беря любые две касательные к линиям C_\alpha в соответственных точках, для координат точки S их пересечения, получаем

\xi=x+\frac{1}{p(x)}, \quad \eta=x+\frac{q(x)}{p(x)}.

Отсюда видно, что все касательные к кривым C_\alpha в соответственных точках ( x фиксировано) пересекаются в одной и той же точке

S\!\left(x+\frac{1}{p(x)};\,x+\frac{q(x)}{p(x)}\right).

Исключая в системе аргумент x , получаем уравнение геометрического места точек S \colon f(\xi,\eta)=0 .

Пример 6. Найти решение уравнения y"-y=\cos{x}-\sin{x} , удовлетворяющее условию: y ограничено при y\to+\infty .

Решение. Общее решение данного уравнения y=Ce^x+\sin{x} . Любое решение уравнения, получаемое из общего решения при C\ne0 , будет неограниченно, так как при x\to+\infty функция \sin{x} ограничена, а e^x\to+\infty . Отсюда следует, что данное уравнение имеет единственное решение y=\sin{x} , ограниченное при x\to+\infty , которое получается из общего решения при C=0 .

Уравнение Бернулли

Дифференциальное уравнение Бернулли имеет вид

\frac{dy}{dx}+p(x)y=q(x)y^n , где n\ne0;1 (при n=0 и n=1 это уравнение является линейным).

С помощью замены переменной z=\frac{1}{y^{n-1}} уравнение Бернулли приводится к линейному уравнению и интегрируется как линейное.

Пример 7. Решить уравнение Бернулли y"-xy=-xy^3 .

Решение. Делим обе части уравнения на y^3 :

\frac{y"}{y^3}-\frac{x}{y^2}=-x

Делаем замену переменной \frac{1}{y^2}=z\Rightarrow-\frac{2y"}{y^3}=z" , откуда \frac{y"}{y^3}=-\frac{z"}{2} . После подстановки последнее уравнение обратится в линейное уравнение

-\frac{z"}{2}-xz=-x или z"+2xz=2x , общее решение которого z=1+Ce^{-x^2}.


Отсюда получаем общий интеграл данного уравнения

\frac{1}{y^2}=1+Ce^{-x^2} или y^2(1+Ce^{-x^2})=1.

Замечание. Уравнение Бернулли может быть проинтегрировано также методом вариации постоянной, как и линейное уравнение, и с помощью подстановки y(x)=u(x)v(x) .

Пример 8. Решить уравнение Бернулли xy"+y=y^2\ln{x}. .

Решение. Применим метод вариации произвольной постоянной. Общее решение соответствующего однородного уравнения xy"+y=0 имеет вид y=\frac{C}{x} . Общее решение уравнения ищем в виде y=\frac{C(x)}{x} , где C(x) - новая неизвестная функция. Подставляя в исходное уравнение, будем иметь

C"(x)=C^2(x)\frac{\ln{x}}{x^2}.

Для нахождения функции C(x) получим уравнение с разделяющимися переменными, из которого, разделяя переменные и интегрируя, найдем

\frac{1}{C(x)}=\frac{\ln{x}}{x}+\frac{1}{x}+C~\Rightarrow~C(x)=\frac{x}{1+Cx+\ln{x}}.

Итак, общее решение исходного уравнения y=\frac{1}{1+Cx+\ln{x}} .

Некоторые нелинейные уравнения первого порядка с помощью удачно найденной замены переменных сводятся к линейным уравнениям или к уравнениям Бернулли.

Пример 9. Решить уравнение y"+\sin{y}+x\cos{y}+x=0 .

Решение. Запишем данное уравнение в виде y"+2\sin\frac{y}{2}\cos\frac{y}{2}+2x\cos^2\frac{y}{2}=0. .

Деля обе части уравнения на 2\cos^2\frac{y}{2} , получаем \frac{y"}{2\cos^2\dfrac{y}{2}}+\operatorname{tg}\frac{y}{2}+x=0 .

Замена \operatorname{tg}\frac{y}{2}=z\Rightarrow\frac{dz}{dx}=\frac{y"}{\cos^2\dfrac{y}{2}} приводит это уравнение к линейному \frac{dz}{dx}+z=-x , общее решение которого z=1-x+Ce^{-x} .

Заменяя z его выражением через y , получаем общий интеграл данного уравнения \operatorname{tg}\frac{y}{2}=1-x+Ce^{-x} .

В некоторых уравнениях искомая функция y(x) может находиться под знаком интеграла. В этих случаях иногда удается путем дифференцирования свести данное уравнение к дифференциальному.

Пример 10. Решить уравнение x\int\limits_{x}^{0}y(t)\,dt=(x+1)\int\limits_{0}^{x}ty(t)\,dt,~x>0 .

Решение. Дифференцируя обе части этого уравнения по x , получаем

\int\limits_{0}^{x}y(t)\,dt+xy(x)=\int\limits_{0}^{x}ty(t)\,dt+x(x+1)y(x) или Источник информации