Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Это явление, открытое в 1842 г., носит название эффекта Доплера .

Звуковые волны распространяются в воздухе (или другой однородной среде) с постоянной скоростью, которая зависит только от свойств среды. Однако, длина волны и частота звука могут существенно изменяться при движении источника звука и наблюдателя.

Рассмотрим простой случай, когда скорость источника υ И и скорость наблюдателя υ Н относительно среды направлены вдоль прямой, которая их соединяет. За положительное направление для υ И и υ Н можно принять направление от наблюдателя к источнику. Скорость звука υ всегда считается положительной.

Рис. 2.8.1 иллюстрирует эффект Доплера в случае движущегося наблюдателя и неподвижного источника. Период звуковых колебаний, воспринимаемых наблюдателем, обозначен через T Н. Из рис. 2.8.1 следует:

Принимая во внимание

Если наблюдатель движется в направлении источника (υ Н > 0), то f Н > f И, если наблюдатель движется от источника (υ Н < 0), то f Н < f И.

На рис. 2.8.2 наблюдатель неподвижен, а источник звука движется с некоторой скоростью υ И. В этом случае согласно рис. 2.8.2 справедливо соотношение:

Отсюда следует:

Если источник удаляется от наблюдателя, то υ И > 0 и, следовательно, f Н < f И. Если источник приближается к наблюдателю, то υ И < 0 и f Н > f И.

В общем случае, когда и источник, и наблюдатель движутся со скоростями υ И и υ Н, формула для эффекта Доплера приобретает вид:

Это соотношение выражает связь между f Н и f И. Скорости υ И и υ Н всегда измеряются относительно воздуха или другой среды, в которой распространяются звуковые волны. Это так называемый нерелятивистский Доплер-эффект .

В случае электромагнитных волн в пустоте (свет, радиоволны) также наблюдается эффект Доплера. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость υ источника и наблюдателя.

Выражение для релятивистского Доплер-эффекта имеет вид

где c - скорость света. Когда υ > 0, источник удаляется от наблюдателя и f Н < f И, в случае υ < 0 источник приближается к наблюдателю, и f Н > f И.

Доплер-эффект широко используется в технике для измерения скоростей движущихся объектов («доплеровская локация» в акустике, оптике и радио).

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Частота волны в общем виде, зависит только от того, с какой скоростью двигается приемник

Как только волна пошла от источника, скорость ее распространения определяется только свойствами среды, в которой она распространяется, - источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера .

Для того чтоб был более понятным, рассмотрим пример на машине с сиреной.

Предположим для начала, что машина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия - области повышенного давления, - чередующиеся с разряжениями. Пики сжатия - «гребни» акустической волны - распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки. Так вот, пока машина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только машина тронется с места в вашу сторону, добавится новый эффект . За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если машина с звуковым сигналом поедет в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

Имеет важное значение в астрономии, гидролокации и радиолокации. В астрономии по доплеровскому сдвигу определенной частоты испускаемого света можно судить о скорости движения звезды вдоль линии ее наблюдения. Наиболее удивительный результат дает наблюдение доплеровского сдвига частот света удаленных галактик: так называемое красное смещение свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием. Вопрос о том, расширяется ли Вселенная подобным образом или красное смещение обусловлено чем-то иным, а не «разбеганием» галактик, остается открытым.

В формуле мы использовали.

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

  • Воск
  • Полиморфизм компьютерных вирусов

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только относительное движение источника и приёмника.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

где f 0 - частота, с которой источник испускает волны, c - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

u - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив значение частоты из формулы (1) в формулу (2), получим формулу для общего случая.

где с - скорость света, v - относительная скорость приёмника и источника (положительная в случае их удаления друг от друга).

Как наблюдать эффект Доплера

Поскольку явление характерно для любых колебательных процессов, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

Доплеровский радар

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Смотреть что такое "Доплеровское смещение" в других словарях:

    доплеровское смещение - Doplerio poslinkis statusas T sritis fizika atitikmenys: angl. Doppler displacement; Doppler shift vok. Doppler Verschiebung, f rus. доплеровский сдвиг, m; доплеровское смещение, n pranc. déplacement Doppler, m; déviation Doppler, f … Fizikos terminų žodynas

    доплеровское смещение частоты - Doplerio dažnio poslinkis statusas T sritis radioelektronika atitikmenys: angl. Doppler frequency displacement; Doppler frequency shift vok. Doppler Frequenzverschiebung, f rus. доплеровский сдвиг частоты, m; доплеровское смещение частоты, n… … Radioelektronikos terminų žodynas

    Красное смещение сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектра … Википедия

    Увеличение длин волн (l) линий в эл. магн. спектре источника (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Количественно К. с. характеризуется величиной z=(lприн lисп)/lисп, где lисп и lприн… … Физическая энциклопедия

    Гравитационное синее смещение кванта (фотона) или иной элементарной частицы (такой как электрон, или протон) при её падении в гравитационное поле (создаваемое жёлтой звездой в нижней части … Википедия

    Понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается… … Большая советская энциклопедия

    Изменение частоты колебаний w или длины волны l, воспринимаемой наблюдателем, при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Д. э. проще всего объяснить на след. примере. Пусть неподвижный источник испускает … Физическая энциклопедия

    Теории относительности образуют существенную часть теоретического базиса современной физики. Существуют две основные теории: частная (специальная) и общая. Обе были созданы А.Эйнштейном, частная в 1905, общая в 1915. В современной физике частная… … Энциклопедия Кольера

    Раздел астрономии, изучающий космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа.… … Энциклопедия Кольера

    Горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к… … Энциклопедия Кольера

Замечали ли вы когда-нибудь, что звук сирены машины имеет различную высоту при её приближении или отдалении относительно вас?

Разность частоты гудка или сирены отдаляющегося и приближающегося поезда или машины являются, пожалуй, самым наглядным и распространённым примером эффекта Доплера. Теоретически открытый австрийским физиком Кристианом Доплером, этот эффект впоследствии сыграет ключевую роль в науке и технике.

Для наблюдателя длина волны излучения будет иметь различное значение при различных скоростях источника относительно наблюдателя. При приближении источника длина волны будет уменьшаться, при отдалении – увеличиваться. Следовательно, с длинной волны меняется и частота. Поэтому частота гудка приближающегося поезда заметно выше частоты гудка при его отдалении. Собственно, в этом и заключается суть эффекта Доплера.

Эффект Доплера лежит в основе работы многих измерительных и исследовательских приборов. Сегодня его повсеместно применяют в медицине, авиации, космонавтики и даже быту. С помощью эффекта Доплера работает спутниковая навигация и дорожные радары, аппараты УЗИ и охранная сигнализация. Эффект Доплера получил широко применим в научных исследованиях. Пожалуй, наиболее он известен именно в астрономии.

Объяснение эффекта

Чтобы понять природу эффекта Доплера достаточно взглянуть на водную гладь. Круги на воде прекрасно демонстрируют все три составляющие любой волны. Представим, что какой-нибудь неподвижный поплавок создаёт круги. В таком случае период будет соответствовать времени, прошедшему между испусканием одного и последующего круга. Частота равняется количеству кругов, испущенных поплавком за определённый промежуток времени. Длина волны будет равна разности радиусов двух последовательно испущенных кругов (расстоянию между двумя соседними гребнями).

Представим, что к этому неподвижному поплавку приближается лодка. Так как она движется навстречу к гребням, к скорости распространения кругов прибавится скорость лодки. Поэтому относительно лодки скорость встречных гребней увеличится. Длина волны в тоже время уменьшится. Следовательно, время, которое пройдёт между ударами двух соседних кругов о борт лодки, уменьшиться. Другими словами, уменьшится период и, соответственно, увеличится частота. Точно также для удаляющейся лодки скорость гребней, которые теперь будут догонять её, уменьшиться, а длина волны увеличится. Что означает увеличение периода и уменьшения частоты.

Теперь представим, что поплавок расположен между двумя неподвижными лодками. Причём, рыбак на одной из них тянет поплавок к себе. Приобретая скорость относительно глади, поплавок продолжает испускать точно такие же круги. Однако центр каждого последующего круга будет смещён относительно центра предыдущего в сторону лодки, к которой приближается поплавок. Поэтому со стороны этой лодки расстояние между гребнями будет уменьшено. Получается, до лодки с рыбаком, что тянет поплавок, придут круги с уменьшенной длинной волны, а значит и с уменьшенным периодом и увеличенной частотой. Аналогичным образом до другого рыбака дойдут волны с увеличенной длиной, периодом и уменьшенной частотой.

Разноцветные звёзды

Такие закономерности изменения характеристик волн на водной глади в своё время заметил Кристиан Доплер. Он описал каждый такой случай математически и применил полученные данные к звуку и свету, которые также имеют волновую природу. Доплер предположил, что таким образом цвет звёзд напрямую зависит от того, с какой скоростью они приближаются или удаляются от нас. Эту гипотезу он изложил в статье, которую презентовал в 1842 году.

Заметим, что насчёт цвета звёзд Доплер заблуждался. Он полагал, что все звёзды излучают белый цвет, который впоследствии искажается из-за их скорости относительно наблюдателя. На самом деле эффект Доплера влияет не на цвет звёзд, а на картину их спектра. У отдаляющихся от нас звёзд все тёмные линии спектра будут увеличивать длину волны – смещаться в красную сторону. Этот эффект закрепился в науке под названием «красное смещение». У приближающихся звёзд напротив, линии стремятся к части спектра с более высокой частотой – фиолетовому цвету.

Такую особенность линий спектра, основываясь на формулах Доплера, теоретически предсказал в 1848 французский физик АрманФизо. Экспериментально это было подтверждено в 1868 году Уильямом Хаггинсом, который внёс большой вклад в спектральное исследование космоса. Уже в 20 веке эффект Доплера для линий в спектре получит название «красное смещение», к которому мы ещё вернёмся.

Концерт на рельсах

В 1845 году голландский метеоролог Бёйс-Баллот, а затем и сам Доплер, провели серию экспериментов для проверки «звукового» эффекта Доплера. В обоих случаях они использовали, оговорённый ранее, эффект гудка приближающегося и отдаляющегося поезда. Роль гудка им выполняли группы трубачей, которые играли определённую ноту, находясь в открытом вагоне движущегося состава.

Бёйс-Баллот пускал трубачей мимо людей с хорошим слухом, которые фиксировали изменение ноты при различной скорости состава. Затем он повторил этот эксперимент, поместив трубачей на платформу, а слушателей – в вагон. Доплер же фиксировал диссонанс нот двух групп трубачей, которые приближались и отдалялись от него одновременно, играя одну ноту.

В обоих случаях эффект Доплера для звуковых волн успешно подтвердился. Более того, каждый из нас может провести этот эксперимент в повседневной жизни и подтвердить его для себя. Поэтому не смотря на то, что эффект открытие Доплера подвергалось критике со стороны современников, дальнейшие исследования сделали его неоспоримым.

Как отмечалось ранее, эффект Доплера применяется для определения скорости космических объектов относительно наблюдателя.

Тёмные линии на спектре космических объектов изначально всегда расположены в строго фиксированном месте. Это место соответствует длине волны поглощениям того или иного элемента. У приближающегося или удаляющегося объекта все полосы меняют своё положения в фиолетовую или красную область спектра соответственно. Сравнивая спектральные линии земных химических элементов с аналогичными линиями на спектрах звёзд, можно оценить с какой скоростью приближается или удаляется от нас объект.

Красное смещение на спектрах галактик было обнаружено американским астрономом Весто Слайфером в 1914 году. Его соотечественник Эдвин Хаббл сопоставлял, открытые им же, расстояния до галактик с величиной их красного смещения. Так в 1929 году он пришёл к выводу, что чем дальше галактика, тем быстрее она удаляется от нас. Как окажется в последствие, открытый им закон был довольно неточен и не совсем верно описывал реальную картину. Однако Хаббл задал верную тенденцию для дальнейших исследований других учёных, которые впоследствии введут понятия космологического красного смещения.

В отличие от доплеровского красного смещения, возникающего из-за собственного движения галактик относительно нас, космологическое возникает из-за расширения пространства. Как известно, Вселенная равномерно расширяется по всему своему объёму. Поэтому чем дальше друг от друга две галактики, тем с большими скоростями они разбегаются друг от друга. Так каждый мегапарсек между галактиками каждую секунду удалят их друг от друга примерно на 70 километров. Это величина называется постоянной Хаббла. Что интересно, изначально сам Хаббл оценил свою постоянную в целых 500 км/с на мегапарсек.

Это объясняется тем, что он никак не учитывал то, что красное смещение любой галактики складывается из двух разных красных смещений. Помимо того, что галактиками движет расширение Вселенной, они также совершают собственные движения. Если релятивистское красное смещение имеет одинаковое распределение для всех расстояний, то доплеровское принимает самые непредсказуемые расхождения. Ведь собственное движение галактик внутри их скоплений зависит лишь от взаимных гравитационных воздействий.

Близкие и далёкие галактики

Между близкими галактиками постоянная Хаббла практически не применима для оценки расстояний между ними. К примеру, галактика Андромеда относительно нас имеет суммарное фиолетовое смещение, так как приближается к Млечному Пути со скоростью около 150 км/с. Если мы применим к ней закон Хаббла, то она должна удаляться от нашей галактики со скоростью 50 км/с, что совсем не соответствует реальности.

Для далёких же галактик доплеровское красное смещение практически неощутимо. Их скорость удаления от нас лежит в прямой зависимости от расстояния и с небольшой погрешностью соответствует постоянной Хаббла. Так самые далёкие квазары удаляются от нас скоростью большей, чем скорость света. Как это ни странно, это не противоречит теории относительности, ведь это скорость расширяющегося пространства, а не самих объектов. Поэтому важно уметь различать доплеровское красное смещение от космологического.

Также стоит отметить, в случае электромагнитных волн имеют место быть и релятивистские эффекты. Сопутствующие искажение времени и изменение линейных размеров при движении тела относительно наблюдателя также влияют на характер волны. Как и в любом случае с релятивистскими эффектам

Несомненно, без эффекта Доплера, с помощью которого произошло открытие красного смещения, мы бы не знали о крупномасштабной структуре Вселенной. Однако не только этим астрономы обязаны этому свойству волн.

Эффект Доплера позволяет обнаружить незначительные отклонения в положении звёзд, которые могут создавать планеты, обращающиеся вокруг них. Благодаря этому было открыто сотни экзопланет. Также он используется для подтверждения наличия экзопланет, предварительно обнаруженных с помощью других методов.

Эффект Доплера сыграл решающую роль в исследовании тесных звёздных систем. Когда две звезды настолько близки, что их невозможно увидеть по-отдельности, на помощь астрономам приходит эффект Доплера. Он позволяет проследить невидимое взаимное движение звёзд по их спектру. Такие звёздные системы даже получили название «оптически двойные».

С помощью эффекта Доплера можно оценить не только скорость космического объекта, но и скорость его вращения, расширения, скорость его атмосферных потоков и многого другого. Скорость колец Сатурна, расширения туманностей, пульсации звёзд – всё это измерена благодаря этому эффекту. С помощью него даже определяют температуру звёзд, ведь температура также являет собой показатель движения. Можно сказать, что практически всё, что связано со скоростями космических объектов, современные астрономы измеряют, использую именно эффекту Доплера.