Как мы упоминали, в трубах не очень длинных и достаточно широких трение настолько невелико, что им можно пренебречь. При этих условиях падение давления так мало, что в трубе постоянного сечения жидкость в манометрических трубках находится практически на одной высоте. Однако, если труба имеет в разных местах неодинаковое сечение, то даже в тех случаях, когда трением можно пренебречь, опыт обнаруживает, что статическое давление в разных местах различно.

Возьмем трубу неодинакового сечения (рис. 311) и будем пропускать через нее постоянный поток воды. По уровням в манометрических трубках мы увидим, что в суженных местах трубы статическое давление меньше, чем в широких. Значит, при переходе из широкой части трубы в более узкую степень сжатия жидкости уменьшается (давление уменьшается), а при переходе из более узкой части в широкую - увеличивается (давление увеличивается).

Рис. 311. В узких частях трубы статическое давление текущей жидкости меньше, чем в широких

Это объясняется тем, что в широких частях трубы жидкость должна течь медленнее, чем в узких, так как количество жидкости, протекающей за одинаковые промежутки времени, одинаково для всех сечений трубы. Поэтому при переходе из узкой части трубы в широкую скорость жидкости уменьшается: жидкость тормозится, как бы натекая на препятствие, и степень сжатия ее (а также ее давление) растет. Наоборот, при переходе из широкой части трубы в узкую скорость жидкости увеличивается и сжатие ее уменьшается: жидкость, ускоряясь, ведет себя подобно распрямляющейся пружине.

Итак, мы видим, что давление жидкости, текущей по трубе, больше там, где скорость движения жидкости меньше, и обратно: давление меньше там, где скорость движения жидкости больше. Эту зависимость между скоростью жидкости и ее давлением называют законом Бернулли по имени швейцарского физика и математика Даниила Бернулли (1700-1782).

Закон Бернулли имеет место и для жидкостей и для газов. Он остается в силе и для движения жидкости, не ограниченного стенками трубы, - в свободном потоке жидкости. В этом случае закон Бернулли нужно применять следующим образом.

Допустим, что движение жидкости или газа не изменяется с течением времени (установившееся течение). Тогда мы можем представить себе внутри потока линии, вдоль которых происходит движение жидкости. Эти линии называются линиями тока; они разбивают жидкость на отдельные струи, которые текут рядом, не смешиваясь. Линии тока можно сделать видимыми, вводя в поток воды жидкую краску через тонкие трубочки. Струйки краски располагаются вдоль линий тока. В воздухе для получения видимых линий тока можно воспользоваться струйками дыма. Можно показать, что закон Бернулли применим для каждой струи в отдельности : давление больше в тех местах струи, где скорость в ней меньше и, следовательно, где сечение струи больше, и обратно. Из рис. 311 видно, что сечение струи велико в тех местах, где линии тока расходятся; там же, где сечение струи меньше, линии тока сближаются. Поэтому закон Бернулли можно сформулировать еще так: в тех местах потока, где линии тока гуще, давление меньше, а в тех местах, где линии тока реже, давление больше.

Возьмем трубу, имеющую сужение, и будем пропускать по ней с большой скоростью воду. Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку (рис. 312), то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой. Используя это явление, можно построить разрежающий насос - так называемый водоструйный насос. В изображенной на рис. 313 модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

1. Скорость жидкости и сечение трубы. Предположим, что жидкость течет по горизонтальной трубе, сечение которой в разных местах различное (часть такой трубы изображена на рисунке 147).

Выделим мысленно несколько сечений в трубе, площади которых обозначим через S 1 , S 2 , S 3 . За какой-то промежуток времени t через каждое из этих сечений должна пройти жидкость одного и тоге же объема (одной и той же массы) Вся жидкость, которая за время t проходит через первое сечение должна за это же время пройти и через второе сечение, и третье сечение. Если бы это было не так и через сечение площадью S 3 за время t прошло меньше жидкости, чем через сечение площадью S 2 , то избыток жидкости должен был где-то накапливаться. Но жидкость заполняет трубу, и накапливаться ей негде. Заметим, что мы считаем, что жидкость данной массы повсюду имеет один и тот же объем, что она не может сжиматься (о жидкости говорят, что она несжимаема) .

Как же может жидкость, протекшая через первое сечение, «успеть» за то же время протечь и через значительно меньшее сечение площадью S 2 ? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких.

2. В чем состоит закон Бернулли?

2. Давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость ее движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше.

3. Можно ли считать, что закон Бернулли - следствие закона сохранения энергии?

3. Можно. Скорость и давление. Так как при переходе жидкости с широкого участка трубы в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участками трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила.

Этой силой может быть только разность между силами давления в широком и узком участках трубы (ведь труба горизонтальная, так что сила тяжести везде одинакова). В широком участке трубы давление должно быть больше, чем в узком.

Этот вывод непосредственно следует из закона сохранения энергии.

4. К какому виду механических сил относится сила, ускоряющая движение жидкости в узких местах трубы?

4. Сила давления жидкости - это и есть сила упругости сжатой жидкости.

5. Почему на наконечниках пожарных шлангов отверстия узкие?

5. Т.к в узких частях труб скорость течения жидкости велика

6. В чем различие между водоструйным насосом и пульверизатором?

6. Давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость ее движения меньше, и наоборот, в тех частях, где скорость больше, давление меньше.

Можно, следовательно, подобрать такое малое сечение, чтобы давление в нем было меньше атмосферного. На этом основано действие водоструйного насоса. Струю воды пропускают через трубку А с узким отверстием на конце (рис. 148). Давление жидкости у отверстия можно сделать меньше атмосферного. Тогда воздух из откачиваемого сосуда через трубку В втягивается к концу трубки А и удаляется вместе с водой.

Закон Бернулли относится не только к жидкости, но и к газу, если газ не сжимается настолько, чтобы изменился его объем. Поэтому в узких частях труб, по которым течет газ, давление тоже может быть сделано меньше атмосферного. На этом основано действие пульверизатора, в котором быстрый поток газа увлекает за собой жидкость.

Для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.

Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости или газа.

Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.

Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится:

Из Уравнения Бернулли можно сделать один важный вывод . При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает.

Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

В Формуле мы использовали:

Плотность жидкости или воздуха

Уравнение Бернулли является основным уравнением гидродинамики , устанавливающим связь между средней скоростью потока и гидродинамическим давлением в установившемся движении.

Рассмотрим элементарную струйку в установившемся движении идеальной жидкости. Выделим двумя сечениями, перпендикулярными к направлению вектора скоростиu , элемент длиной dl и площадью dF . Выделенный объем будет находиться под действием силы тяжести

и сил гидродинамического давления
.

Так как
, то
.

Учитывая, что в общем случае скорость выделенного элемента
, его ускорение

.

Применив к выделенному элементу весом
уравнение динамики
в проекции на траекторию его движения, получим

Учитывая то, что
и что при установившемся движении
, после интегрирования и деления на
получим полный напор потока в рассматриваемом сечении:

,

где - геометрический напор (высота), выражающий удельную потенциальную энергию положения частички жидкости над некоторой плоскостью отсчета, м,

- пьезометрический напор, выражающий удельную энергию давления, м,

- скоростной напор, выражающий удельную кинетическую энергию, м,

- статический напор, м.

Это и есть уравнение Бернулли. Трехчлен этого уравнения выражает напор в соответствующем сечении и представляет собой удельную (отнесенную к единице веса) механическую энергию, переносимую элементарной струйкой через это сечение.

Впрактике технических измерений уравнение Бернулли используют для определения скорости жидкости
.

Уравнение Бернулли можно получить еще и следующим образом. Представим себе, что рассматриваемый нами элемент жидкости является неподвижным. Тогда на основании основного уравнения гидростатики
потенциальная энергия жидкости в сечениях 1 и 2 будет

.

Движение жидкости характеризуется появлением кинетической энергии, которая для единицы веса будет равна для рассматриваемых сечений
и
. Полная энергия потока элементарной струйки будет равна сумме потенциальной и кинетической энергии, поэтому

.

Таким образом, основное уравнение гидростатики является следствием уравнения Бернулли.

Лекция №7

Уравнение бернулли для реальной жидкости

Уравнение Бернулли в установившемся движении идеальной жидкости имеет вид:

.

где - геометрический напор (высота), м,- пьезометрический напор, м,

- скоростной напор, м,
- статический напор, м.

В случае реальной жидкости полный напор для разных струек в одном и том же сечении потока не будет одинаковым, так как неодинаковым будет скоростной напор в разных точках одного и того же сечения потока. Кроме того, в виду рассеяния энергии из-за трения напор от сечения к сечению будет убывать.

Однако для сечений потока, взятых там, где движение на его участках плавно меняющееся, для всех проходящих через сечение элементарных струек будет постоянным статический напор

.

Если уравнение Бернулли для элементарной струйки распространить на весь поток и учесть потери напора на сопротивление движению, то получим

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного – 2; v – средняя скорость потока; h – уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Расчет дополнительного члена h в уравнении Бернулли является основной задачей инженерной гидравлики.

Графическое представление уравнения Бернулли для нескольких сечений потока реальной жидкости имеет вид:

Линия А, которая проходит по уровням в пьезометрах, измеряющих в точках избыточное давление, называетсяпьезометрической линией . Она показывает изменение отсчитанного от плоскости сравнения статического напора Н с по длине потока. Пьезометрическая линия отделяет область измерения потенциальной и кинетической энергии.

Полный напор Н уменьшается по длине потока (линия В – линия полного напора реальной жидкости).

Градиент напора по длине потока называется гидравлическим уклоном и выражается формулой

,

т.е. гидравлический уклон численно равен синусу угла между горизонталью и линией полного напора реальной жидкости.

Расходомер Вентури

Расходомер Вентури представляет собой устройство, устанавливаемое в трубопроводах и осуществляющее сужение потока – дросселирование. Расходомер состоит из двух участков – плавно сужающегося (сопла) и постепенно расширяющегося (диффузора). Скорость потока в суженном месте возрастает, а давление падает. В наибольшем и наименьшем сечениях трубы установлены пьезометры, показания которых позволяют определить перепад пьезометрического напора между двумя сечениями трубы и записать

.

В этом уравнении неизвестными являются v 1 и v 2 . Из уравнения неразрывности следует
, что позволяет определить скоростьv 2 и расход жидкости через трубу

,

где С – константа расходомера, учитывающая также и потери напора, так как определяется опытом.

Аналогично ведется расчет расходомерной шайбы, обычно выполняемой в виде кольца. Расход определяется по замеренной разности уровней в пьезометрах.

Уравнение Бернулли и уравнение неразрывности потока являются основными при расчете гидравлических систем.

Цели урока:

  • Изучить частный случай закона сохранения энергии в применении к объяснению зависимости давления от скорости движения жидкости и газа;
  • Сформулировать закон Бернулли;
  • Рассмотреть примеры его применения и проявления на практике.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, презентация к уроку.

Оборудование для демонстраций: весы, макет крыла самолета, небольшая воронка, теннисный шарик, воздуходувка (фен), демонстрационный манометр, таблички на магнитах с физическими формулами.

Оборудование для практических работ: стакан с водой, одноразовый шприц, два листа бумаги, бруски.

Ход урока

I. Организационный момент.

Тема, скорее название, нашего урока звучит не совсем обычно. Может быть кто-то из вас подумал: причем здесь физика? А действительно, причем здесь физика? А это и предстоит нам выяснить сегодня. В конце урока вы должны будете сами сформулировать правильно “физическую” тему. Я же скажу только, что эти объекты объединены одним и тем же законом, а именно, законом сохранения полной механической энергии. Работать вы будете на рабочих картах (приложение 1). Напишите свою фамилию на карте в правом верхнем углу.

II. Актуализация знаний.

Итак, начинаем.Раз уж я упомянула закон сохранения механической энергии, то давайте его вспомним.

1. Что утверждает закон сохранения полной механической энергии?
2. Что называется полной механической энергией?
3. Какая энергия называется кинетической? По какой формуле рассчитывается?
4. Какая энергия называется потенциальной? Формулы потенциальной энергии.

III. Основная часть. Изучение нового материала.

Сегодня на уроке мы будем говорить о применении закона сохранения для движущихся потоков жидкостей и газов. Движение жидкостей и газов разделяется на ламинарное и турбулентное. На дидактических картах (приложение 2) у вас есть их определения. Давайте прочитаем. Мы будем рассматривать ламинарное течение.

А начнем мы с вопроса:можно ли удержать шарик в вертикальной воронке, выдувая из нее воздух? Хорошо, давайте проверим это на опыте. Критерием любой истины является опыт. Мне нужен помощник, который выполнит этот несложный эксперимент. Оказывается, чтобы удержать шарик в воронке надо выдувать воздух. Кто же может объяснить этот “парадокс”? Тогда запишем первый вопрос в таблицу на рабочей карте. Почему при выдувании воздуха из воронки шарик удерживается в ней?

Продолжаем отвечать на вопросы. Что произойдет с листом бумаги, если подуть над ним? Расположите лист бумаги на уровне рта и с силой продуйте воздух. Что произошло с листом бумаги? А почему? Запишите в таблицу на рабочих картах и этот вопрос: почему поднялся листок?

Проведем еще один опыт. Наберите в шприц воды из стакана и, надавливая на поршень, выпустите ее (добейтесь, чтобы она вытекала непрерывной струёй). Сначала выполняет товарищ по парте, а сосед наблюдает. Потом поменяйтесь ролями. Обратите внимание на толщину вытекающей струи. Струя становится уже. А теперь надо объяснить увиденное. Есть какие-то предположения? Записываем в таблицу второй вопрос: почему струя вытекающей воды становится уже? К этим вопросам мы вернемся попозже.

Что ж, вопросов, наверно, пока достаточно. Пора искать ответы. Поможет в этом известный вам закон сохранения механической энергии и неизвестный пока закон Бернулли.

Рассмотрим ламинарное течение жидкости по трубе разного сечения.Посмотрите на слайд. Там, где сечение не меняется скорость тоже остается постоянной. Но одинакова ли скорость течения жидкости на различных участках? И где больше? А может кто-нибудь объяснить почему? (Так как жидкость несжимаема, то за одинаковый промежуток времени t через каждое из этих сечений должна пройти жидкость одного и того же объема. Но как жидкость, протекающая через первое сечение может “успеть” за то же время протечь через значительно меньшее сечение? Очевидно, что для этого при прохождении узких частей трубы скорость движения жидкости должна быть больше, чем при прохождении широких).

Покажите на рисунке 1 в рабочих картах векторы скоростей в различных участках. А теперь проверим как это получилось у меня (слайд). Значит, скорость зависит от сечения. Более того, зависимость эта обратно пропорциональна. Математически это выражается следующим соотношением, которое носит название уравнения неразрывности струи: VS= const, здесь – V скорость жидкости, S – площадь сечения трубы, по которой течет жидкость. Сформулировать этот закон можно так: сколько вливается жидкости в трубу, столько должно и выливаться, если условия течения не изменяются. Скорость в узких участках трубы должна быть выше, чем в широких.

Отсюда следует, что

Вывод: чем меньше площадь сечения, тем больше скорость.

Задача №1. Как и во сколько раз изменится кинетическая энергии жидкости, если сечение трубы уменьшить в 2 раза? (Ответ увеличится в 4 раза). А потенциальная энергия? Осторожно, ошибка!

Потенциальная энергия уменьшится, но необязательно в 4 раза!

(Например: 100 = 100, 100 = 10 + 90, 100 = 40 + 60)

С вопросом о скорости вы справились хорошо. А что скажете о давлении воды в разных частях? Если изменяется, то как? На рисунке 2 отметьте уровень воды в вертикальных трубках в зависимости от давления жидкости в горизонтальной трубе. А теперь посмотрим, на этот слайд . В узких местах трубы высота столбика жидкости меньше, чем в широких. О чем говорит разная высота воды? Оказывается, в узких местах трубы давление жидкости меньше, чем в широких. А почему?

При переходе жидкости из широкого участка в узкий скорость течения увеличивается, то это значит, что где-то на границе между узким и широким участком трубы жидкость получает ускорение. А по второму закону Ньютона для этого на этой границе должна действовать сила. Этой силой может быть только разность между силами давления в широком и узком участках трубы. В широком участке трубы давление должно быть больше, чем в узком. Этот вывод следует из закона сохранения энергии. Если в узких местах трубы увеличивается скорость жидкости, то увеличивается и ее кинетическая энергия. А так как мы условились, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. Но это не потенциальная энергия “mgh”, потому что труба горизонтальная и высота h везде одинакова. Значит, остается только потенциальная энергия, связанная с силой упругости. Сила давления жидкости – это и есть сила упругости сжатой жидкости. В широкой части трубы жидкость несколько сильнее сжата, чем в узкой. Правда, мы только что говорили, что жидкость считается несжимаемой. Но это значит, что жидкость не настолько сжата, чтобы сколько-нибудь заметно изменился ее объем. Очень малое сжатие, вызывающее появление силы упругости, неизбежно. Оно и уменьшается в узких частях трубы.

Чтобы разобраться в причинах уменьшения давления в узких частях и увеличения в широких, используем закон сохранения энергии и математические навыки. Я начну, а вы будете помогать.

Работа сил давления, совершенная над элементом жидкости при его перемещении, равна:

здесь =V 1 и =V 2 – объемы жидкости, прошедшей за одно и тоже время через сечения 1 и 2. Подставим (2) в (1) и получаем:

Так как высота центра масс трубы не меняется, то h 1 = h 2 . Выберем нулевой уровень, проходящий через центр масс, тогда mgh 1 = mgh 2 = 0.

Так как жидкость практически несжимаема, то объемы ее, прошедшие за одно и тоже время равны, V 1 = V 2 (или ), поэтому обе части равенства можно разделить обе части на V.

Следовательно,

(*)

Таким образом, если скорость, например, увеличивается, то увеличивается первое слагаемое, значит, чтобы равенство выполнялось, на такую же величину второе слагаемое уменьшается, т.е. уменьшается давление.

Вывод: Чем больше скорость потока жидкости, тем меньше ее давление.

Зависимость давления от скорости течения называют эффектом, а уравнение (*) – законом Бернулли в честь автора, швейцарского ученого Даниила Бернулли, который, кстати, работал в С.Петербурге. Закон Бернулли для ламинарных потоков жидкости и газов является следствием закона сохранения энергии.

Убедимся на опыте, что полученный вывод справедлив и для газов. Для этого выполним еще практические задания (описание на дидактической карте).

1 Вариант. Возьмите в руки два листка бумаги и расположите их на расстоянии3– 4см друг от друга и продуйте несильно между ними воздух. Что наблюдаем? Почему? Между листочками давление уменьшилось, а снаружи осталось таким же. Повторите опыт, но подуйте теперь сильнее. Объясните этот результат.

2 Вариант. Положите листок на две книги, как показано на слайде. Продуйте воздух под листком сначала несильно, а потом сильнее. Объясните, что вы наблюдали.

Настало время для ответов на оставленные вами, но не забытые мною вопросы:

  • Почему при выдувании воздуха из воронки шарик удерживается в ней?
  • Почему поднялся листок?
  • Почему струя вытекающей воды становится уже?

Запишите ответы в таблицы.

Вот и настала очередь самолетов. Посмотрим видеофрагмент (Приложение 4).

Так почему же поднимается самолет? В чем причина возникновения подъемной силы?

Все дело в форме крыла и в угле атаки.

Убедимся на опыте (рисунок 1). Почему нарушилось равновесие весов?

Рисунок 1

Кстати сказать, у птиц крыло тоже имеет похожую форму.

Эффект Бернулли - это то, благодаря чему птицы и самолеты могут летать. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх.

Формулу для расчета подъемной силы впервые получил наш соотечественник Николай Егорович Жуковский – “отец русской авиации”.

F = (P 2 – P 1)S = –(v 1 2 – v 2 2)S

Что касается белок – летяг, то они, конечно же не могут развить большую скорость и форма “крыльев” немножко другая, поэтому и подъемная сила у них невелика и возникает она в большой степени из-за угла наклона. Как и обычная белка, летяга большую часть жизни проводит на деревьях, но на землю спускается гораздо реже. Между передними и задними лапами у неё имеется кожная перепонка, которая позволяет планировать с дерева на дерево. Так белка-летяга преодолевает расстояние до 50–60 м по нисходящей параболической кривой. Для прыжка летяга забирается на верхушку дерева. Во время полёта её передние конечности широко расставлены, а задние прижаты к хвосту, образуя характерный треугольный силуэт. Меняя натяжение перепонки, летяга маневрирует, иногда изменяя направление полёта на 90°. Хвост в основном выполняет роль тормоза. Посадку на ствол дерева летяга обычно совершает по касательной, как бы сбоку. Перед посадкой принимает вертикальное положение и цепляется всеми четырьмя лапами, после чего сразу перебегает на другую сторону ствола. Этот маневр помогает ей уворачиваться от пернатых хищников.

Задача№2: В полете давление воздуха под крылом самолета 97,8 кН/м 2 , а над крылом 96,8 кН/м 2 . Площадь крыла 20 м 2 . Определить подъемную силу.

Решение: F = PS, где P = P 2 – P 1, тогда F = (P 2 – P 1)S, F =20 . 10 3 H

Ответ: 20кН

Задача №3. О “крученых мячах” вы прочитаете самостоятельно текст и ответьте на вопросы.

Эффект Магнуса.

  1. Почему движущиеся вращающиеся тела отклоняются от прямолинейной траектории?
  2. Почему давление на мяч с разных сторон различно?
  3. Почему относительная скорость воздушного потока различна по разные стороны мяча?

Можно привести еще множество примеров: бумеранг, летающие тарелки, водоструйный насос, распылители, карбюраторы, катера на подводных крыльях.

А вот посмотрите, какую опасность представляет уменьшение давления для морских судов. Поток воды между судами имеет меньшее давление, чем снаружи. Все моряки знают, что два судна, идущих рядом на больших скоростях сильно притягиваются друг к другу. Еще опаснее, когда один корабль идет за другим. Силы притяжения, возникшие из-за разности давлений, стремятся корабли развернуть. Задний корабль разворачивается сильнее переднего. Столкновение в таких случаях неизбежно.

Задача №4. Очень часто лоцманы жалуются на коварные мели, которые так и притягивают к себе суда. Почему мели на реках притягивают суда?

IV. Закрепление изученного материала

Контрольный тест.

1. Жидкость течет через трубу с переменным поперечным сечением. В каком сечении трубы скорость “v ” течения жидкости и ее давление “P” на стенках максимальна?

  • v и P максимальны в сечении 1;
  • v и P максимальны в сечении 2;
  • v максимальны в сечении 1, P – в сечении 2;
  • v максимальны в сечении 2, P – в сечении 1;
  • v и P одинаковы во всех сечениях.

2. В какой трубке уровень воды будет выше?

  • Во всех одинаково.

3. Что произойдет, если продувать струю воздуха между двумя шариками от пинг-понга, подвешенными на нитях (смотри рисунок)?

  • Останутся неподвижными;
  • Будут двигаться вместе вправо или влево;
  • Отклонятся друг от друга;
  • Приблизятся друг к другу.

Подводя итог нашего урока, вспомним еще раз основные законы и уравнения, с которыми познакомились на уроке:

  1. Уравнение неразрывности струи – какую зависимость и каких величин оно выражает?
  2. Закон Бернулли – что он утверждает?

V. Рефлексия. Подведение итогов урока.

А теперь настало время дать нашему уроку “физическое” название. Какие будут ваши предложения?

Закон Бернулли как следствие закона сохранения энергии. (Проявление и применение закона сохранения энергии для движущихся потоков жидкости и газов ).

VI. Домашнее задание.

Домашнее задание:

  1. Задачи № 404, 406, 409, 410 (Рымкевич А.П. Физика. Задачник. 10-11 классы.- М.: Дрофа, 2003)
  2. Домашняя практическая работа: Сделайте из тонкой бумаги цилиндр диаметром 3 см, длиной 20 см. Положите его на стол на наклонную плоскость. Пронаблюдайте за траекторией, по которой скатывается цилиндр. Объясните наблюдаемое явление.