«Область определения функции» - Область определения квадратичной функции – любое действительное число. Функция называется логарифмической, если переменная величина стоит под знаком логарифма. Логарифмическая функция. Функция, переменная величина которой находится в показателе степени, называется показательной. Квадратичная функция.

«Общие свойства функций» - Общие свойства функций. Найти область определения функции. Четная функция. Является ли эта функция четной или нечетной. По графику определите множество значений функции. По графику определите значения Х. По графику определите промежутки убывания функции. Функция f(x) возрастающая. Дана функция y=f(x).

«Возрастание и убывание функции» - Возрастание и убывание функции синус. Рассмотрим еще один пример. Промежутками убывания косинуса являются отрезки , n - целое. Пусть, например, функция f четна и возрастает на промежутке , где b>a?0. Возрастание и убывание функций. Возрастание и убывание функции косинус. На рисунке ниже изображен график функции, определенной на отрезке [-1;10].

«Применение непрерывности» - Значение выражения. Геометрический смысл производной. Метод интервалов. Составить уравнение касательной к графику функции. Касательная к графику функции. График близок к касательной. Формула. Вычислим по формуле. Касательной к кривой в данной точке M называется предельное положение секущей NM. Гипербола.

«Экстремум функции» - Зависимость давления газа от температуры. Тема урока: «Признаки возрастания и убывания функции. Тест. Изменение силы тока при размыкании цепи. Исследование функции на экстремум». Изменение переменного тока. План: Зависимость силы тока от напряжения. Зависимость давления газа от объёма. Тема: «Признаки возрастания и убывания функции.

«Функции и их свойства» - Независимую переменную называют - аргумент. Возрастающая функция. Определение функции. Четные и нечетные функции. Монотонность функции. Значения зависимой переменной называют значениями функции. Все значения независимой переменной образуют область определения функции -D (f). 1. Значения функции положительны.

Всего в теме 23 презентации

Раздел I. Математика и физика

УДК 372.8 ББК 74.262.21

Н.Е. Ляхова, А.И. Гришина, И.В. Яковенко

ИСПОЛЬЗОВАНИЕ ОГРАНИЧЕННОСТИ ФУНКЦИЙ В ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

Аннотация. В статье представлена методика изучения метода решения «нестандартных» уравнений элементарной математики с использованием ограниченности функций.

Ключевые слова: решение уравнений, использование ограниченности функции.

N.E. Lyakhova, A.I Grishina, I.V. Yakovenko

USE OF LIMITATION OF FUNCTIONS IN THE SCHOOL COURSE OF MATHEMATICS

Abstract. The paper presents a methodology for studying the method for solving the "nonstandard" equations of elementary mathematics with limited functions. Key words: solution of equations, using a limited function.

Ограниченность функций позволяет решать многие нестандартные уравнения и неравенства, одновременно содержащие разнообразные функции, что не позволяет применить к ним стандартные методы решения задачи определенного типа. На использовании ограниченности функций построены такие методы решения уравнений и неравенств, как метод мини-максов и его следствия. Название метода - метод мини-максов - возможно, спорное, но оно позволяет быстро вспомнить суть метода и служит для ученика опорным знаком. Отметим, что изучение этого метода полезно для выпускника школы как с точки зрения расширения его возможностей по решению «нестандартных» задач, так и с точки зрения формирования навыков исследования функции (в особенности методами элементарной математики). И то и другое важно для подготовки выпускника к ЕГЭ по математике, так как контрольно - измерительные материалы традиционно содержат подобные задания, в то время как в школьных учебниках они представлены явно недостаточно либо не представлены совсем.

Суть метода мини-максов заключается в следующем утверждении.

Утверждение 1. Если на области определения X уравнения

а функция

то данное уравнение равносильно системе

f (*) = а g(*) = а "

Действительно, при указанных условиях равенство

возможно тогда и только тогда, когда функции f (*) и g (*) при одном и том же значении * принимают значение а. При этом число а будет являться для функций f (*) и g (*) соответственно наибольшим и наименьшим значениями на множестве X. Заметим, что в случае, если хотя бы одна из функций f (*) или g (*) на множестве X не принимает значение а, то уравнение

не имеет корней. Но в этом случае система также не имеет решений и, следовательно, равносильность уравнения и системы не нарушается. Поэтому при получении необходимых оценок нет необходимости устанавливать, что а является на множестве X наибольшим значением функции f(*) и наименьшим значением функции g(*) .

Используя утверждение 1 и свойства числовых неравенств, нетрудно доказать еще два утверждения, которые являются следствиями метода мини-максов.

Утверждение 2. Пусть множество X - пересечение областей определения функций f (х) и g (х), и на этом множестве имеют место неравенства

тогда неравенство

f (х) + g (х) > а + Ь,

равносильно уравнению

f (х) + g (х) = а + Ь, которое, в свою очередь, равносильно системе:

/ (х) = а, ё (х) = Ь.

Утверждение 3. Пусть множество X - пересечение областей определения функций f (х) и ё (х), и на этом множестве имеют место неравенства

0 < f (х) < а

ё (х) < Ь, где а > 0 , Ь > 0

тогда неравенство

f (х) ё (х) > а Ь

будет равносильно уравнению

f (х) ё (х) = а Ь, которое, в свою очередь, равносильно системе

/ (х) = а, ё(х) = Ь.

Как видно из формулировок утверждений, для реализации метода мини-максов (или его следствий) необходимо производить оценки функций, входящих в уравнения или неравенства. Фактически оценка функций является основным действием при реализации метода. Поэтому и обучение методу необходимо построить на выработке навыков оценки различных функций. На наш взгляд наиболее актуальными для школьников будут следующие приемы такой оценки.

1. Простейший прием - оценка функции вида f (х) = А ± а(х), где а(х) - некоторая неотрицательная функция.

5. Оценка сложной функции.

Остановимся подробнее на каждом приеме, проиллюстрируем его на примерах и приведем набор тренировочных упражнений для выработки навыков решения уравнений с использованием этого приема.

1. Простейший прием оценки функции. Пусть а(х) - некоторая неотрицательная функция, тогда:

Если f (х) = А + а(х), то f (х) > А;

Если f (х) = А - а(х), то f (х) < А.

Первый прием мы назвали простейшим, так как оценка в этом случае практически очевидна при условии, что ученику известен набор неотрицательных функций: 24х, х2", х~2", ха (гдеаеЩ-), |х|, |х| -х, arccosх, агс^х, ах и др. Кроме того, неотрицательные значения будут принимать сложные функции, являющиеся результатом композиции функций, если последняя функция композиции неотрицательна. Таким образом, список неотрицательных функций можно

обобщить: 2^и(х) , (ы(х))2" , (м(х))-2я,агеео8и(х), агссгёи(х), |и(х)|, |и(х) -и(х) , а"(х), (и(х))а (гдеае к).

Приведем примеры на использование метода мини-максов, при решении которых применяется рассмотренный прием оценки.

Пример 1. Решить уравнение 2 + |х(х -1)| = 2 - ^(х -1)(х + 2) . Решение. Функции

/ (х) = |х(х -1)|, Я (х) = 7 (х -1)(х + 2)

неотрицательны. Следовательно, имеет место следующая оценка левой и правой частей уравнения

2 + | х(х -1)| > 2,

2-у/(х-1)(х + 2) < 2 "

Тогда, согласно утверждению 1, исходное уравнение равносильно системе

Тогда:

Если функция f (u) возрастает на отрезке то имеет место неравенство

f (a) < f (u(x)) < f (b);

Если функция f (u) убывает на отрезке , то имеет место неравенство

f (b) < f (u(x)) < f (a) .

Пример 7. Решить уравнение log2 (x2 - 6x+11) = cos((x - 3) sin x).

Решение. Выделяя полный квадрат в квадратном трехчлене, стоящем под знаком логарифма, получим уравнение

log2 (2+(x - 3)2) = cos((x - 3) sin x). Оценим функции, стоящие в левой и правой частях этого уравнения.

f (x) = log2 (2+(x - 3)2) > 1. Действительно, 2 + (x - 3)2 > 2, функция log2 u возрастает, следовательно,

log2 (2+(x - 3)2) > log2 2 = 1. Функция u2 -монотонновозрастаетна ; б) f (х) ≥ g (x) в том и только в том случае, когда х ϵ [х 0 ; +∞). Наглядный смысл этого утверждения очевиден Утверждение 3. Если функция у = f (х) монотонно возрастает на всей числовой прямой, функция у = g (x) монотонно убывает на всей числовой прямой и f (х 0) = g (x 0), то справедливы следующие утвер­ждения:

Решить неравенство Решение. Функция f (х) = монотонно возрастает на всей числовой прямой, а функция g (x) = монотонно убывает на всей области определения. Поэтому неравен­ство f (х) > g (x) выполняется, если х > 2. Добавим область определения неравенства. Таким образом, получим систему Ответ: (2; 5).

Утверждение 4. Если функция у = f (х) монотонно возрастает, то уравнения f (х)=х и f (f (х))=х имеют одно и то же множество кор­ней, независимо от количество вложений. Следствие. Если n - натуральное число, а функция у = f (х) моно­тонно возрастает, то уравнения f (х)=х и n раз имеют одно и то же множество корней.

Решить уравнение. Ответ: Решение. П ри x ≥1 правая часть уравнения не меньше 1, а левая часть меньше 1. Следовательно, если уравнение имеет корни, то любой из них меньше 1. При x ≤0 правая часть уравнения неположительная, а левая часть положитель­на, в силу того что. Таким образом, любой корень данного уравнения принадлежит интервалу (0; 1) Умножив обе части данного уравнения на х, и разделив на x числитель и знаменатель левой части, получим

Откуда = . Обозначив через t , где t 0, получим уравнение = t . Рассмотрим возрастающую на своей области определения функцию f (t)= 1+ . Полученное уравнение можно записать в виде f (f (f (f (t))))= t , и по следствию утверждения 4 оно имеет то же множество решений, что и уравнение f (t)= t , т.е. уравнение 1 + = t , откуда. Единственным положительным корнем этого квадратного относительно уравнение является. Значит, откуда, т.е. , или. Ответ:

Утверждение 1. Если max f (x) = с и min g (x) = с, то уравнение f (x)= g (x) имеет то же множество решений, что и система Ограниченность Максимальное значение левой части равно 1 и минимальное значение правой части 1 , значит, решение уравнения сводиться к системе уравнений: , из второго уравнения находим возможный претендент x=0 , и убеждаемся, что он является решением и первого уравнения. Ответ: x=1 .

Решить уравнение Решение. Так как sin3x≤1 и cos4x≤1, левая часть данного уравнения не превосходит 7. Равной 7 она может быть в том и только том случае, если откуда где k , n ϵ Z . Остается установить, существуют ли такие целые k и n , при которых последняя система имеет решения. Ответ: Z

В задачах с неизвестными x и параметром a под областью определения понимают множество всех упорядоченных пар чисел (x ; a) , каждая из которых такова, что после подстановки соответствующих значений x и a во все входящие в задачу соотношения они будут определены. Пример 1. При каждом значение параметра a решите неравенство Решение. Найдем область определения этого неравенства. Из которых видно, что система Не имеет решений. Значит, область определения неравенства не содержит никаких пар чисел x и a , а поэтому неравенство не имеет решений. Область определения Ответ:

Инвариантность, т.е. неизменность уравнения или неравенства относительно замены переменной каким-либо алгебраическим выражением от этой переменной. Простейшим примером инвариантности является четность: если – четная функция, то уравнение инвариантно относительно замены x и – x , поскольку = 0. Инвариантность

Найти корни уравнения. Решение. Заметим, что пара инварианта относительно замене. Заменив в равенстве, получим. Умножив обе части данного равенства на 2 и вычтя из полученного равенства почленно равенство, находим 3 , откуда. Теперь осталось решить уравнение, откуда Корнями уравнения являются числа. Ответ: .

Найти все значения a , для каждого из которых уравнение имеет более трех различных решений. Решение задач с параметром Свойство монотонности

|x|= положительно X= |x|= Для существования двух корней числитель должен быть положителен. Поэтому При корни первого и второго уравнения совпадают, что не отвечает требованию условия: наличие более трех корней. Ответ: .

Найти все значения a , при каждом из которых уравнение имеет два корня. Преобразуем уравнение к виду И рассмотрим функцию f(x)= определенную и непрерывную на всей числовой прямой. График этой функции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида y= kt+l . f(x)= При любом раскрытие модуля первого выражения k не превосходит 8, поэтому возрастание и убывание функции f(x) будет зависеть от раскрытия второго модуля. При x f(x) будет убывать, а при x возрастать. То есть, при x=3 функция будет принимать наибольшее значение. Для того чтобы уравнение имело два корня, необходимо, чтобы f(3) Свойство монотонности

f(3)=12- |9-| 3+a || | 9-| 3+a || 9- | 3+a | - | 3+a | | 3+a | | 3+a | 3+a a Ответ: a

Найти все значения параметра а, при каждом из кото­рых для любого действительного значения х выполнено неравенство Перепишем неравенство в виде, введем новую переменную t = и рассмотрим функцию f (t) = , опреде­ленную и непрерывную на всей числовой прямой. График этой функ­ции представляет собой ломаную, состоящую из отрезков прямых и лучей, каждое звено которой является частью прямой вида, где к

Так как, то t ϵ [-1; 1]. В силу монотонного убывания функции у = f (t) достаточно проверить левый край данного отрезка. З. А истинным является Значит, что возможно, только если числа и и v одного знака либо какое-нибудь из них равно нулю. , = () () 0. Разложив квадрат­ные трехчлены на множители, получим неравенство (, из которого находим, что а ϵ (-∞; -1] U {2} U [ 4; +∞). Ответ: (-∞; - 1] U {2} U }