«Совершенствование вычислительных навыков» - Состав числа. Повторение действий. Умножение. Сложение. Правила раскрытия скобок. Cложение отрицательных чисел. Вычитание. Сложение обыкновенных дробей. Сложение чисел с разными знаками. Совершенствование вычислительных навыков. Вычитание однозначного числа. Опорная схема. Действие в столбик. Умножение одночлена на многочлен.

«Разность квадратов чисел» - Возведите в квадрат. Формула сокращенного умножения. Разность квадратов двух выражений. Работа с таблицей. Разность квадратов. Геометрический смысл формулы. Как можно прочитать формулу. Выполните умножение. Влияет ли порядок записи скобок на результат. Формула (а+b)(a-b)=a2-b2. Произведение разности двух выражений и их суммы.

«Умножение многочлена на многочлен» - Правило умножения многочлена на многочлен. Игра «Открой картинку». Открой картинку. Каждый член первого многочлена поочерёдно умножать на каждый член второго многочлена. Рассмотрим произведение самых простых многочленов, а именно двучленов. У одного многочлена m членов, а у другого n членов. План урока.

«Разложение многочлена на множители» - Предварительное преобразование. Провести классификацию данных многочленов по способу разложения на множители. Вынесение общего множителя за скобки. Применение формул сокращенного умножения. Метод выделения полного квадрата. Тестор. Ответы: Схема урока: Конфуций. Формулы сокращенного умножения. Способ группировки.

«Преобразование целого выражения в многочлен» - Какие из выражений являются целыми: Примерами целых выражений служат такие выражения: Цели урока: Упражнять учащихся в приведении подобных слагаемых. Многочлены и, в частности, одночлены являются целыми выражениями. Развивать вычислительные навыки учащихся. Ввести понятие целого выражения. Преобразование целых выражений.

«Урок Формулы сокращённого умножения» - Цель урока: Повторить и обобщить практические навыки и умения по теме «Формулы сокращённого умножения». Тема урока: ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ. Подготовиться к предстоящей контрольной работе. Задача: Стороны первого квадрата на 1 см больше сторон второго квадрата, а площадь первого квадрата на 9см2 больше площади второго квадрата.

Всего в теме 24 презентации

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

ОТДЕЛЕНИЕ IV.

РАЗЛОЖЕНИЕ ВЫРАЖЕНИЙ НА ПРОСТЫЕ МНОЖИТЕЛИ.

§ 1.Преобразование многочленов в произведение без посредства формул сокращенного умножения и деления.

Если все члены многочлена содержат общий множитель, то можно разделить весь многочлен на этот множитель и обозначить умножение того же множителя на полученное многочленное частное. От этого данное выражение не изменит своего количественного значения, но примет форму произведения. Например, двучлен аb+ас можно представить в виде а (b+с ).

Такое преобразование формы называется вынесением общего множителя за скобки. Производя это действие, следует заботиться выносить.за скобку все, что можно, так чтобы в членах частного, заключаемого в скобки, не оставалось больше никакого общего множителя.

Иногда при вынесении за скобку придают общему миожителю знак минус. В таком случае члены частного в скобках пишутся со знаками, противоположными тем, какие имели перед собой члены данного многочлена. Отрицательный знак общего множителя относится при этом ко всему произведению. Напр., двучлен -аb+ас может быть представлен в виде (-а )(b-с ), а вместо этого пишут -а (b-с ), причем минус относится уже не к одному множителю а , но ко всему произведению.

Когда члены многочлона не имeют общего множителя, то иногда удачной группировкой членов в нeсколько групп, содержащих по нeсколько члeнов в каждой грусшe, находят в этих образовавшихся группах общий и притом многочленный множитель. Нерeдко для такой группировки оказывается достаточным заключить нeсколько членов в скобки со знаком +, или со знаком -.

Напр., имeя трeхчленное выражение а (b +с )+b+с мы заключаем два послeдние члена в скобки с плюсом и находим выражение а (b +с )+(b+с ), которое можно рассматривать как двучлен и котороe преобразовывается в произведоние (а +1 )(b+с ).

Подобно этому в выражении а (b-с )-b+с заключаем два послeдние члена в скобки с минусом, отчего выражение примет вид а (b-с )-(b-с ), а затeм преобразуется в произведение (а - 1 )(b-с ).

В большинствe случаев, встрeчающихся на практикe, требуется для открытия общего многочленного множителя не только соединить члены данного многочлена в группы, но еще вынести в этих группах общий одночленный множитель, различный для каждой. группы. При удачном выборe групп и при обязатeльном условии выносить за скобку все, что можно, общий множитель всего данного многочлена легко обнаруживаeтся.

Напр., имeя многочлен а 3 2 b +2аb 2 +2b 3 , соединяем первыe два члена в одну группу и послeдниe два в другую и выносим в первой группe за скобки а 2 и во второй 2b 2 ; получим а 2 (а+b )+ 2b 2 (а+b ) или (а+b )(а 2 +2b 2 ). Того жe результата можно достигнуть, вынося в пeрвом и трeтьем членах множитeль а , а во втором и четвeртом множитель b .

Подобно этому, соeдиняя в многочленe 3а 3 - 3а 2 b -аb 2 +b 3 пeрвый член с третьим и второй с четвeртым и вынося в пeрвой груапe множитeль а , а во второй множитeль- b , получии а (3а 2 -b 2 )-b (3а 2 -b 2 ) или (а-b )(3а 2 -b 2 ). Тот жо результат оказался бы при вынесении из пeрвых двух члонов за скобки 3а 2 , а из послeдних двух -b 2 .

Нужно замeтить, что подобного рода преобразования отличаются большим разнообразием, в особенности при соединeнии их с другими алгебраическими дeйствиями. Поэтому нельзя дать для этих преобразований общих и вполнe опродeленных правил; навык в них приобрeтается лишь обстоятельным и мeтодическим упражнeнием.

Иногда, преждe чeм группировать члeны мкогочлена для вынeсения в нeм многочлeнного множителя, требуeтся разложить нeкоторыe из членов в алгебраическую сумму новых членов, подобных разлагаемым. В таком случаe части разложенных членов относятся при группировкe к различным группам. Примeним способ разложения к преобразованию трехчленных выражeний.

Чтобы преобразовать трехчлен х 2 +5х +6 , разлагаем член 5 х в сумму членов 2 х и 3 х . Таким образом получим:

х 2 +5х +6 = х 2 +2х+ 3 х +6 = х (х +2 )+3 (х +2 )==(х +2 )(х +3 ).

Для преобразования трехчлена х 2 +2х -15 , разлагаем член +2х в сумму членов +5х и -3х Найдем:

х 2 +2х -15 = х 2 +5х - 3х -15 = х (х +5 )-3 (х +5 )==(х -3 )(х +5 ).

Существует общее правило, указывающее, когда возможно преобразованиe трехчленов ппдобного вида в произведение, и как производить такое преобразование. Для вывода и уяснeния этого правила нужно только разложить четыре вида трехчлена х 2 ± (а+b )х +аb и х 2 ± (а-b )х -аb , взяв каждый из них отдeльно и начав прeобразованиe с раскрытия скобок. Тогда окажется, что в произведение преобразовываются тe трехчлены, у которых пeрвый коэффициент при х 2 есть единица, второй коэффициент при х какой угодно, а третий коэффидиeнт или член, нe содержащий х есть алгебраическое произведение тeх самых количеств, на алгeбраическую сумму которых разлагается второй коэффицинт. Так, в трехчленe х 2 +5х +6 коэффициент 5 есть сумма чисел 3 и 2 , а 6 eсть произвeдениe тeх жe чисел, в трехчленe х 2 +2х -15 коэффициeнт -2 есть сумма количеств -5 и +3 , а -15 есть произведение тех жe количеств. Чтобы произвести прeобразованиe трехчлена, когда оно возиожно, нужно по знакам и числовым величинам третьего и второго коэффициента подыскать способ разложeния трeтьего коэффициeнта в произвeдeниe двух количеств, а второго в сумму тeх жe количеств. Рассмотрим примeры:

Пусть, напр., дан трехчлеч х 2 -11х +24 . Так как коэффициент 24 положитeлен, то искомые производитeли eго должны имeть одинаковыe знаки. Судя по тому, что второй коэффициент -11 отрицатeльный, видим, что эти производитeли коэффициента 24 или слагаeмыe коэффициента -11 оба отрицатeльны. Наконец, разлагая 24 на два отрицательных множителя и сравнивая сумму их с - 11 , убeдимся в том, что для преобразования трeхчлeна в произвeдение нужно разложить средний член - 11 х на члены -3 х и - 8 х.

Положим еще, что дан трехчлен х 2 - 7х -30 . Здeсь коэффициент -30 отрицательный; поэтому производители его имeют разные знаки. Коэффициснт -7 отрицательный; слeдовательно, при составлении его сложением берет перевeс отрицательное слагаемое, имeющее таким образом большую числовую величину. Поэтому член - 7х нужно разложить на члены -10х и +3х .

В произведение прeобразовываются такжe нерeдко трехчлены, у которых первый коэффициeнт нe есть единица. Для таких преобразований не будeм указывать тепeрь общего правила, вывод которого требует болee сложных рассуждений.

Развивая выше рассмотрeнный способ преобразования трехчленов в произведение, можно разлагать многочлены высших степеней в тeх случаях, когда они представляют произведения простeйпшх двучленов первой степени. Для упрощения подобных преобразований полезно выяснить слeдующее замeчание: положим, что какой-либо многочлен содержит множителем нeкоторый двучлен х + а . Так как двучлен этот, при замeнe х через -а , обращается в нуль, то многочлен, содержащий х+а множителем, должен также обращаться в нуль при этой замeнe. Подобно этому если многочлен содержит множителем двучлен х-а , обращающийся в нуль при замeнe х через а , то и сам многочлен обращается в нуль при той же замeнe. Справедливо и обратное заключение: если многочлен, содержащий разные степени х , обращается в нуль при замeнe х через -а или через а , то он навeрноe дeлится в первом случаe на х+а , а во втором на х-а , потому что обращение многочлена в нуль при одной из указанных подстановок может быть объяснено только тeм, что в состав многочлена входит соотвeтствующий двучленный множитель. Вышеуказанные замeчания дают простое средство для открытия в многочленe двучленного множителя, а затeм этот множитель может быть вынесен за скобки посредством разложения средних членов многочлена в алгебраические суммы.

Возьмем, напр., многочлен х 3 +6х 2 +11х +6 . Он обращается в нуль при замeнe х через -1 и потому дeлится на х +1. Зная этот множитель наперед, мы облегчаем себe разложение членов в суммы тeм, что опредeленно подбираем к каждому члену, начиная с высшего, часть слeдующего члена так, чтобы пара группируемых членов содержала множителем х +1 . Поэтому преобразование ведется слeдующим образом:

х 3 +6х 2 +11х +6 = х 3 +х 2 +5х 2 +5х +6х +6 = х 2 (х +1 )+ 5х (х +1 )+ 6 (х +1 )= (х +1 )(х 2 +5х +6 ) =
= (х +1 )(х +2 )(х +3 )

ІІодобно этому замeчаем, что многочлен х 3 -4х 2 -11х +30 обращаeтся в нуль при замeнe х через 2 и слeдовательно дeлится на х- 2 . Поэтому выполняем преобразование так:

х 3 -4х 2 -11х +30 = х 3 -2х 2 -2х 2 +4х -15х +30 = х 2 (х -2 ) -2х (х -2)-15 (х -2 )=
=(х -2 )(х 2 -2х -15 )=(х -2 )(х +3 )(х -5 ).

Первоначальный подбор множителя облегчается тeм, что в многочлен требуется подставлять талько тe количества, числовая величина которых входит множителeм в послeдний член многочлена. Это обнаруживается при рассмотрeнии многочлена, выражающего общий вид произведения (х +а )(х +b )(х +c ) . Последний член этого многочлена есть abc.

Благодаря курсу алгебры, известно, что все выражения требуют преобразования для более удобного решения. Определение целых выражений способствует тому, что для начала выполняются тождественные преобразования. Будем преобразовывать выражение в многочлен. В заключении разберем несколько примеров.

Определение и примеры целых выражений

Определение 1

Целые выражения – это числа, переменные или выражения со сложением или вычитанием, которые записываются в виде степени с натуральным показателем, которые также имеют скобки или деление, отличное от нуля.

Исходя из определения, имеем, что примеры целых выражений: 7 , 0 , − 12 , 7 11 , 2 , 73 , - 3 5 6 и так далее, причем переменные вида a , b , p , q , x , z считают за целые выражения. После их преобразования сумм, разностей, произведений выражения примут вид

x + 1 , 5 · y 3 · 2 · 3 · 7 − 2 · y − 3 , 3 − x · y · z 4 , - 6 7 , 5 · (2 · x + 3 · y 2) 2 − - (1 − x) · (1 + x) · (1 + x 2)

Если в выражении имеется деление на число, отличное от нуля вида x: 5 + 8: 2: 4 или (x + y) : 6 , тогда деление может обозначаться при помощи дробной черты, как x + 3 5 - 3 , 2 · x + 2 . При рассмотрении выражений вида x: 5 + 5: x или 4 + a 2 + 2 · a - 6 a + b + 2 · c видно, что такие выражения не могут быть целыми, так как в первом имеется деление на переменную x , а во втором на выражение с переменной.

Многочлен и одночлен являются целыми выражениями, с которыми встречаемся в школе при работе с рациональными числами. Иначе говоря, целые выражения не включают в себя записи иррациональных дробей. Другое название – это целые иррациональные выражения.

Какие преобразования целых выражений возможны?

Целые выражения рассматриваются при решении как основные тождественные преобразования, раскрытие скобок, группирование, приведение подобных.

Пример 1

Раскрыть скобки и привести подобные слагаемые в 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) .

Решение

Для начала необходимо применить правило раскрытия скобок. Получим выражение вида 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = = 2 · a 3 + 2 · 3 · a · b + 2 · (− 2 · a) − 2 · a 3 − 5 · a · b + 6 · a − b = = 2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b

После чего можем привести подобные слагаемые:

2 · a 3 + 6 · a · b − 4 · a − 2 · a 3 − 5 · a · b + 6 · a − b = = (2 · a 3 − 2 · a 3) + (6 · a · b − 5 · a · b) + (− 4 · a + 6 · a) − b = = 0 + a · b + 2 · a − b = a · b + 2 · a − b .

После их приведения получаем многочлен вида a · b + 2 · a − b .

Ответ : 2 · (a 3 + 3 · a · b − 2 · a) − 2 · a 3 − (5 · a · b − 6 · a + b) = a · b + 2 · a − b .

Пример 2

Произвести преобразования (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 .

Решение

Имеющееся деление можно заменять умножением, но на обратное число. Тогда необходимо выполнить преобразования, после которых выражение примет вид (x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 . Теперь следует заняться приведением подобных слагаемых. Получим, что

(x - 1) · 3 2 + 2 · (x 2 + 1) · 1 3 · 1 7 = 3 2 · (x - 1) + 2 21 · x 2 + 1 = = 3 2 · x - 3 2 + 2 21 · x 2 + 2 21 = 2 21 · x 2 + 3 2 · x - 59 42 = 2 21 · x 2 + 1 1 2 · x - 1 17 42

Ответ : (x - 1) : 2 3 + 2 · (x 2 + 1) : 3: 7 = 2 21 · x 2 + 1 1 2 · x - 1 17 42 .

Пример 3

Представить выражение 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) в виде произведения.

Решение

Рассмотрев выражение, видно, что первые три слагаемые имеют общий множитель вида 6 · y , который следует вынести за скобки во время преобразования. Тогда получим, что 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = 6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x)

Видно, что получили разность двух выражений вида 6 · y · (x 2 + 3 · x − 1) и (x 2 + 3 · x − 1) · (x 3 + 4 · x) с общим множителем x 2 + 3 · x − 1 , который необходимо вынести за скобки. Получим, что

6 · y · (x 2 + 3 · x − 1) − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − (x 3 + 4 · x))

Раскрыв скобки, имеем выражение вида (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x) , которое необходимо было найти по условию.

Ответ: 6 · x 2 · y + 18 · x · y − 6 · y − (x 2 + 3 · x − 1) · (x 3 + 4 · x) = = (x 2 + 3 · x − 1) · (6 · y − x 3 − 4 · x)

Тождественные преобразования требуют строгое выполнение порядка действий.

Пример 4

Преобразовать выражение (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 .

Решение

Вы первую очередь выполняются действия в скобках. Тогда имеем, что 3 · 2 − 6 2: 9 = 3 · 2 − 3 6: 9 = 6 − 4 = 2 . После преобразований выражение принимает вид 2 3 · (x 2) 4 + 4 · x: 8 . Известно, что 2 3 = 8 и (x 2) 4 = x 2 · 4 = x 8 , тогда можно прийти к выражению вида 8 · x 8 + 4 · x: 8 . Второе слагаемое требует замены деления на умножение из 4 · x: 8 . Сгруппировав множители, получаем, что

8 · x 8 + 4 · x: 8 = 8 · x 8 + 4 · x · 1 8 = 8 · x 8 + 4 · 1 8 · x = 8 · x 8 + 1 2 · x

Ответ: (3 · 2 − 6 2: 9) 3 · (x 2) 4 + 4 · x: 8 = 8 · x 8 + 1 2 · x .

Преобразование в многочлен

Большинство случаев преобразования целых выражений – это представление в виде многочлена. Любое выражение можно представить в виде многочлена.Любое выражение может быть рассмотрено как многочлены, соединенные арифметическими знаками. Любое действие над многочленами в итоге дает многочлен.

Для того, чтобы выражение было представлено в виде многочлена, необходимо выполнять все действия с многочленами, согласно алгоритму.

Пример 5

Представить в виде многочлена 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) .

Решение

В данном выражение начать преобразования с выражения вида 4 · x − x · (15 · x + 1) , причем по правилу в начале выполнив умножение или деление, после чего сложение или вычитание. Умножим – x на 15 · x + 1 , тогда получим 4 · x − x · (15 · x + 1) = 4 · x − 15 · x 2 − x = (4 · x − x) − 15 · x 2 = 3 · x − 15 · x 2 . Заданное выражение примет вид 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (3 · x − 15 · x 2) .

Далее необходимо произвести возведение во 2 степень многочлена 2 · x − 1 , получим выражение вида (2 · x − 1) 2 = (2 · x − 1) · (2 · x − 1) = 4 · x 2 + 2 · x · (− 1) − 1 · 2 · x − 1 · (− 1) = = 4 · x 2 − 4 · x + 1

Теперь можно перейти к виду 2 · (2 · x 3 − 1) + (4 · x 2 − 4 · x + 1) · (3 − x) + (3 · x − 15 · x 2) .

Разберем умножение. Видно, что 2 · (2 · x 3 − 1) = 4 · x 3 − 2 и (4 · x 2 − 4 · x + 1) · (3 − x) = 12 · x 2 − 4 · x 3 − 12 · x + 4 · x 2 + 3 − x = = 16 · x 2 − 4 · x 3 − 13 · x + 3

тогда можно сделать переход к выражению вида (4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) .

Выполняем сложение, после чего придем к выражению:

(4 · x 3 − 2) + (16 · x 2 − 4 · x 3 − 13 · x + 3) + (3 · x − 15 · x 2) = = 4 · x 3 − 2 + 16 · x 2 − 4 · x 3 − 13 · x + 3 + 3 · x − 15 · x 2 = = (4 · x 3 − 4 · x 3) + (16 · x 2 − 15 · x 2) + (− 13 · x + 3 · x) + (− 2 + 3) = = 0 + x 2 − 10 · x + 1 = x 2 − 10 · x + 1 .

Отсюда следует, что исходное выражение имеет вид x 2 − 10 · x + 1 .

Ответ: 2 · (2 · x 3 − 1) + (2 · x − 1) 2 · (3 − x) + (4 · x − x · (15 · x + 1)) = x 2 − 10 · x + 1 .

Умножение и возведение в степень многочлена говорит о том, что необходимо использовать формулы сокращенного умножения для ускорения процесса преобразования. Это способствует тому, что действия будут выполнены рационально и правильно.

Пример 6

Преобразовать 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) .

Решение

Из формулы квадрата получим, что (2 · m + n) 2 = (2 · m) 2 + 2 · (2 · m) · n + n 2 = 4 · m 2 + 4 · m · n + n 2 , тогда произведение (m − 2 · n) · (m + 2 · n) равняется разности квадратов m и 2 · n , таким образом, равняется m 2 − 4 · n 2 . Получим, что исходное выражение примет вид 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 4 · (4 · m 2 + 4 · m · n + n 2) + (m 2 − 4 · n 2) = = 16 · m 2 + 16 · m · n + 4 · n 2 + m 2 − 4 · n 2 = 17 · m 2 + 16 · m · n

Ответ: 4 · (2 · m + n) 2 + (m − 2 · n) · (m + 2 · n) = 17 · m 2 + 16 · m · n .

Чтобы преобразование не было слишком длинным, необходимо заданное выражение приводить к стандартному виду.

Пример 7

Упростить выражение вида (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + (5 · a · b · (− 3) · b 2)

Решение

Чаще всего многочлены и одночлены даются не стандартного вида, поэтому приходится выполнять преобразования. Следует преобразовать, чтобы получить выражение вида − 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 . Для того чтобы привести подобные, необходимо предварительно произвести умножение по правилам преобразования сложного выражения. Получаем выражение вида

− 6 · a 3 · b · (2 · a + 5 · b 2) + a · b · (2 · a 2 + 1) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + (2 · a 3 · b + a · b) · (6 · a + 15 · b 2) − 15 · a · b 3 = = − 12 · a 4 · b − 30 · a 3 · b 3 + 12 · a 4 · b + 30 · a 3 · b 3 + 6 · a 2 · b + 15 · a · b 3 − 15 · a · b 3 = = (− 12 · a 4 · b + 12 · a 4 · b) + (− 30 · a 3 · b 3 + 30 · a 3 · b 3) + 6 · a 2 · b + (15 · a · b 3 − 15 · a · b 3) = 6 · a 2 · b

Ответ: (2 · a · (− 3) · a 2 · b) · (2 · a + 5 · b 2) + a · b · (a 2 + 1 + a 2) · (6 · a + 15 · b 2) + + (5 · a · b · (− 3) · b 2) = 6 · a 2 · b

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Цель урока: систематизировать знания и умения учащихся применять формулы квадрата разности, суммы и разности квадратов для преобразования многочленов.

Задачи урока:

  • общеобразовательная: отработка навыков и умений по преобразованию многочленов с помощью формул сокращенного умножения посредством решения письменных и устных упражнений;
  • развивающая: развивать познавательный интерес, продолжать формирование математической речи, вырабатывать умение анализировать и сравнивать;
  • воспитательная: воспитывать умение выслушивать других и умение общаться.

Мотивационная задача: создать ситуацию успеха на уроке через похвалу, стимулирование слабых и сильных ответов.

Организационные формы общения: коллективная, групповая, индивидуальная.

Ход урока

1-й этап. Организационный момент.

2-й этап. Мотивационная беседа с учащимися с последующей постановкой цели и темы.

Учитель: Ребята, последние несколько уроков мы с вами посвятили изучению трех формул сокращенного умножения. Какие это формулы?

Впереди у нас еще четыре формулы.

Но сегодня я предлагаю вам поработать с этими формулами и еще раз выяснить, насколько хорошо вы разобрались в данной теме.

А начать работу я хотела бы со строк мудрого Конфуция:

Три пути ведут к знанию:
Путь размышления – это путь самый благородный,
Путь подражания – это путь самый легкий и
Путь опыта – это путь самый горький.

Подумайте и решите для себя, ребята, по какому пути вы пойдете сегодня на уроке – это будет ваш личный выбор.

3-й этап. Актуализация опорных знаний.

Учитель: чтобы работа велась успешнее, давайте вспомним и повторим формулы квадрата суммы, разности двух чисел, разности квадратов.

Попрошу выйти к доске двоих учащихся.

Попрошу выйти к доске двух учащихся.

Задание первому ученику: доказать равенство Диофанта

(а + b)(с + d) = (ac + ab)+(bc – ad).

Задание второму ученику: оформить опорную таблицу (магнитная доска).

Собрать из отдельных фрагментов три формулы:

(a + b) 2 = a + 2ab + b
(a – b) 2 = a – 2ab + b
a 2 – b 2 = (a – b)(a + b)

Фронтальная работа с учащимися.

Учитель: А мы, ребята, в это время давайте повторим правила сложения и вычитания рациональных чисел, т. к. это нам понадобится в дальнейшем на уроке.

Карточка:

-/10+5/ -5;
-/(-a +b)/ + b;
-/20*3/: (-12).

Учитель: Ребята, давайте проверим формулы на магнитной доске.

А теперь, применяя данные формулы, выполните устно следующие задания.

Замените * одночленами так, чтобы полученное равенство было тождеством:

  1. (* + b) 2 = 4c 2 + * + b 2 ;
  2. (k – *) 2 = * – * + c 2 ;
  3. (* + 7c) (7c – *) = 49c 2 – 81a 2
  4. Вычислить:
    106 2 – 6 2
    71 2 – 61 2
  5. А в следующем задании нужно проверить, правильно ли выделен полный квадрат:
    а 2 + 2а + 2 = (а + 1) 2 + 2

Учитель : Ребята давайте вернемся к доказательству равенства Диофанта и проверим его.

Предлагаю вам записать себе в тетрадь это равенство и проверить его для первых четырех последовательных чисел _(1.2.3.4).

4-й этап. Работа по теме урока.

Учитель: Ребята, чем воспользовался ученик, доказывающий равенство Диофанта?

А где еще находят применение формулы сокращенного умножения?

Давайте решим следующую задачу у доски.

Сторона квадрата равна а см. Длина прямоугольника на 2 см больше стороны квадрата, а ширина на 2 см меньше стороны квадрата. Найдите площадь прямоугольника и сравните ее с площадью квадрата.

5-й этап. Физкультминутка.

6-й этап. Работа в группах “Звездная карта”.

Учитель: Итак, ребята, раз сегодня мы упомянули ли о Диофанте (доказали его равенство), вспомните, чем он занимался в основном? (Уравнениями).

Хорошо! Я предлагаю сейчас вам тоже решить в группах по 5 уравнений, в которых можно будет применить формулы сокращенного умножения, а также просветить себя в области астрономии, то есть узнать, как выглядят созвездия Цефея и Кассиопеи.

Послушайте задание.

Перед вами, ребята, фрагмент карты звездного неба. Решите уравнения и соедините последовательно звезды, которым соответствуют найденные ответы.

Работа ведется в группах, поэтому возможна взаимопомощь и взаимоконтроль.

Карточки на столе. Против каждого уравнения указан уровень сложности (1, 2, 3, 4). Каждый из нас выбирает свой уровень, решает уравнение и заносит в карточку ответ.

Затем рисуется созвездие.

  1. 50х = 5 (1 уровень)
  2. 8(х – 20) = -8х (2уровень)
  3. (х – 4) 2 – х 2 =16 (3 уровень)
  4. (х + 2) 2 -80 = х 2 (3 уровень)
  5. (х – 3)(х + 3) + 2х = х 2 – 1 (4 уровень)
  1. 5с = 10 (1 уровень)
  2. с – (9 + 6с) = 36 (2уровень)
  3. (с – 1) 2 – 7 = с 2 (3 уровень)
  4. (с + 5) 2 – с 2 = 5 (3 уровень)
  5. (с – 1)(с – 1) – с 2 = 5с – 6 (4 уровень)

Проверка по образцу.

7-й этап. Резерв (тест)

Провести классификацию данных многочленов по способу разложения их на множители.

Вариант 1.

ЗАДАНИЕ. Соединить линиями многочлены с соответствующими им способами разложения на множители.

Взаимопроверка.

8-й этап. Итоги урока.

Учитель: Ребята, вы сегодня достаточно плодотворно поработали. Благодарю вас.

Но мне хотелось, чтобы вы еще раз, вспомнив этапы нашего урока, ответили на мой вопрос: где вы применяли формулы сокращенного умножения, в каком случае работа ваша намного упрощалась?

Впереди у вас еще 4 формулы. Но это будет позже, а сейчас получите домашнее задание (номера из учебника).

И в заключении, вернитесь к нашему эпиграфу. Скажите, какой для вас путь был более успешным?

Конечно, путь опыта, проб и ошибок – это самый трудный путь, но и самый верный и достойный.

Поэтому я желаю вам идти достойно и получать лишь хорошие и отличные оценки.

Оценки за урок.