8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i. Криволинейная поверхность вращения образуется при вращении лю-

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.


В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Прямая АВ называется образующей, линия MN - направляющей, а точка S - вершиной конической поверхности.
1. Конус.
Конусом называют тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, - основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса (фиг.295,а).

Конус называется прямым круговым, если его основание - круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, полученное вращением прямоугольного треугольника SAO вокруг катета SO , как оси. При этом гипотенуза SA описывает боковую поверхность, а катет АО - основание конуса (фиг.295,б).
Если ось вращения прямого кругового конуса параллельна плоскости проекций, то проекция конуса на эту плоскость является треугольником (равнобедренным или равносторонним), основание которого будет равно диаметру основания конуса, а стороны - образующей конуса.
Если ось вращения конуса перпендикулярна плоскости проекций, то проекция конуса на эту плоскость будет кругом, равным натуральной величине основания конуса. В этом случае образующие на проекции не изображаются.
2. Изображение прямого кругового конуса (фиг.296).

Дано: основание конуса, расположенного на плоскости П 1
I. Комплексный чертеж
I, а. Проектируем основание конуса - круг, расположенный в плоскости П 1 , и вершину конуса - точку S , расположенную в пространстве на вертикальной прямой, проходящей через центр основания. Высота точки S равна высоте конуса. Горизонтальная проекция этой точки находится в центре окружности - горизонтальной проекции основания.
I, б. Проектируем боковую поверхность конуса. Для этого достаточно спроектировать на плоскость П 2 контурные образующие, для чего соединяем прямыми фронтальные проекции вершины S 2 с проекциями крайних точек основания и получаем проекции контурных образующих, а в целом - фронтальную проекцию данного конуса - равнобедренный треугольник, основание которого равно диаметру основания конуса, а высота треугольника - высоте конуса.
На горизонтальной проекции боковой поверхности конуса дана горизонтальная проекция А 1 точки А , требуется найти ее фронтальную проекцию. Для этого на горизонтальной проекции конуса через точку А 1 проводим окружность - горизонтальную проекцию параллели, затем находим ее фронтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) находим фронтальную проекцию A 2 точки A .

I. в. Эту задачу можно решить и при помощи образующей. На фронтальной проекции боковой поверхности конуса дана фронтальная проекция В 2 точки В . Из точки S 2 через точку В 2 проводим прямую S 2 М 2 - проекцию образующей конуса, затем находим ее горизонтальную проекцию S 1 М 1 и на ней при помощи вертикальной линии связи определяем место горизонтальной проекции точки В .
II. Развертка поверхности прямого кругового конуса - плоская фигура, составленная из сектора и окружности, диаметр которой равен диаметру окружности основания. Радиусом сек-гора является образующая конуса, а длина дуги равна длине окружности основания конуса. Угол сектора можно определить по формуле (a =360°R ÷ L) где R - радиус окружности основания конуса; L - образующая конуса. При построении развертки следует придерживаться следующего порядка:
а) определить угол а сектора;
б) построить развертку боковой поверхности конуса - сектор ;
в) пристроить к любой точке, дуги сектора основание конуса - круг .
Перенос точки В на развертку боковой поверхности конуса осуществляется при помощи размеров С 1 М 1 и R 2 , взятых с (фиг.296, I , в).

III. Наглядное изображение конуса в аксонометрии (изометрия и диметрия).
III, а. Изображаем основание конуса - овал по данному условию. Через центр основания проводим ось z" и на ней от точки О" откладываем высоту конуса О"S" , получаем его вершину S" .
III, б. Изображаем контурные образующие. Из точки S" проводим прямые, касательные к овалу, получаем изображение конуса. Невидимую часть основания (половину овала) изображаем штриховыми линиями.
Определение точки А на боковой поверхности осуществляем при помощи нанесения на поверхность конуса параллели, диаметр параллели берем с горизонтальной проекции (фиг.296, I, б), а ее центр О 2 определяем размером H 1 , с фронтальной проекции (фиг.296, I, б). Место точки А на параллели определяется пересечением вспомогательной прямой, проведенной на расстоянии k параллельно оси у" с параллелью.
Определение точки В на боковой поверхности конуса осуществляется:
а) нанесением на коническую поверхность образующей S"M" при помощи размеров h и f ;
б) нахождением вторичной проекции В 1 точки В при помощи размера i/2 ;
в) проведением вспомогательной прямой из точки В" 1 параллельно оси вращения S"O" . Пересечение вспомогательной прямой с образующей конуса определяют место точки В" .
Определить места точек А и В на боковой поверхности конуса можно и при помощи координат.
ТОР
Тело, полученное от вращения окружности (эта окружность называется образующей) вокруг оси, расположенной в плоскости этой окружности, но не проходящей через ее центр, называется ТОРОМ . Если ось вращения. не пересекает окружность, то тор называют кольцом (фиг.297). Изображение кольца (фиг.298).

1. Комплексный чертеж
I, а. Дано: ось кольца перпендикулярна плоскости П 1 (диаметр D образующей окружности кольца и диаметр D ц окружности центров образующих окружностей (фиг.298,а).
I, б. Горизонтальная проекция кольца выявится двумя концентрическими окружностями (фиг.298,б) диаметр большей равен D ц + D ; диаметр меньшей Dц - D . Фронтальная проекция выявится двумя образующими окружностями, сопряженными прямыми.
Заметим, что внутренние половины окружностей необходимо изобразить штриховыми линиями, как невидимые.
I, в. Дано: горизонтальные проекции параллелей и на них проекции двух точек: точки А (A 1 ) на малой параллели; точки В (B 2 ) на большой (фиг.298,в). Требуется найти их фронтальные проекции. Для этого сначала надо найти фронтальные проекции параллелей, а затем при помощи вертикальных линий связи определить на них места фронтальных проекций А 2 и В 2 .
II. Наглядное изображение кольца в изометрии и диметрии.
II, а. Изооражаем место центров сфер - окружность (D" ц ), расположенную в горизонтальной плоскости.
II, б. Изображаем контур поверхности кольца при помощи вспомогательных сфер, для чего проводим ряд окружностей диаметром D - контуров сфер, центры которых расположены на окружности центров. Затем к окружностям проводим плавную касательную, выявляя очерк кольца.
ШАР
Тело, полученное от вращения полукруга вокруг диаметра, называется шаром, а поверхность, образуемая при этом окружностью, называется шаровой или сферой. Можно также сказать, что эта поверхность есть геометрическое место точек, одинаково удаленных от одной и той же точки, называемой центром. Отрезок, соединяющий центр с какой-нибудь точкой поверхности, называется радиусом, а отрезок, соединяющий две точки поверхности и проходящий через центр, называется диаметром шара (фиг.299).
Всякая проекция шара является кругом, очерками проекций на плоскость П 1 является проекция экватора, на плоскость П 2 и П 3 являются проекции меридианов.
Изображение шара (фиг.300). Дано: одной точкой поверхности шар касается плоскости П 1 .
I. Комплексный чертеж
I, а. Проектируем экватор шара - окружность, лежащую в горизонтальной плоскости, горизонтальная проекция - это окружность, диаметр которой равен диаметру шара. Фронтальная проекция - прямая (обычно на чертеже не изображается).
Проектируем главный меридиан - окружность, лежащую в фронтальной плоскости; фронтальной проекцией является окружность, по условию касательная оси х 12 ; диаметр окружности равен диаметру шара, горизонтальная проекция прямая (обычно на чертеже не изображаемая).
В результате получим проекции шара.
I, б. На поверхности шара дана фронтальная проекция А 2 точки А , требуется найти ее горизонтальную проекцию.
Для этого через точку А 2 проведем прямую параллельно оси - фронтальную проекцию параллели, затем находим ее горизонтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) определяем место горизонтальной проекции А 1 точки А . Развертка поверхности шара. Развертка может быть построена только приближенно, так как шаровая поверхность (сфера) принадлежит к поверхностям неразвертывающимся.
Построение развертки будем выполнять методом долей (существуют и другие методы).
I, в. Для этого фронтальную проекцию главного меридиана - окружность - делим на 12 равных чаетей, каждая часть деления будет равна 1 / 12 п D (т.е. 1 / 12 меридиана). Через точки деления 1 , 2 и 3 проводим прямые, параллельные оси x 12 - проекции параллелей, и находим их горизонтальные проекции - окружности. D П1 - первая параллель; D П2 - вторая параллель и D Э - экватор. Затем горизонтальную проекцию экватора - окружность D Э - делим на 12 равных частей, каждая часть деления будет равна (1 / 12 П D Э) (т.е. 1 / 12 экватора); через каждое деление экватора проводим меридиональные плоскости, которые разделяют поверхность шара, а следовательно, и каждую параллель на 12 долей; получим части параллелей 1 / 12 П D П1 и 1 / 12 П D П2
II. Построение одной доли. Проводим прямую O 1 O 2 , равную ( П D M ÷ 2 ) и от точки О 1 откладываем три раза части, равные ( П D M ÷ 12 ), и через каждую часть проводим прямые, перпендикулярные к O 1 O 2 , на которых откладываем отрезки: (3 - 3 = П D Э ÷ 12); (2 - 2 = П D П2 ÷ 12) ; (2 - 2 = П D П1 ÷ 12) , как показано на чертеже. Соединив плавной кривой последовательно точки 3 - 2 - 1 - 0 1 - 1 - 2 - 3 , получим половину очертания доли. Построив вторую половину, получим одну долю, т.е. 1/12 часть приближенной развертки поверхности шара. Для получения полной развертки поверхности шара следует построить 12 долей.
III. Наглядное изображение шара в изометрии .
III, а. Изображаем экватор шдра как аксонометрическую проекцию окружности, лежащую в горизонтальной плоскости.
III, б. Точку О" принимаем за центр, проводим окружность (касательную к овалу), получаем изометрическую проекцию шара. Диаметр окружности равен длине овала.
Определение места точки А на шаровой поверхности можно осуществить при помощи параллели. Изображаем на поверхности шара параллель, пользуясь размерами h и D П место точки на параллели определяем с помощью прямой, проведенной параллельно оси у" на расстоянии k .
Определить точку А на шаровой поверхности можно при помощи координат.
Упражнение
Пример 1.
а) Выполнить комплексные чертежи геометрических тел согласно примерам А, Б и В по данным размерам (

Возможно, самым простым способом создания трехмерной поверхности является вращение двумерного объекта, например прямой или плоской кривой вокруг оси в пространстве. Такие поверхности называются поверхностями вращения. Сначала для простоты предположим, что ось вращения совпадает с осью и положительно направлена. Предположим также, что объекты вращения - отрезок, прямая или плоская кривая - лежат на плоскости . Позднее мы рассмотрим метод, позволяющий избавиться от этих ограничений.

Самый простой объект, который можно вращать вокруг оси, - это точка. При условии, что точка не лежит на оси, вращение на угол породит окружность. Поворот на меньший угол даст дугу окружности.

Следующим по сложности является отрезок, параллельный, но не совпадающий с осью вращения. Вращение на угол породит в этом случае круговой цилиндр. Радиусом этого цилиндра является длина перпендикуляра, опущенного с отрезка на ось вращения. Длина цилиндра равна длине отрезка. Пример изображен на рис. 6-1.

Если отрезок и ось вращения компланарны и отрезок не параллелен оси вращения, то в результате вращения вокруг оси на угол мы получим усеченный круговой конус. Радиусы оснований усеченного конуса - длины перпендикуляров, опущенных с концов отрезка на ось вращения. Высота конуса - это длина спроецированного на ось вращения отрезка. Пример изображен на рис. 6-2.

И снова, если отрезок и ось вращения компланарны и отрезок перпендикулярен оси вращения, то в результате вращения на угол мы получим плоский диск. Если отрезок пересекает (или касается) ось вращения, то получится сплошной диск, в противном случае диск будет иметь круглое отверстие. Примеры изображены на рис. 6-3.

И наконец, если отрезок наклонен к оси вращения, т.е. некомпланарен, то вращение на угол породит однополостный гиперболоид (см. разд. 6-4 и 6-7).

Рис. 6-1 Цилиндрическая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-2 Коническая поверхность вращения. (а) Схема построения; (b) результат.

Рис. 6-3 Диск в качестве поверхности вращения. (а) Схема построения; (b) результат.

Рис. 6-4 Поверхность вращения из замкнутой ломаной. (a) Схема построения; (b) результат.

Рис. 6-5 Бипараметрическая поверхность вращения.

Для создания поверхностей вращения могут быть также использованы замкнутые и незамкнутые ломаные. На рис. 6-4 представлен конус с цилиндрическим отверстием.

Параметрическое уравнение точки на поверхности вращения можно получить, если вспомнить, что параметрическое уравнение вращаемого объекта, например

есть функция одного параметра . Вращение вокруг оси приводит к тому, что координаты зависят также от угла поворота. Таким образом, точка на поверхности вращения определяется двумя параметрами и . Как показано на рис. 6-5, это бипараметрическая функция.

Для рассматриваемого частного случая, т. е. вращения вокруг оси объекта, расположенного в плоскости , уравнение поверхности записывается

Заметим, что здесь координата не меняется. В качестве иллюстрации приведем пример.

Пример 6-1 Простая поверхность вращения

Рассмотрим отрезок с концами и , лежащий в плоскости . Вращение отрезка вокруг оси породит коническую поверхность. Определим на поверхности координаты точки с параметрами , .

Параметрическое уравнение отрезка, соединяющего и , имеет вид

с декартовыми координатами

.

Используя уравнение (6-1), получим точку на поверхности вращения

.

Вращение плоских кривых также порождает поверхности вращения. Как показано на рис. 6-6а, сфера получается в результате вращения вокруг оси расположенной в плоскости полуокружности, центрированной относительно начала координат. Вспомнив параметрическое уравнение окружности (см. разд. 4-5)

получим параметрическое уравнение сферы

Рис. 6-6 Поверхности вращения. (а) Сфера; (b) эллипсоид.

Если вместо окружности подставить параметрическое уравнение центрированного полуэллипса, расположенного в плоскости , получится эллипсоид вращения. Напомнив параметрическое уравнение полуэллипса (см. разд. 4-6)

получим для любой точки эллипсоида следующее параметрическое уравнение:

При уравнение (6-3) превращается в уравнение (6-2) для сферы. Эллипсоид вращения показан на рис. 6-66.

Если ось вращения не проходит через центр окружности или эллипса, то в результате вращения получается тор с сечением в виде окружности или эллипса, соответственно. Параметрическое уравнение эллипса на плоскости с центром, не совпадающим с началом координат, выглядит так

где - это , - координаты центра эллипса, тогда параметрическое уравнение для любой точки тора имеет вид:

где , . Если , то уравнение (6-4) задает тор с сечением в виде окружности. Если , то получится тор с сечением в виде эллипса. На рис. 6-7 представлены оба типа торов.

Рис. 6-7 Торы. (а) С сечением в виде окружности; (b) с сечением в виде эллипса.

Параболоид вращения получается при вращении параметрической параболы (см. разд. 4-7)

Гиперболоид вращения получается при вращении параметрической гиперболы

вокруг оси . Параметрическая поверхность задается уравнением

Примеры показаны на рис. 6-8.

Для создания поверхности вращения можно использовать любую параметрическую кривую, например кубический сплайн, параболический сплайн, кривую Безье и В-сплайн. На рис. 6-9 изображена поверхность вращения, созданная из относительно простого параболического сплайна. На рис. 6-10 изображен бокал, созданный как поверхность вращения с помощью незамкнутого В-сплайна.

Рис. 6-8 Поверхности вращения. (а) Параболоид; (b) гиперболоид.

Рис. 6-9 Поверхность вращения из параболически интерполированной кривой. (а) Создание кривой; (b) поверхность.

Заметим, что бокал имеет как внутреннюю, так и внешнюю стороны. Вращение производится относительно оси .

Рис. 6-10 В-сплайн поверхность вращения. (а) Вершины ломаной; (b) В-сплайн; (с) поверхность.

Напомним, что в матричной форме параметрическая пространственная кривая (см. уравнения (5-27), (5-44), (5-67) и (5-94)) задается следующим образом:

,

где , и - соответственно матрица параметров, матрица функций смешивания и геометрическая матрица. Таким образом, в общей форме матричное уравнение поверхности вращения записывается в виде:

, (6-7)

где представляет вклад вращения вокруг оси на угол . Для частного случая вращения вокруг оси имеем:

. (6-8)

Эти методы иллюстрируются в следующем примере.

Пример 6-2 Поверхность вращения, созданная по параболической кривой

Рассмотрим параболическую кривую, заданную точками , , , . Будем вращать эту кривую вокруг оси на угол , чтобы получить поверхность вращения. Найдем на поверхности точку с параметрами , .

Из уравнений (6-7) и (6-8) получим параметрическое уравнение поверхности вращения

,

где , , и задаются уравнениями (5-44), (5-52) и (5-53) соответственно.

Конкретнее,

.

Рис. 6-11 Поверхность вращения вокруг произвольной оси.

Результаты изображены на рис. 6-9. Такая поверхность может быть результатом разработки кубка или даже газового канала двигателя или ракетного сопла.

Предыдущие результаты были получены путем вращения точки, отрезка, ломаной или кривой вокруг координатной оси, а именно вокруг оси . К более общему случаю поворота вокруг произвольной оси в пространстве поверхность вращения, полученную в более удобной локальной системе координат, можно свести с помощью переносов и поворотов, приводящих поверхность в нужное положение.

На рис. 6-11 показана параметрическая кривая , повернутая вокруг произвольной оси в пространстве, проходящей через точки и и направленной от к . После того как поверхность создана в удобной системе координат для приведения поверхности вращения в нужное положение, нужно совершить следующие действия:

1. Перенести точку в начало координат.

2. Выполнить повороты, необходимые для совмещения осей и (см. разд. 5-9).

3. Повернуть вокруг оси на угол для совмещения осей и .

Эти три шага необходимы только для того, чтобы найти обратное преобразование, размещающее поверхность вращения в нужном месте в трехмерном пространстве. Получив поверхность вращения вокруг оси , приведем ее в нужное положение в пространстве:

1. Сдвинуть по оси , чтобы переместить центр поверхности вращения в нужное положение на оси .

2. Применить к поверхности вращения преобразование, обратное к суммарному преобразованию поворотов.

3. Применить к поверхности вращения обратный перенос точки .

Точка на поверхности вращения тогда задается уравнением:

где , , задаются уравнениями (3-22)-(3-24). задается уравнением (3-8), и матрица задается в форме уравнения (6-7) с геометрической матрицей , представленной в однородных координатах. теперь является матрицей , заданной в виде

. (6-10)

Данный метод иллюстрируется на следующем примере.

Пример 6-3 Поверхность вращения вокруг произвольной оси

Найдем координаты точки с параметрами , на поверхности вращения, образованной вращением эллипса с главной осью, наклоненной относительно оси вращения. Ось вращения проходит через центр эллипса и лежит в плоскости эллипса. Угол наклона . Полуоси эллипса , . Ось проходит через точки и . Центр эллипса находится в точке .

Формальное дифференцирование уравнения (6-7) дает параметрические производные для поверхности вращения. А именно, производная в осевом направлении равна

а производная в радиальном направлении

, (6-12)

где штрих обозначает соответствующее дифференцирование.

Нормаль к поверхности задается векторным произведением параметрических производных, т.е.

А. Поверхности вращения общего вида (рис. 157).

Поверхностью вращения общего вида называют поверхность, которая образуется произвольной кривой (плоской или пространственной) при ее вращении вокруг неподвижной оси .

В состав определителя поверхности вращения входит образующая g, ось вращения i и условие о том, что эта образующая вращается вокруг оси i:

Ф (g, i); .

Каждая точка образующей (А, В, С, D, Е) при вращении вокруг оси i описывает окружность с центром на оси вращения. Эти окружности называют параллелями . Наибольшую и наименьшую параллель называют соответственно экватором и горлом (шейкой).

Плоскости α, проходящие через ось поверхности вращения, называют меридиональными , а линии, по которым они пересекают поверхность, - меридианами .

Меридиональную плоскость α 1 , параллельную плоскости проекции, принято называть главной меридиональной плоскостью , а линию ее пересечения с поверхностью вращения - главным меридианом *.

Задание поверхности вращения на эпюре Монжа проекциями геометрических фигур, входящих в состав его определителя, хотя и однозначно определяет поверхность, но обладает одним недостатком, заключающимся в том, что при таком задании трудно представить форму поверхности. Поэтому при задании поверхности вращения обычно указывают проекции ее оси, главного меридиана и экватора (иногда указывают окружность, по которой поверхность вращения пересекается с плоскостью проекции).

При этом указывают только горизонтальную проекцию экватора (или параллели) и фронтальную проекцию главного меридиана**.

Б. Частные виды поверхностей вращения.

В технике, в частности в машиностроении, поверхности вращения находят широкое применение. Это объясняется распространенностью вращательного движения и простотой обработки поверхностей вращения на станках. Особенно распространены поверхности, имеющие в меридиональном сечении кривую второго порядка или две прямые, на которые распадается эта кривая.

Рассмотрим некоторые частные виды поверхностей вращения. Возьмем в качестве образующей окружность. В зависимости от взаимного расположения окружности (или ее дуги) и оси вращения можно получить различные поверхности.

Тором называется поверхность, которая может быть получена при вращении окружности g вокруг оси i, не проходящей через ее центр О ***.

В зависимости от соотношения величин R - радиуса образующей окружности и расстояния t от центра окружности до оси вращения поверхности тора подразделяют на:

открытый тор (или кольцо) при R

закрытый тор при R ≥ t - окружность пересекает ось вращения или касается ее (табл. 7, рис. 158,6).

Сфера образуется в том случае, когда центр окружности принадлежит оси вращения О ∈ i, т. е. сферу можно рассматривать как частный случай тора, у которого t = 0 (табл. 7, рис. 158,в).

3. Глобоид.

Образующей этой поверхности является дуга окружности, плоскость которой может, в общем случае, не совпадать с осью вращения (табл. 7, рис. 158,г). Чертежи на рис. 162 дают представление об ор-

* На рис. 157 показаны не меридиональные плоскости α и α 1 , а полуплоскости, расположенные по одну сторону от оси вращения i. Соответственно на рисунке показаны только половина меридиана и главного меридиана.

** Здесь речь идет о поверхности, ось вращения которой i ⊥ π 1 . Если ось вращения (i ⊥ π 2 , то следует указывать фронтальную проекцию экватора и горизонтальную проекцию главного меридиана.

Поверхность тора может быть получена и в том случае, когда плоскость окружности пересекает ось поверхности. Следует иметь в виду, что в отличие от остальных поверхностей вращения, ббразующая которых - кривая второго порядка (или прямая), поверхность тора является поверхностью не второго, а четвертого порядка.

Таблица 7. Поверхности вращения; частные виды. Подкласс 2. Ф (g, i); .

тогональных проекциях тора (рис. 162,а и б), сферы (рис. 162,в), глобоида (рис. 162,г). Так как поверхности вращения, изображенные на рис. 162, симметричны относительно оси i, то при i ⊥ π 1 их горизонтальные проекции симметричны относительно горизонтальной оси; поэтому можно вычерчивать не всю горизонтальную проекцию, а лишь ее половину, как это сделано на рис. 162 (конечно, если условия задачи не требуют изображать ее полностью).


4. Эллипсоид вращения.

Этот вид поверхности образуется при вращении эллипса вокруг его оси, при этом, если за ось вращения принять малую ось , то получим сжатый эллипсоид вращения (рис. 159,с); когда вращение осуществляется вокруг большой оси [АВ] , образуется поверхность вытянутого эллипсоида вращения (рис. 159,6).

Рассмотренные поверхности вращения: тор, сфера, эллипсоид относятся к замкнутым поверхностям. Кроме замкнутых поверхностей вращения существуют незамкнутые поверхности, которые образуются, в частности, при вращении параболы, гиперболы и прямой (линий, имеющих несобственные точки).

5. Параболоид вращения.

Для того чтобы получить параболоид вращения, в определителе поверхности вращения за образующую g следует принять параболу, а за ось вращения i - ее ось (рис. 160). Для задания параболоида вращения на эпюре Монжа достаточно указать проекции образующей g и оси i.

6. Гиперболоид вращения.

При вращении гиперболы можно получить две различные поверхности:

а) однополостный гиперболоид вращения *, образуется при вращении гиперболы g вокруг ее мнимой оси i 1 (рис. 161,а);

б) двуполостный гиперболоид вращения, образуется при вращении гиперболы вокруг ее действительной оси i (рис. 161,6).

7. Коническая и цилиндрическая поверхности вращения.

Эти поверхности можно получить путем вращения прямой g вокруг оси i. Коническая и цилиндрическая поверхности были подробно рассмотрены в § 35 (см. рис. 147, 151 и 148, 152).