Открытый урок. Физика

Учитель: Лакизо И.А.

Тема урока: Зеркала. Построение изображений в плоском зеркале

Цель урока : познакомиться с понятием «плоское зеркало»; с алгоритмом построения изображения в плоском зеркале; со свойствами изображения предмета в плоском зеркале; с применением плоских зеркал в быту, технике.

Задачи:
- обучающие:

сформировать понятия плоского зеркала и изображения в плоском зеркале, понятие мнимого изображения; изучить способы построения изображений в плоском зеркале при различных относительных положениях объекта и зеркала; научить устанавливать взаимосвязи в изучаемых явлениях; сформировать практические навыки по построению

- развивающие:

развивать умения делать выводы и обобщения, развивать глазомер, умение ориентировки в пространстве и во времени, развивать умение применять знания в конкретных ситуациях, включать детей в разрешение учебных проблемных ситуаций, развивать логическое мышление; развивать и поддерживать внимание учащихся через смену учебной деятельности

- воспитательные:

воспитывать познавательный интерес, положительную мотивацию к обучению, аккуратность при выполнении заданий.

Тип урока: комбинированный

Формы работы учащихся: устное решение практических задач, практическая работа с зеркалом, конспект, творческая работа учащихся (сообщения учащихся «Из истории зеркал» и «История калейдоскопа»)

Средства обучения: Зеркало, линейка, ластик, мультимедийный проектор, компьютер, презентация

Ход урока:

1. Актуализация опорных знаний.

Организационный момент

Виды опроса:

1. Компьютерный тест (4 чел.)

2. Фронтальный опрос

3. Обобщающий опрос (1 чел)

4. Работа у доски: построение(1 чел у доски)

Фронтальный опрос:

1. Оптика- это…

2. Источники света-…..

3. Источники света бывают- ….

4. Световой луч- …

5. Точечный источник- …

6. Отражение света – это..

7. Практически все поверхности отражают свет. Какие бывают отражения? Что же общее в этих двух видах отражения?

8. Подумайте и скажите, благодаря какому отражению мы с вами видим окружающие тела?

9. Назовите основные лучи и линии, применяемые для графического изображения отражения света.

10. Сформулируйте законы отражения света.

11. В ясный солнечный зимний день деревья дают на снегу чёткие тени, а в пасмурный день теней нет. Почему?

7. Задачи. (Решаем устно)

а) Угол падения равен 30 градусов. Чему равен угол отражения?

б) Угол падения луча равен 15градусов. Чему равен угол между падающим и отраженным лучами?

в) Угол падения увеличили на 10градусов. Как изменился угол между падающим и отраженным лучами?

г) Угол между падающим и отраженным лучами составляет 90градусов.

Под каким углом к зеркалу падает свет?

Д) Свет падает на поверхность раздела двух сред перпендикулярно. Чему равен угол падения и угол отражения света?

9. Определите, на каком рисунке (1 или 2) изображено диффузное отражение, а на каком – зеркальное отражение.

Обобщающий опрос: один учащийся у доски отвечает на вопросыодноклассников. Выставляется отметка.

Работа у доски:

  • проверяется правильность построения тени и полутени.
  • Проверяется правильность разгадывания кроссворда

Вопросы к кроссворду:

1) попадание небесного объекта в тень другого объекта

2) область пространства, куда свет не попадает от светового источника

3) явления, с помощью которого мы можем видеть предметы, которые сами не светятся

4) ученый, основатель геометрии, писавший о прямолинейном распространении света

5) наука (раздел физики) о природе и свойствах света

6) линия, вдоль которой распространяется энергия от источника света

7) свойство лучей, при котором падающий и отраженный луч могут меняться местами

2. Изучение нового материала

Какое ключевое слово мы получили? Зеркало.

Да, тема урока: Зеркало. Построение изображения в плоском зеркале. Записывается число и тема урока в тетрадь.

Сегодня мы с вами должны познакомиться с:

1. понятием «плоское зеркало»;

2. с алгоритмом построения изображения в плоском зеркале;

3. со свойствами изображения предмета в плоском зеркале;

4. с применением плоских зеркал в быту, технике

Вниманию учащихся предлагается три зеркала: с плоской поверхностью, с выпуклой поверхностью и вогнутой поверхностью. Вопрос: чем отличаются данные зеркала? Формируем понятие какие бывают зеркала

Сегодня более подробно будем говорить о плоских зеркалах.

Поговорим об истории создания зеркала. Заслушаем сообщение.

История создания зеркал.

Первые упоминания о зеркалах относятся к 1200 г. до н. э. 150 лет назад археологи обнаружили в одной из египетских гробниц небольшой металлический диск, покрытый толстым слоем ржавчины. Диск был укреплён на голове статуэтки молодой женщины. О его назначении терялись в догадках. Когда в лаборатории наждаком сняли толстый слой чёрного налёта, то на свет выглянула гладкая отполированная поверхность, в которой химик увидел своё отражение. Загадочный предмет оказался зеркалом. После исследования оказалось, что диск сделан из бронзы.

Бронзовое зеркало от сырости быстро темнеет, поэтому в древности пробовали делать серебряные зеркала. Но серебро от времени тоже темнеет. На Руси делали стальные зеркала и называли их «булатными». Но они быстро темнели и покрывались слоем ржавчины.

Поэтому встал вопрос о том, как предохранить металл от воздействия внешней среды: чем-нибудь прикрыть чем-то прозрачным.

Впервые стёкла начали изготовлять в 15 веке на итальянском острове Мурано, что недалеко от Венеции. Муранские мастера первыми научились варить прозрачное стекло. Они нашли способ, как из стеклянного пузыря сделать плоский лист. Теперь встал вопрос, как соединить металл и стекло: ведь стекло очень хрупкое. Для того, чтобы стекло не треснуло, надо нанести на него очень тонкую плёнку жидкого металла. Эту трудную задачу разрешили. На гладком листе мрамора разостлали листок олова и полили его ртутью. Олово растворилось во ртути. Этот раствор назвали амальгамой. На неё положили лист стекла, и серебристая блестящая плёнка амальгамы толщиной с папиросную бумагу плотно пристала к стеклу. Так было сделано первое настоящее зеркало.

Стёкла в то время стоили очень дорого. Чтобы купить зеркало небольшого размера, например, во Франции графиня дё Фиеск продала имение. Поэтому венецианцы очень строго охраняли секрет изготовления зеркала. Но в 17 веке французский министр Кольбер при Людовике ХIV смог подкупить трёх мастеров с Мурано и тайно переправить их во Францию. Французы оказались способными учениками и вскоре превзошли своих учителей. В Версале даже построили галерею длиной 73 метра из зеркал больших размеров, что производило ошеломляющее впечатление на гостей французского короля.

Теперь рассмотрим зеркало с точки зрения физики.

Плоское зеркало – зеркально отражающая поверхность, если падающий на неё пучок параллельных лучей остаётся параллельным.

Какое же изображение получается в плоском зеркале? Это мы выясним опытным путём.

Заполним таблицу(распечатана для каждого учащегося синий цве – это пропуски – заполняют учащиеся):

Из сказки А. С. Пушкина

«Свет мой, зеркальце, скажи

Да всю правду доложи,

Я ль на свете всех милее,

всех румяней и белее…»

А всегда ли плоское зеркало говорит правду?

Проведем эксперимент:

Проведём опыт со свечой и стеклом. Поставим зажжённую свечу перед стеклом. Отражение свечи мы наблюдаем. Теперь давайте возьмём незажжённую свечу и будем передвигать с другой стороны до тех пор, пока свеча «не загорится».

Теперь измерим:

  • расстояние до данной свечи (расстояние до отражения) и сравним с расстоянием до зажжённой свечи (расстояние до предмета). Какой можно сделать вывод? Расстояние от предмета до зеркала равно расстоянию от зеркала до отражения.
  • Измерим свечу и отражение. Размеры предмета и отражения равны.
  • Есть такая японская поговорка: «Хорош цветок в зеркале, да не возьмешь». Верна ли она с точки зрения физики?

У нас есть лист бумаги. Как можно доказать, что отражение – мнимое ? (Поднесём к отображению – не горит).

Вывод: плоское зеркало – дает изображение равное по величине, на таком же расстоянии, но симметричное.

Внимание на экран.(фрагмент из м/ф «НУ, погоди!»/2 серия, Время:6-00-7-00/

Почему заяц и волк видели в зеркалах искаженные изображения?
Ответ: в комнате смеха используются вогнутые и выпуклые зеркала.

Проведем физический эксперимент (приглашаем двух учащихся).
Изучение свойств вогнутого и выпуклого зеркала.
Приборы и материалы: вогнутое и выпуклое зеркала (начищенные до блеска металлические ложки).
Ход работы
1. Ложка имеет две стороны – выпуклую и вогнутую. Держите ложку (зеркало) вертикально перед собой и посмотрись в выпуклую часть ложки. Как выглядит ваше изображение? Видите ли вы себя прямо или перевернутым вверх ногами? Отражение растянуто или нет?
2. Переверните ложку горизонтально. Как изменилось при этом изображение?
3. Опять возьмите ложку (зеркало) вертикально, переверните так, чтобы смотреть в вогнутую сторону ложки. Как теперь выглядит ваше изображение? Оно перевернуто? Изменились ли ваши черты?
4. Переверните ложку горизонтально. Как изменилось при этом изображение?
5. Медленно поднесите ложку (зеркало) к глазам. Повернулось ли изображение вверх ногами, или все осталось по-прежнему?

Сделайте вывод.

Практические задания

  1. 1. Построить изображение в плоском зеркале.

Способ 1

1) Проведём перпендикуляр из точки А к поверхности зеркала и продолжим его. О – точка пересечения перпендикуляра и поверхности зеркала.

2) От точки О отложим расстояние ОА 1 , равное расстоянию ОА (исходя из свойства 1).

3) Аналогично построим изображение точки В 1 .

Способ 2

Построим изображение предмета в плоском зеркале, используя закон отражения света. Вы все хорошо знаете, что изображение предмета в зеркале образуется за зеркалом, там, где его на самом деле нет.

Как это получается? (Учитель излагает теорию, учащиеся принимают активное участие, один работает у доски)

  1. Сколько изображений можно получить в двух плоских зеркалах , находящихся под углом друг к другу.

Существует формула, по которой можно вычислить количество изображений, полученных от двух зеркал, расположенных под различными углами друг к другу:

n- число изображений, - угол между зеркалами.

Пользуясь данной формулой, определяем:

при =90 0 n=3

при =45 0 n=7

при =30 0 n=11

Проверим это на опыте.

Практическое применение : для торговой рекламы в витрине между зеркалами, расположенных под углом друг к другу, помещают, например, один флакон духов, а создаётся впечатление множества таких флаконов. Один букет цветов, поставленный в вазе среди этих зеркал, создаёт иллюзию целого цветочного поля.

Если зеркала поставить параллельно друг к другу и между ними поместить зажженную свечку, то через отверстие в амальгаме можно наблюдать целый коридор со свечами.

Многократное отражение от зеркал используется в калейдоскопе, который был изобретён в Англии в 1816 году. Три зеркала образуют поверхность призмы. Между ними помещают цветные стёклышки. Поворачивая калейдоскоп, можно наблюдать тысячи прекрасных картин.

Фокус «Отрубленная голова». Между ножками стола ставится зеркало таким образом, чтобы в нём не отражалась публика, а стены и пол были одинакового цвета во всём помещении.

«Применение зеркал»

  1. 1. В быту.

Первые зеркала были созданы, чтобы следить за собственной внешностью.

В настоящее время зеркала, особенно большие, широко используются в дизайне интерьера, чтобы создать иллюзию пространства, большого объёма в небольших помещениях. Такая идея возникла во Франции в 17 веке в эпоху правления Людовика ХIV, «короля-солнца».

2. В качестве рефлекторов используются параболические зеркала, позволяющие создать пучок параллельных лучей (фары, прожекторы).

3. Научные приборы: телескопы, лазеры, зеркальные фотоаппараты

4. Устройства для безопасности, автомобильные и дорожные зеркала

  • зеркало на дороге у крутого поворота
  • в тех случаях, когда обзор ограничен, используются слегка выпуклые зеркала для расширения поля зрения (в каждом автомобиле, автобусе).
  • на дорогах и на тесных парковках стационарные выпуклые зеркала позволяют избежать столкновений и аварий.
  • в системах видеонаблюдения зеркала обеспечивают обзор в большем числе направлений с одной видеокамеры.

5. В медицине:

-гастроскоп (медицинский перископ)позволяет исследовать желудок: выявлять язву, опухоль и т.д.

Зеркальца у стоматолога

6. Военное дело:

Военный перископ;

Перископ на подводной лодке

- в термоядерном оружии для фокусировки излучения от запала и создания условий для начала термоядерного процесса синтеза.

Закрепление.

1. Ответьте на вопросы :

Три точки, расположенные на одной прямой, отражаются в плоском зеркале. Будут ли изображения этих точек расположены на одной прямой и почему Симметрия относительно пря мой сохраняет параллельность прямых).

Существует ли в зеркале ваше изображение, если вы сами не видите себя в зеркале? Если да, то как в этом можно убедиться. (другой человек может увидеть ваше изображение)

Человек приближается к зеркалу со скоростью 0,5 м /с.

а) С какой скоростью он приближается к своему изображению?

б) С какой скоростью изображение приближается к зеркалу?

2. Работа по тесту (распечатка на парту)

Тема: Плоское зеркало

Плоское зеркало - это

  1. Гладкая поверхность, хорошо отражающая свет
  2. Плоская поверхность, не имеющая шероховатостей (зеркальная)
  3. Любая поверхность, зеркально отражающая свет
  4. Среди ответов нет верного

Каково изображение светящейся точки и где оно образуется в плоском зеркале?

  1. Мнимое, за зеркалом
  2. Действительное, перед зеркалом
  3. Действительное, за зеркалом
  4. Мнимое, перед зеркалом

На рисунке показаны изображения S’ точки S в плоском зеркале. На каком из них допущена ошибка?

  1. Все рисунки верные

На рисунке представлены изображения предметов (стрелок) в плоском зеркале. На каком из них изображение показано правильно?

  1. Среди изображений нет верных

Характеристика изображения предмета в плоском зеркале такова: оно …

  1. Мнимое, большего размера, чем предмет, и находится за зеркалом на большом расстоянии от него
  2. Действительное, меньшего размера, чем предмет, и находится перед зеркалом на том же расстоянии, что и предмет
  3. Мнимое, равного с предметом размера и находится за зеркалом
  4. Среди ответов нет верного

Какие свойства изображения в плоском зеркале отличают его от самого предмета?

  1. Другой размер и другая удаленность от зеркала
  2. Его мнимость и симметричность, а не тождественность предмету
  3. Его мнимость и другой размер
  4. Различий в них нет

Еще в древней Греции в качестве зеркал использовали полированные металлические пластины, но качество изображения в них было неважным. Почему?

  1. Неудовлетворительное качество полировки
  2. Зеркало должно быть стеклянным, а не металлическим
  3. Неудачный выбор металла
  4. Среди ответов нет верного





От какой поверхности происходит отражение в обычном стеклянном зеркале?

  1. От внешней поверхности стекла
  2. От внутренней поверхности стекла
  3. От металлической фольги за стеклом
  4. Среди ответов нет верного

Сколько зеркал используется в перископе?

  1. Четыре

И от зеркала и от свежевыпавшего снега хорошо отражается свет. В чём разница?

  1. Разницы нет
  2. От снега свет не отражается вовсе
  3. В случае с зеркалом – зеркальное отражение, со снегом – диффузное
  4. Среди ответов нет верного





Проверим выполнение работы и подведем итоги.

Домашнее задание .

1. параграф 38 – изучить;

2. упр. 25(2,3) – письменно;

3. найти примеры использования зеркал в технике, науке, в жизни;

При построении изображения любой точки источника нет надобности рассматривать много лучей. Для этого достаточно построить два луча; точка их пересечения определит местоположение изображения. Удобнее всего построить те лучи, ход которых легко проследить. Ход этих лучей в случае отражения от зеркала изображен на рис. 213.

Рис. 213. Различные приемы построения изображения в вогнутом сферическом зеркале

Луч 1 проходит через центр зеркала и поэтому нормален к поверхности зеркала. Этот луч возвращается после отражения точно назад вдоль побочной или главной оптической оси.

Луч 2 параллелен главной оптической оси зеркала. Этот луч после отражения проходит через фокус зеркала.

Луч 3, который от точки объекта проходит через фокус зеркала. После отражения от зеркала он идет параллельно главной оптической оси.

Луч 4, падающий на зеркало в его полюсе, отразится назад симметрично по отношению к главной оптической оси. Для построения изображения можно воспользоваться любой парой этих лучей.

Построив изображения достаточного числа точек протяженного объекта, можно составить представление о положении изображения всего объекта. В случае простой формы объекта, указанной на рис. 213 (отрезок прямой, перпендикулярный к главной оси), достаточно построить всего одну точку изображения . Несколько более сложные случаи рассмотрены в упражнениях.

На рис. 210 были даны геометрические построения изображений для разных положений объекта перед зеркалом. Рис. 210, в - объект помещен между зеркалом и фокусом - иллюстрирует построение мнимого изображения при помощи продолжения лучей за зеркало.

Рис. 214. Построение изображения в выпуклом сферическом зеркале.

На рис. 214 дан пример построения изображения в выпуклом зеркале. Как было указано ранее, в этом случае получаются всегда мнимые изображения.

Для построения изображения в линзе любой точки объекта, так же как и при построении изображения в зеркале, достаточно найти точку пересечения каких-либо двух лучей, исходящих из этой точки. Наиболее простое построение выполняется при помощи лучей, указанных на рис. 215.

Рис. 215. Различные приемы построения изображения в линзе

Луч 1 идет вдоль побочной оптической оси без изменения направления.

Луч 2 падает на линзу параллельно главной оптической оси; преломляясь, этот луч проходит через задний фокус .

Луч 3 проходит через передний фокус ; преломляясь, этот луч идет параллельно главной оптической оси.

Построение этих лучей выполняется без всяких затруднений. Всякий другой луч, идущий из точки , построить было бы значительно труднее - пришлось бы непосредственно использовать закон преломления. Но в этом и нет необходимости, так как после выполнения построения любой преломленный луч пройдет через точку .

Следует отметить, что при решении задачи о построении изображения внеосевых точек вовсе не необходимо, чтобы выбранные простейшие пары лучей действительно проходили через линзу (или зеркало). Во многих случаях, например при фотографировании, предмет значительно больше линзы, и лучи 2 и 3 (рис. 216) не проходят через линзу. Тем не менее эти лучи могут быть использованы для построения изображения. Реальные луч и, участвующие в образовании изображения, ограничены оправой линзы (заштрихованные конусы), но сходятся, конечно, в той же точке , поскольку доказано, что при преломлении в линзе изображением точечного источника является снова точка.

Рис. 216. Построение изображения в случае, когда предмет значительно больше линзы

Рассмотрим несколько типичных случаев изображения в линзе. Линзу будем считать собирающей.

1. Предмет находится от линзы, на расстоянии, большем двойного фокусного расстояния. Таково обычно положение предмета при фотографировании.

Рис. 217. Построение изображение в линзе в случае, когда предмет находится за двойным фокусным расстоянием

Построение изображения дано на рис. 217. Поскольку , то по формуле линзы (89.6)

,

т. е. изображение лежит между задним фокусом и тонкой, находящейся на двойном фокусном расстоянии от оптического центра линзы. Изображение - перевернутое (обратное) и уменьшенное, так как по формуле увеличения

2. Отметим важный частный случай, когда на линзу падает пучок лучей, параллельных какой-либо побочной оптической оси. Подобный случай имеет место, например, при фотографировании очень удаленных протяженных предметов. Построение изображения дано на рис. 218.

В этом случае изображение лежит на соответствующей побочной оптической оси, в месте ее пересечения с задней фокальной плоскостью (так называется плоскость, перпендикулярная к главной оси и проходящая через задний фокус линзы).

Рис. 218. Построение изображения в случае, когда на линзу падает пучок лучей, параллельных побочной оптической оси

Точки фокальной плоскости нередко называют фокусами соответствующих побочных осей, оставляя название главный фокус за точкой , соответствующей главной оси.

Расстояние фокуса от главной оптической оси линзы и угол между рассматриваемой побочной осью и главной осью связаны, очевидно, формулой (рис. 218)

3. Предмет лежит между точкой на двойном фокусном расстоянии и передним фокусом - обычное положение предмета при проецировании проекционным фонарем. Для исследования этого случая достаточно воспользоваться свойством обратимости изображения в линзе. Будем считать источником (см. рис. 217), тогда будет являться изображением. Легко видеть, что в рассматриваемом случае изображение - обратное, увеличенное и лежит от линзы на расстоянии, большем двойного фокусного расстояния.

Полезно отметить частный случай, когда предмет находится от линзы на расстоянии, равном двойному фокусному расстоянию, т. е. . Тогда по формуле линзы

,

т. е. изображение лежит от линзы также на двойном фокусном расстоянии. Изображение в этом случае перевернутое. Для увеличения находим

т. е. изображение имеет те же размеры, что и предмет.

4. Большое значение имеет частный случай, когда источник находится в плоскости, перпендикулярной к главной оси линзы и проходящей через передний фокус.

Эта плоскость также является фокальной плоскостью; ее называют передней фокальной плоскостью. Если точечный источник находится в какой-либо из точек фокальной плоскости, т. е. в одном из передних фокусов, то из линзы выходит параллельный пучок лучей, направленный вдоль соответствующей оптической оси (рис. 219). Угол между этой осью и главной осью и расстояние от источника до оси связаны формулой

5. Предмет лежит между передним фокусом и линзой, т. е. . В этом случае изображение-прямое и мнимое.

Построение изображения в этом случае дано на рис. 220. Так как , то для увеличения имеем

т. е. изображение увеличенное. Мы вернемся к данному случаю при рассмотрении лупы.

Рис. 219. Источники и лежат в передней фокальной плоскости. (Из линзы выходят пучки лучей, параллельные побочным осям, проходящим через точки источника)

Рис. 220. Построение изображения в случае, когда предмет лежит между передним фокусом и линзой

6. Построение изображения для рассеивающей линзы (рис. 221).

Изображение в рассеивающей линзе всегда мнимое и прямое. Наконец, поскольку , то изображение всегда уменьшенное.

Рис. 221. Построение изображения в рассеивающей линзе

Отметим, что при всех построениях лучей, проходящих через тонкую линзу, мы можем не рассматривать ход их внутри самой линзы. Важно лишь знать расположение оптического центра и главных фокусов. Таким образом, тонкая линза может быть изображена плоскостью, проходящей через оптический центр перпендикулярно к главной оптической оси, на которой должны быть отмечены положения главных фокусов. Эта плоскость называется главной плоскостью. Очевидно, что луч, входящий в линзу и выходящий из нее, проходит через одну а ту же точку главной плоскости (рис. 222, а). Если мы сохраняем на рисунках очертания линзы, то только для наглядного различия собирающей и рассеивающей линз; для всех же построений эти очертания излишни. Иногда для большей простоты чертежа вместо очертаний линзы применяют символическое изображение, показанное на рис. 222, б.

Рис. 222. а) Замена линзы главной плоскостью ; б) символическое изображение собирающей (слева) и рассеивающей (справа) линз; в) замена зеркала главной плоскостью

Аналогично, сферическое зеркало можно изображать главной плоскостью, которая касается поверхности сферы в полюсе зеркала, с указанием на главной оси положения центра сферы и главного фокуса . Положение указывает, имеем ли мы дело с вогнутым (собирающим) или с выпуклым (рассеивающим) зеркалом (рис. 222, в).

Построение изображений в сферических зеркалах

Для того чтобы построить изображение любого точечного источника света в сферическом зеркале, достаточно построить ход любых двух лучей , исходящих из этого источника и отраженных от зеркала. Точка пересечения самих отраженных лучей даст действительное изображение источника, а точка пересечения продолжений отраженных лучей – мнимое.

Характерные лучи. Для построения изображений в сферических зеркалах удобно пользоваться определенными характерными лучами, ход которых легко построить.

1. Луч 1 , падающий на зеркало параллельно главной оптической оси, отразившись, проходит через главный фокус зеркала в вогнутом зеркале (рис. 3.6, а ); в выпуклом зеркале через главный фокус проходит продолжение отраженного луча 1 ¢ (рис. 3.6 ,б ).

2. Луч 2 , проходящий через главный фокус вогнутого зеркала, отразившись, идет параллельно главной оптической оси – луч 2 ¢ (рис. 3.7,а ). Луч 2 , падающий на выпуклое зеркало так, что его продолжение проходит через главный фокус зеркала, отразившись, также идет параллельно главной оптической оси – луч 2 ¢ (рис. 3.7, б ).

Рис. 3.7

3. Рассмотрим луч 3 , проходящий через центр вогнутого зеркала – точку О (рис. 3.8, а ) и луч 3 , падающий на выпуклое зеркало так, что его продолжение проходит через центр зеркала – точку О (рис. 3.8, б ). Как мы знаем из геометрии, радиус окружности перпендикулярен касательной к окружности в точке касания, поэтому лучи 3 на рис. 3.8 падают на зеркала под прямым углом , то есть углы падения этих лучей равны нулю. А значит, отраженные лучи 3 ¢ в обоих случаях совпадают с падающими.

Рис. 3.8

4. Луч 4 , проходящий через полюс зеркала – точку Р , отражается симметрично относительно главной оптической оси (лучи на рис. 3.9), поскольку угол падения равен углу отражения.

Рис. 3.9

СТОП! Решите самостоятельно: А2, А5.

Читатель: Как-то я взял обычную столовую ложку и попытался разглядеть в ней свое изображение. Изображение я увидел, но оказалось, что если смотреть на выпуклую часть ложки, то изображение прямое , а если на вогнутую, то перевернутое . Интересно, почему это так? Ведь ложку, я думаю, можно рассматривать как некоторое подобие сферического зеркала.

Задача 3.1. Постройте изображения небольших вертикальных отрезков одинаковой длины в вогнутом зеркале (рис. 3.10). Фокусное расстояние задано. Считается известным, что изображения небольших прямолинейных отрезков, перпендикулярных главной оптической оси, в сферическом зеркале представляют собой также небольшие прямолинейные отрезки, перпендикулярные главной оптической оси.

Решение.

1. Случай а. Заметим, что в данном случае все предметы находятся перед главным фокусом вогнутого зеркала.

Рис. 3.11

Будем строить изображения только верхних точек наших отрезков. Для этого проведем через все верхние точки: А , В и С один общий луч 1 , параллельный главной оптической оси (рис. 3.11). Отраженный луч 1 F 1 .

Теперь из точек А , В и С пустим лучи 2 , 3 и 4 через главный фокус зеркала. Отраженные лучи 2 ¢, 3 ¢ и 4 ¢ пойдут параллельно главной оптической оси.

Точки пересечения лучей 2 ¢, 3 ¢ и 4 ¢ с лучом 1 ¢ являются изображениями точек А , В и С . Это точки А ¢, В ¢ и С ¢ на рис. 3.11.

Чтобы получить изображения отрезков достаточно опустить из точек А ¢, В ¢ и С ¢ перпендикуляры на главную оптическую ось.

Как видно из рис. 3.11, все изображения получились действительными и перевернутыми.

Читатель : А что значит – действительными?

Автор : Изображение предметов бывает действительным и мнимым . С мнимым изображением мы уже познакомились, когда изучали плоское зеркало: мнимое изображение точечного источника – это точка, в которой пересекаются продолжения отраженных от зеркала лучей. Действительное изображение точечного источника – это точка, в которой пересекаются сами отраженные от зеркала лучи.

Заметим, что чем дальше находился предмет от зеркала, тем меньшим получилось его изображение и тем ближе это изображение к фокусу зеркала. Заметим также, что изображение отрезка, нижняя точка которого совпадала с центром зеркала – точкой О , получилось симметричным предмету относительно главной оптической оси.

Надеюсь, теперь Вам понятно, почему, рассматривая свое отражение в вогнутой поверхности столовой ложки, Вы увидели себя уменьшенным и перевернутым: ведь предмет (Ваше лицо) находилось явно перед главным фокусом вогнутого зеркала.

2. Случай б. В данном случае предметы находятся между главным фокусом и поверхностью зеркала.

Первый луч – луч 1 , как и в случае а , пустим через верхние точки отрезков – точки А и В 1 ¢ пройдет через главный фокус зеркала – точку F 1 (рис. 3.12).

Теперь воспользуемся лучами 2 и 3 , исходящими из точек А и В и проходящими через полюс зеркала – точку Р . Отраженные лучи 2 ¢ и 3 ¢ составляют с главной оптической осью те же углы, что и падающие лучи.

Как видно из рис. 3.12, отраженные лучи 2 ¢ и 3 ¢ не пересекаются с отраженным лучом 1 ¢. Значит, действительных изображений в данном случае нет . Зато продолжения отраженных лучей 2 ¢ и 3 ¢ пересекаются с продолжением отраженного луча 1 ¢ в точках А ¢ и В ¢ за зеркалом , образуя мнимые изображения точек А и В .

Опустив перпендикуляры из точек А ¢ и В ¢ на главную оптическую ось, получим изображения наших отрезков.

Как видно из рис. 3.12, изображения отрезков получились прямыми и увеличенными , причем чем ближе предмет к главному фокусу, тем больше его изображение и тем дальше это изображение от зеркала.

СТОП! Решите самостоятельно: А3, А4.

Задача 3.2. Постройте изображения двух небольших одинаковых вертикальных отрезков в выпуклом зеркале (рис. 3.13).

Рис. 3.13 Рис. 3.14

Решение. Пустим луч 1 через верхние точки отрезков А и В параллельно главной оптической оси. Отраженный луч 1 ¢ пойдет так, что его продолжение пересечет главный фокус зеркала – точку F 2 (рис. 3.14).

Теперь пустим на зеркало лучи 2 и 3 из точек А и В так, чтобы продолжения этих лучей проходили через центр зеркала – точку О . Эти лучи отразятся так, что отраженные лучи 2 ¢ и 3 ¢ совпадут с падающими лучами.



Как видим из рис. 3.14, отраженный луч 1 ¢ не пересекается с отраженными лучами 2 ¢ и 3 ¢. Значит, действительных изображений точек А и В нет . Зато продолжение отраженного луча 1 ¢ пересекается с продолжениями отраженных лучей 2 ¢ и 3 ¢ в точках А ¢ и В ¢. Следовательно, точки А ¢ и В ¢ – мнимые изображения точек А и В .

Для построения изображений отрезков опустим перпендикуляры из точек А ¢ и В ¢ на главную оптическую ось. Как видно из рис. 3.14, изображения отрезков получились прямыми и уменьшенными. Причем чем ближе предмет к зеркалу, тем больше его изображение и тем ближе оно к зеркалу. Однако даже очень удаленный предмет не может дать изображение, удаленное от зеркала дальше главного фокуса зеркала .

Надеюсь, теперь понятно, почему, рассматривая свое отражение в выпуклой поверхности ложки, вы видели себя уменьшенным, но не перевернутым.

СТОП! Решите самостоятельно: А6.

Зеркало, поверхность которого представляет собой плоскость, называют плоским зеркалом. У сферических и параболических зеркал форма поверхности иная. Кривые зеркала мы изучать не будем. В обиходе чаще всего используют плоские зеркала, поэтому именно на них мы и остановимся.

Когда предмет находится перед зеркалом, то кажется, что за зеркалом находится такой же предмет. То, что мы видим за зеркалом, называется изображением предмета.

Почему мы видим предмет там, где его на самом деле нет?

Для ответа на этот вопрос выясним, как возникает изображение в плоском зеркале. Пусть перед зеркалом находится какая-либо светящаяся точка S (рис. 79). Из всех лучей, падающих из этой точки на зеркало, выделим для простоты три луча: SO, SO 1 и SO 2 . Каждый из этих лучей отражается от зеркала по закону отражения света, т. е. под таким же углом, под каким падает на зеркало. После отражения эти лучи расходящимся пучком попадают в глаз наблюдателя. Если продолжить отраженные лучи назад, за зеркало, то они сойдутся в некоторой точке S 1 . Эта точка и является изображением точки S. Именно здесь будет видеть наблюдатель источник света.

Изображение S 1 называется мнимым, так как получается оно в результате пересечения не реальных лучей света, которых за зеркалом нет, а их воображаемых продолжений. (Если бы это изображение было получено как точка пересечения реальных световых лучей, то оно называлось бы действительным.)

Итак, изображение в плоском зеркале всегда является мнимым. Поэтому когда вы смотритесь в зеркало, то видите перед собой не действительное, а мнимое изображение. Пользуясь признаками равенства треугольников (см. рис. 79), можно доказать, что S1O = OS. Это означает, что изображение в плоском зеркале находится на таком же расстоянии от него, на каком перед ним находится источник света.

Обратимся к опыту. Поместим на столе кусок плоского стекла. Часть света стекло отражает, и поэтому стекло можно использовать как зеркало. Но так как стекло прозрачно, мы сможем одновременно видеть и то, что находится за ним. Поставим перед стеклом зажженную свечу (рис. 80). За стеклом появится ее мнимое изображение (если поместить в изображение пламени кусочек бумаги, то он, конечно, не загорится).

Поставим по другую сторону стекла (где мы видим изображение) такую же, но незажженную свечу и начнем передвигать ее до тех пор, пока она не совместится с полученным ранее изображением (при этом она покажется зажженной). Теперь измерим расстояния от зажженной свечи до стекла и от стекла до ее изображения. Эти расстояния окажутся одинаковыми.
Опыт также показывает, что высота изображения свечи равна высоте самой свечи.

Подводя итоги, можно сказать, что изображение предмета в плоском зеркале всегда является: 1) мнимым; 2) прямым, т. е. неперевернутым; 3) равным по размеру самому предмету; 4) находящимся на таком же расстоянии за зеркалом, на каком предмет расположен перед ним. Иными словами, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала.

На рисунке 81 показано построение изображения в плоском зеркале. Пусть предмет имеет вид стрелки AB. Для построения его изображения следует:

1) опустить из точки A на зеркало перпендикуляр и, продлив его за зеркалом точно на такое же расстояние, обозначить точку A 1 ;

2) опустить из точки B на зеркало перпендикуляр и, продлив его за зеркалом точно на такое же расстояние, обозначить точку B 1 ;

3) соединить точки A 1 и B 1 .

Полученный при этом отрезок A 1 B 1 будет мнимым изображением стрелки AB.

На первый взгляд у предмета и его изображения в плоском зеркале нет никаких различий. Однако это не так. Посмотрите на изображение своей правой руки в зеркале. Вы увидите, что пальцы на этом изображении расположены так, как будто эта рука левая. Это не случайность: зеркальное отражение всегда меняет правое на левое и наоборот.

Не всем нравится различие правого и левого. Некоторые любители симметрии даже свои литературные произведения стараются написать так, чтобы они читались одинаково как слева направо, так и справа налево (такие фразы-перевертыши называют палиндромами), например: «Кинь лед зебре, бобер, бездельник».

Интересно, что животные по-разному реагируют на свое изображение в зеркале: некоторые его не замечают, у других оно вызывает явное любопытство. Наибольший интерес оно вызывает у обезьян. Когда на стене в одном из открытых вольеров для обезьян повесили большое зеркало, около него собрались все его обитатели. Обезьяны не отходили от зеркала, разглядывая свои изображения, в течение всего дня. И лишь когда им принесли их любимое лакомство, проголодавшиеся животные пошли на зов работницы. Но, как рассказал потом один из наблюдателей зоопарка, сделав несколько шагов от зеркала, они вдруг заметили, как их новые товарищи из «зазеркалья» тоже уходят! Страх больше не увидеть их оказался столь высоким, что обезьяны, отказавшись от пищи, вернулись к зеркалу. В конце концов зеркало пришлось убрать.

В жизни человека зеркала играют не последнюю роль, их используют как в быту, так и в технике.

Получение изображения с помощью плоского зеркала может быть использовано, например, в перископе (от греч. «перископео» - смотрю вокруг, осматриваю) - оптическом приборе, служащем для наблюдений из танков, подводных лодок и различных укрытий (рис. 82).

Параллельный пучок лучей, падающих на плоское зеркало, остается параллельным и после отражения (рис. 83, а). Именно такое отражение и называют зеркальным. Но помимо зеркального существует еще и другой вид отражения, когда параллельный пучок лучей, падающих на какую-либо поверхность, после отражения рассеивается ее микронеровностями по всевозможным направлениям (рис. 83, б). Такое отражение называют диффузным", его создают негладкие, шероховатые и матовые поверхности тел. Именно благодаря диффузному отражению света становятся видимыми окружающие нас предметы.


1. Чем отличаются плоские зеркала от сферических? 2. В каком случае изображение называют мнимым? действительным? 3. Охарактеризуйте изображение в плоском зеркале. 4. Чем отличается зеркальное отражение от диффузного? 5. Что мы увидели бы вокруг, если бы все предметы вдруг стали отражать свет не диффузно, а зеркально? 6. Что такое перископ? Как он устроен? 7. Используя рисунок 79, докажите, что изображение точки в плоском зеркале находится на таком же расстоянии от зеркала, на каком находится перед ним данная точка.

Экспериментальное задание. Встаньте дома перед зеркалом. Совпадает ли характер видимого вами изображения с тем, что описано в учебнике? С какой стороны у вашего зеркального двойника находится сердце? Отступите от зеркала на один-два шага. Что при этом произошло с изображением? Как изменилось его расстояние от зеркала? Изменилась ли при этом высота изображения?