ВЕКТОРЫ . ДЕЙСТВИЯ НАД ВЕКТОРАМИ. СКАЛЯРНОЕ,

ВЕКТОРНОЕ, СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

1. ВЕКТОРЫ, ДЕЙСТВИЯ НАД ВЕКТОРАМИ.

Основные определения.

Определение 1. Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром .

(Масса тела, объем, время и т.д.)

Определение 2. Величина, характеризуемая числовым значением и направлением, называется векторной или вектором .

(Перемещение, сила, скорость и т.д.)

Обозначения: , или , .

Геометрический вектор – это направленный отрезок.

Для вектора – точка А – начало, точка В – конец вектора.

Определение 3. Модуль вектора – это длина отрезка AB.

Определение 4. Вектор, модуль которого равен нулю, называется нулевым , обозначается .

Определение 5. Векторы, расположенные на параллельных прямых или на одной прямой называются коллинеарными . Если два коллинеарных вектора имеют одинаковое направление, то они называются сонаправленными .

Определение 6. Два вектора считаются равными , если они сонаправлены и равны по модулю.

Действия над векторами.

1) Сложение векторов.

Опр. 6. Суммой двух векторов и является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма) .

Рис.1.

Опр. 7. Суммойтрех векторов , , называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если А , В , С – произвольные точки, то + = (правило треугольника) .

рис.2

Свойства сложения.

1 о . + = + (переместительный закон).

2 о . + ( + ) = ( + ) + = ( + ) + (сочетательный закон).

3 о . + (– ) + .

2) Вычитание векторов.

Опр. 9. Подразностью векторов и понимают вектор = – такой, что + = .

В параллелограмме – это другая диагональ СД (см.рис.1).

3) Умножение вектора на число.

Опр. 10. Произведением вектора на скаляр k называется вектор

= k = k ,

имеющий длину ka , и направление, которого:

1. совпадает с направлением вектора , если k > 0;

2. противоположно направлению вектора , если k < 0;

3. произвольно, если k = 0.

Свойства умножения вектора на число.

1 о . (k + l ) = k + l .

k ( + ) = k + k .

2 o . k (l ) = (kl ) .

3 o . 1 = , (–1) = – , 0 = .

Свойства векторов.

Опр. 11. Два вектора и называются коллинеарными , если они расположены на параллельных прямых или на одной прямой.

Нулевой вектор коллинеарен любому вектору.

Теорема 1. Два ненулевых вектора и коллинеарны,  когда они пропорциональны т.е.

= k , k – скаляр.

Опр. 12. Три вектора , , называются компланарными , если они параллельны некоторой плоскости или лежат в ней.

Теорема 2. Три ненулевых вектора , , компланарны,  когда один из них является линейной комбинацией двух других, т.е.

= k + l , k , l – скаляры.

Проекция вектора на ось.

Теорема 3. Проекция вектора на ось (направленная прямая) l равна произведению длины вектора на косинус угла между направлением вектора и направлением оси, т.е. = a c os , = ( , l ).

2. КООРДИНАТЫ ВЕКТОРА

Опр. 13. Проекции вектора на координатные оси Ох , Оу , Оz называются координатами вектора. Обозначение: a x , a y , a z .

Длина вектора:

Пример: Вычислить длину вектора .

Решение:

Расстояние между точками и вычисляется по формуле: .

Пример: Найти расстояние между точками М (2,3,-1) и К (4,5,2).

Действия над векторами в координатной форме.

Даны векторы =a x , a y , a z  и =b x , b y , b z .

1. (  )=a x b x , a y b y , a z b z .

2. = a x , a y , a z , где – скаляр.

Скалярное произведение векторов.

Определение: Под скалярным произведением двух векторов и

понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и .

Свойства скалярного произведения :

1. =

2. ( + ) =

3.

4.

5. , где – скаляры.

6. два вектора перпендикулярны (ортогональны), если .

7. тогда и только тогда, когда .

Скалярное произведение в координатной форме имеет вид: , где и .

Пример: Найти скалярное произведение векторов и

Решение:

Векторное проведение векторов.

Определение : Под векторным произведением двух векторов и понимается вектор, для которого:

Модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и

Этот вектор перпендикулярен перемножаемым векторам, т.е.

Если векторы неколлинеарны, то они образуют правую тройку векторов.

Свойства векторного произведения :

1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.

2 .Векторный квадрат равен нуль-вектору, т.е.

3 .Скалярный множитель можно выносить за знак векторного произведения, т.е.

4 .Для любых трех векторов справедливо равенство

5 .Необходимое и достаточное условие коллинеарности двух векторов и :

Векторное произведение в координатной форме.

Если известны координаты векторов и , то их векторное произведение находится по формуле:

.

Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:

Пример: Вычислить площадь треугольника с вершинами (1;-1;2), (5;-6;2), (1;3;-1).

Решение: .

Тогда площадь треугольника АВС будет вычисляться следующим образом:

,

Смешанное произведение векторов.

Определение: Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: .

Свойства смешанного произведения:

1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. .

2. При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный, т.е. .

3 .Необходимое и достаточное условие компланарности трех векторов : =0.

4 .Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку, т.е. .

Если известны координаты векторов , то смешанное произведение находится по формуле:

Пример: Вычислить смешанное произведение векторов .

Решение:

3. Базис системы векторов.

Определение. Под системой векторов понимают несколько векторов, принадлежащих одному и тому же пространствуR .

Замечание. Если система состоит из конечного числа векторов, то их обозначают одной и той же буквой с разными индексами.

Пример.

Определение. Любой вектор вида = называется линейной комбинацией векторов . Числа - коэффициентами линейной комбинации.

Пример. .

Определение . Если вектор является линейной комбинацией векторов , то говорят, что вектор линейно выражается через векторы .

Определение. Система векторов называется линейно-независимой , если ни один вектор системы не может быть как линейная комбинация остальных векторов. В противном случае систему называют линейно-зависимой.

Пример . Система векторов линейно-зависима, т. к. вектор .

Определение базиса. Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1. Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание. Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.


В этой статье мы дадим определение вектора с точки зрения геометрии, а также основные сопутствующие понятия. На плоскости и в пространстве вектор является полноценным геометрическим объектом, то есть, имеет вполне реальные очертания, которые Вы увидите на приведенных графических иллюстрациях.

Определение.

Вектор – это направленный отрезок прямой.

То есть, в качестве вектора мы принимаем отрезок на плоскости или в пространстве, считая одну из его граничных точек началом, другую – концом.


Для обозначения векторов будем использовать строчные латинские буквы со стрелочкой над ними, например . Если заданы граничные точки начала и конца отрезка, к примеру А и В , то вектор будем обозначать как .

Определение.

Нулевой вектор – это любая точка плоскости или пространства.

Определение.

Длина вектора - это неотрицательное число, равное длине отрезка АВ .

Длину вектора будем обозначать как .

Так как обозначение длины вектора в точности совпадает со знаком модуля, то можно услышать, что длину вектора называют модулем вектора. Все же рекомендуем использовать термин "длина вектора". Длина нулевого вектора равна нулю.

Определение.

Два вектора называют коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых.

Определение.

Два вектора называют неколлинеарными , если они не лежат на одной прямой или параллельных прямых.

Нулевой вектор коллинеарен любому другому вектору.


Определение.

сонаправленными , если их направления совпадают и обозначают .

Определение.

Два коллинеарных вектора и называют противоположно направленными , если их направления противоположны и обозначают .


Определение.

Два вектора называются равными , если они сонаправленные и их длины равны.

Определение.

Два вектора называются противоположными , если они противоположно направлены и их длины равны.

Понятие равных векторов дает нам возможность рассматривать векторы без привязки к конкретным точкам. Другими словами, мы имеем возможность заменить вектор равным ему вектором, отложенным от любой точки.

Пусть и два произвольных вектора на плоскости или в пространстве. Отложим от некоторой точки O плоскости или пространства векторы и . Лучи OA и OB образуют угол .

Определение

Скалярная величина - величина, которая может быть охарактеризована числом. Например, длина, площадь , масса, температура и т.д.

Вектором называется направленный отрезок $\overline{A B}$; точка $A$ - начало, точка $B$ - конец вектора (рис. 1).

Вектор обозначается либо двумя большими буквами - своим началом и концом: $\overline{A B}$ либо одной малой буквой: $\overline{a}$.

Определение

Если начало и конец вектора совпадают, то такой вектор называется нулевым . Чаще всего нулевой вектор обозначается как $\overline{0}$.

Векторы называются коллинеарными , если они лежат либо на одной прямой, либо на параллельных прямых (рис. 2).

Определение

Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются сонаправленными , если их направления совпадают: $\overline{a} \uparrow \uparrow \overline{b}$ (рис. 3, а). Два коллинеарных вектора $\overline{a}$ и $\overline{b}$ называются противоположно направленными , если их направления противоположны: $\overline{a} \uparrow \downarrow \overline{b}$ (рис. 3, б).

Определение

Векторы называются компланарными , если они параллельны одной плоскости или лежат в одной плоскости (рис. 4).

Два вектора всегда компланарны.

Определение

Длиной (модулем) вектора $\overline{A B}$ называется расстояние между его началом и концом: $|\overline{A B}|$

Подробная теория про длину вектора по ссылке .

Длина нулевого вектора равна нулю.

Определение

Вектор, длина которого равна единице, называется единичным вектором или ортом .

Векторы называются равными , если они лежат на одной или параллельных прямых; их направления совпадают и длины равны.

Определение 1. Вектором в пространстве называется направленный отрезок.

Таким образом, векторы в отличие от скалярных величин имеют две характеристики: длину и направление. Будем обозначать векторы символами , илиа .

(Здесь А иВ – начало и конец данного вектора(рис.1))а В

Длина вектора обозначается символом модуля: .А рис.1

Различают три вида векторов, задаваемых отношением равенства между ними:

    Закрепленные векторы называются равными, если у них совпадают начала и концы соответственно. Примером такого вектора является вектор силы.

    Скользящие векторы называются равными, если они расположены на одной прямой, имеют одинаковые длины и направления. Примером таких векторов является вектор скорости.

    Свободные или геометрические векторы считаются равными, если они могут быть совмещены с помощью параллельного переноса.

В курсе аналитической геометрии рассматриваются только свободные векторы.

Определение 2. Вектор, длина которого равна нулю, называетсянулевым вектором, илиноль –

вектором .

Очевидно, начало и конец нулевого вектора совпадают. Нулевой вектор не имеет определенного направления или имеет любое направление.

Определение 3. Два вектора, лежащих на одной прямой или параллельных прямых называются

коллинеарными (рис.2). Обозначают:
.a

b

Определение 4. Два коллинеарных и одинаково направленных вектора называются

сонаправленными. Обозначают:
.

Теперь можно дать строгое определение равенства свободных векторов:

Определение 5. Два свободных вектора называются равными, если они сонаправлены и имеют

одинаковую длину.

Определение 6. Три вектора, лежащих в одной или параллельных плоскостях называются

компланарными .

Два перпендикулярных вектора называют взаимно ортогональными :
.

Определение 7. Вектор единичной длины называетсяединичным вектором илиортом.

Орт, сонаправленный ненулевому вектору а называютортом вектора а :e a .

§2.Линейные операции над векторами.

На множестве векторов определены линейные операции: сложение векторов и умножение вектора на число.

I. Сложение векторов.

Суммой 2 – х векторов называется вектор, начало которого совпадает с началом первого, а конец с концом второго, при условии, что начало второго совпадает с концом первого.

Легко видеть, что сумма двух векторов, определенная

таким образом (рис.3а), совпадает с суммой векторов,

построенной по правилу параллелограмма (рис.6). b

Однако, данное правило позволяет строить a

сумму любого числа векторов (рис.3б).

a + b

a

b a + b + c

рис.3б c

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие вектора

Прежде чем Вы узнаете всё о векторах и операциях над ними, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей - к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей. Векторы взаимодействуют, или, если говорить математическим языком, над векторами производится некоторая операция. Результатом этой операции становится вектор "Результат", который приводит Вас к Цели 3.

А теперь скажите: результатом какой операции над векторами "Предприимчивость" и "Инновационные способности" является вектор "Результат"? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.

Как мы уже увидели выше, вектор обязательно идёт от некоторой точки A по прямой к некоторой точке B . Следовательно, каждый вектор имеет не только числовое значение - длину, но также физическое и геометрическое - направленность. Из этого выводится первое, самое простое определение вектора. Итак, вектор - это направленный отрезок, идущий от точки A к точке B . Обозначается он так: .


А чтобы приступить к различным операциям с векторами , нам нужно познакомиться с ещё одним определением вектора.

Вектор - это вид представления точки, до которой требуется добраться из некоторой начальной точки. Например, трёхмерный вектор, как правило, записывается в виде (х, y, z ) . Говоря совсем просто, эти числа означают, как далеко требуется пройти в трёх различных направлениях, чтобы добраться до точки.

Пусть дан вектор. При этом x = 3 (правая рука указывает направо), y = 1 (левая рука указывает вперёд), z = 5 (под точкой стоит лестница, ведущая вверх). По этим данным вы найдёте точку, проходя 3 метра в направлении, указываемом правой рукой, затем 1 метр в направлении, указываемом левой рукой, а далее Вас ждёт лестница и, поднимаясь на 5 метров, Вы, наконец, окажетесь в конечной точке.

Все остальные термины - это уточнения представленного выше объяснения, необходимые для различных операций над векторами, то есть, решения практических задач. Пройдёмся по этим более строгим определениям, останавливаясь на типичных задачах на векторы.

Физическими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на неё сила.

Геометрический вектор представлен в двумерном и трёхмерном пространстве в виде направленного отрезка . Это отрезок, у которого различают начало и конец.

Если A - начало вектора, а B - его конец, то вектор обозначается символом или одной строчной буквой . На рисунке конец вектора указывается стрелкой (рис. 1)

Длиной (или модулем ) геометрического вектора называется длина порождающего его отрезка

Два вектора называются равными , если они могут быть совмещены (при совпадении направлений) путём параллельного переноса, т.е. если они параллельны, направлены в одну и ту же сторону и имеют равные длины.

В физике часто рассматриваются закреплённые векторы , заданные точкой приложения, длиной и направлением. Если точка приложения вектора не имеет значения, то его можно переносить, сохраняя длину и направление в любую точку пространства. В этом случае вектор называется свободным . Мы договоримся рассматривать только свободные векторы .

Линейные операции над геометрическими векторами

Умножение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными . (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить "коллинеарны".) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.


Сложение и вычитание векторов

При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец - с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)


Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец - с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора - начало вектора и т.д. и, наконец, к концу вектора - начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец - с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило - правилом многоугольника . Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор , длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.

Пример 1. Упростить выражение:

.

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат - требуемые в условии задачи векторы:

Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах "Предприимчивость" и "Инновационные способности" в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.

Решить задачи на векторы самостоятельно, а затем посмотреть решения

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать - в уроке "Сложение векторов: длина суммы векторов и теорема косинусов ".

А проверить решение таких задач можно на Калькуляторе онлайн "Неизвестная сторона треугольника (сложение векторов и теорема косинусов)" .

А где произведения векторов?

Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки "Скалярное произведение векторов " и "Векторное и смешанное произведения векторов ".

Проекция вектора на ось

Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).


Пусть - произвольный вектор (Рис. 5), а и - проекции его начала (точки A ) и конца (точки B ) на ось l . (Для построения проекции точки A ) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.

Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец - с проекцией конца вектора .

Проекцией вектора на ось l называется число

,

равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l , и со знаком минус, если эти направления противоположны.

Основные свойства проекций вектора на ось:

1. Проекции равных векторов на одну и ту же ось равны между собой.

2. При умножении вектора на число его проекция умножается на это же число.

3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.

4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

.

Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:

Находим окончательную проекцию суммы векторов:

Связь вектора с прямоугольной декартовой системой координат в пространстве

Знакомство с прямоугольной декартовой системой координат в пространстве состоялось в соответствующем уроке , желательно открыть его в новом окне.

В упорядоченной системе координатных осей 0xyz ось Ox называется осью абсцисс , ось 0y осью ординат , и ось 0z осью аппликат .


С произвольной точкой М пространства свяжем вектор

называемый радиус-вектором точки М и спроецируем его на каждую из координатных осей. Обозначим величины соответствующих проекций:

Числа x, y, z называются координатами точки М , соответственно абсциссой , ординатой и аппликатой , и записываются в виде упорядоченной точки чисел: M (x; y; z) (рис.6).

Вектор единичной длины, направление которого совпадает с направлением оси, называют единичным вектором (или ортом ) оси. Обозначим через

Соответственно орты координатных осей Ox , Oy , Oz

Теорема. Всякий вектор может быть разложен по ортам координатных осей:


(2)

Равенство (2) называется разложением вектора по координатным осям. Коэффициентами этого разложения являются проекции вектора на координатные оси. Таким образом, коэффициентами разложения (2) вектора по координатным осям являются координаты вектора.

После выбора в пространстве определённой системы координат вектор и тройка его координат однозначно определяют друг друга, поэтому вектор может быть записан в форме

Представления вектора в виде (2) и (3) тождественны.

Условие коллинеарности векторов в координатах

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

Пример 6. Даны векторы . Коллинеарны ли эти векторы?

Решение. Выясним соотношение координат данных векторов:

.

Координаты векторов пропорциональны, следовательно, векторы коллинеарны, или, что то же самое, параллельны.

Длина вектора и направляющие косинусы

Вследствие взаимной перпендикулярности координатных осей длина вектора

равна длине диагонали прямоугольного параллелепипеда, построенного на векторах

и выражается равенством

(4)

Вектор полностью определяется заданием двух точек (начала и конца), поэтому координаты вектора можно выразить через координаты этих точек.

Пусть в заданной системе координат начало вектора находится в точке

а конец – в точке


Из равенства

Следует, что

или в координатной форме

Следовательно, координаты вектора равны разностям одноимённых координат конца и начала вектора . Формула (4) в этом случае примет вид

Направление вектора определяют направляющие косинусы . Это косинусы углов, которые вектор образует с осями Ox , Oy и Oz . Обозначим эти углы соответственно α , β и γ . Тогда косинусы этих углов можно найти по формулам

Направляющие косинусы вектора являются также координатами орта этого вектора и, таким образом, орт вектора

.

Учитывая, что длина орта вектора равна одной единице, то есть

,

получаем следующее равенство для направляющих косинусов:

Пример 7. Найти длину вектора x = (3; 0; 4).

Решение. Длина вектора равна

Пример 8. Даны точки:

Выяснить, равнобедренный ли треугольник, построенный на этих точках.

Решение. По формуле длины вектора (6) найдём длины сторон и установим, есть ли среди них две равные:

Две равные стороны нашлись, следовательно необходимость искать длину третьей стороны отпадает, а заданный треугольник является равнобедренным.

Пример 9. Найти длину вектора и его направляющие косинусы, если .

Решение. Координаты вектора даны:

.

Длина вектора равна квадратному корню из суммы квадратов координат вектора:

.

Находим направляющие косинусы:

Решить задачу на векторы самостоятельно, а затем посмотреть решение

Операции над векторами, заданными в координатной форме

Пусть даны два вектора и , заданные своими проекциями:

Укажем действия над этими векторами.