Примечание . Это часть урока с задачами по геометрии (раздел стереометрия, задачи о сфере). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом на форуме . В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√".

Задача

В сферу вписан конус, образующая которого равна l, а угол при вершине осевого сечения равен 60 градусов. Найдите площадь сферы.

Решение .
Площадь сферы найдем по формуле:

Поскольку в сферу вписан конус, проведем сечение через вершину конуса, которое будет равнобедренным треугольником. Поскольку угол при вершине осевого сечения равен 60 градусам, то треугольник - равносторонний (сумма углов треугольника - 180 градусов, значит остальные углы (180-60) / 2 = 60 , то есть все углы равны).

Откуда радиус сферы равен радиусу окружности, описанного вокруг равностороннего треугольника. Сторона треугольника по условию равна l . То есть

Таким образом площадь сферы

S = 4π(√3/3 l) 2
S = 4/3πl 2

Ответ : площадь сферы равна 4/3πl 2 .

Задача

Емкость имеет форму полусферы (полушара). Длина окружности основания равна 46 см. На 1 квадратный метр расходуется 300 граммов краски. Сколько необходимо краски, чтобы покрасить емкость?

Решение .
Площадь поверхности фигуры будет равна половине площади сферы и площади сечения сферы.
Поскольку нам известна длина окружности основания, найдем ее радиус:
L = 2πR
Откуда
R = L / 2π
R = 46 / 2π
R = 23 / π

Откуда площадь основания равна
S = πR 2
S = π (23/π) 2
S = 529 / π

Площадь сферы найдем по формуле:
S = 4πr 2

Соответственно площадь полусферы
S = 4πr 2 / 2
S = 2π (23/π) 2
S = 1058 / π

Общая площадь поверхности фигуры равна:
529 / π + 1058 / π = 1587 / π

Теперь вычислим расход краски (учтем, что расход дан на квадратный метр, а вычисленное значение в квадратных сантиметрах, то есть в одном метре 10 000 квадратных сантиметров)
1587 / π * 300 / 10 000 = 47,61 / π граммов ≈ 15,15 г

Задача

Решение. Рiшення .


Для пояснения решения прокомментируем каждую из приведенных формул
  1. Воспользуемся формулой нахождения поверхности шара и запишем ее для первого шара, предположив, что его радиус равен R 1
  2. Площадь поверхности второго шара запишем с помощью точно такой же формулы, предположив, что его радиус равен R 2
  3. Найдем соотношение их площадей, разделив первое выражение на второе. Сократим полученную дробь. Нетрудно заметить, что соотношение площадей двух шаров равно соотношению квадратов их радиусов. По условию задачи это соотношение равно m/n
  4. Из полученного равенства найдем соотношение радиусов шаров путем извлечения квадратного корня. Полученное равенство запомним
  5. Воспользуемся формулой нахождения объема шара и запишем ее для первого шара с радиусом R 1
  6. Объем второго шара запишем с помощью той же самой формулы, подставив в нее радиус R 2
Для пояснення рішення прокоментуємо кожну з приведених формул
  1. Скористаємося формулою знаходження поверхні кулі і запишемо її для першої кулі, передбачивши, що його радіус рівний R 1
  2. Площу поверхні другої кулі запишемо за допомогою точний такої ж формули, передбачивши, що його радіус рівний R 2
  3. Знайдемо співвідношення їх площ, розділивши перше вираження на друге. Скоротимо отриманий дріб. Неважко відмітити, що співвідношення площ двох куль дорівнює співвідношенню квадратів їх радіусів. По умові завдання це співвідношення рівне m/n
  4. З отриманої рівності знайдемо співвідношення радіусів куль шляхом витягання квадратного кореня. Отриману рівність запам"ятаємо
  5. Скористаємося формулою знаходження об"єму кулі і запишемо її для першої кулі з радіусом R 1
  6. Об"єм другої кулі запишемо за допомогою тієї ж самої формули, підставивши в неї радіус R 2

8. Разделим объемы первого и второго шара друг на друга
9. Сократим получившуюся дробь. Заметим, что соотношение объема двух шаров равно соотношению кубов их радиусов. Учтем выражение, полученное нами ранее в формуле 4 и подставим его. Поскольку корень квадратный - это число в степени 1/2, преобразуем выражение
10. Раскроем скобки и запишем полученное соотношение в виде пропорции. Ответ получен .
8. Розділимо об"єми першої і другої кулі один на одного
9. Скоротимо дріб, що вийшов. Відмітимо, що співвідношення об"єму двох куль дорівнює співвідношенню кубів їх радіусів. Врахуємо вираження, отримане нами раніше у формулі 4 і підставимо його. Оскільки корінь квадратний - це число в мірі 1/2, перетворимо вираження
10. Розкриємо дужки і запишемо отримане співвідношення у вигляді пропорції. Відповідь отримана .

Шар и сфера — это прежде всего геометрические фигуры, и если шар — это геометрическое тело, то сфера — это поверхность шара. Этими фигурами интересовались еще многие тысячи лет назад до н.э.

Впоследствии когда было открыто, что Земля — это шар, а небо — небесная сфера, получило развитие новое увлекательное направление в геометрии — геометрия на сфере или сферическая геометрия. Для того, чтобы рассуждать о размере и объеме шара, нужно сначала дать ему определение.

Шар

Шаром радиуса R с центром в точке О в геометрии называют тело, которое создано всеми точками пространство, имеющими общее свойство. Эти точки находятся на расстоянии, не превышающем радиуса шара, то есть заполняют все пространство меньше радиуса шара во все стороны от его центра. Если мы рассмотрим только те точки, которые равноудалены от центра шара — мы будем рассматривать его поверхность или оболочку шара.

Как можно получить шар? Мы можем вырезать из бумаги круг и начать его вращать вокруг его же диаметра. То есть диаметр круга будет осью вращения. Образованная фигура — будет шар. Поэтому шар называют также телом вращения. Потому что он может быть образован путем вращения плоской фигуры — круга.

Возьмем какую-нибудь плоскость и разрежем ею наш шар. Подобно тому как мы режем ножом апельсин. Кусок, который мы отсечем от шара, называется шаровым сегментом.

В Древней Греции умели не только работать с шаром и сферой, как с геометрическими фигурами, например, использовать их при строительстве, а также умели расчитывать площадь поверхности шара и объем шара.

Сферой иначе называется поверхность шара. Сфера — это не тело — это поверхность тела вращения. Однако так как и Земля и многие тела имеют сферическую форму, например капля воды, то изучение геометрических соотношений внутри сферы получило большое распространение.

Например, если мы соединим две точки сферы между собой прямой линией, то эта прямая линия назовется хордой, а если эта хорда пройдет через центр сферы, который совпадает с центром шара, то хорда назовется диаметром сферы.

Если мы проведем прямую линию, которая коснется сферы всего в одной точке, то эта линия будет называться касательной. Кроме того, эта касательная к сфере в этой точке будет перпендикулярна к радиусу сферы, проведенному в точку касания.

Если мы продолжим хорду до прямой в одну и другую сторону от сферы, то эта хорда станет называться секущей. Или можно сказать иначе — секущая к сфере содержит в себе ее хорду.

Объем шара

Формула для вычисления объема шара имеет вид:

где R — радиус шара.

Если нужно найти объем шарового сегмента — воспользуйтесь формулой:

V сег =πh 2 (R-h/3), h — высота шарового сегмента.

Площадь поверхности шара или сферы

Чтобы вычислить площадь сферы или площадь поверхности шара (это одно и то же):

где R — радиус сферы.

Архимед очень любил шар и сферу, он даже попросил оставить на его гробницу рисунок, на котором в цилиндр вписан шар. Архимед считал, что объем шара и его поверхность равны двум третьим от объема и поверхности цилиндра, в который вписан шар»

Если известна длина радиуса (r), то площадь поверхности сферы (S) будет составлять учетверенное произведение возведенного в квадрат радиуса на число Пи (π): S=4∗π∗r². Например, при длине радиуса сферы в три метра его площадь составит 4∗3,14∗3²=113,04 квадратных метров.

Если известен (V) пространства, ограниченного сферой, то сначала можно найти ее диаметр (d), а затем воспользоваться формулой, приведенной в первом шаге. Так как объем одной шестой части Пи на возведенную в куб длину диаметра сферы (V=π∗d³/6), то диаметр можно , как кубический корень из шести объемов, разделенных на число Пи: d=³√(6∗V/π). Подставив это значение в формулу из первого шага, получим: S=π∗(³√ (6∗V/π))². Например, при ограниченного сферой пространства равном 500 кубометров вычисление ее площади будет выглядеть так: 3,14∗(³√(6∗500/3,14))² = 3,14∗(³√955,41)² = 3,14∗9,85² = 3,14∗97,02 = 304,64 квадратных метра.

Производить все эти расчеты в уме довольно затруднительно, поэтому придется воспользоваться каким либо из калькуляторов. Например, это может быть вычислитель, встроенный в поисковые системы Google или Nigma. Google отличается в лучшую сторону тем, что умеет самостоятельно определять порядок операций, а Nigma потребует от вас тщательно все скобки. Для вычисления площади сферы по данным, например, из второго шага поисковый запрос, который надо ввести в Google, будет выглядеть так: «4*пи*3^2». А для наиболее сложного случая с вычислением кубического корня и возведением в квадрат из третьего шага запрос будет таким: «пи*(6*500/пи)^(2/3)».

Все планеты солнечной системы имеют форму шара . Кроме того, шарообразную или близкую к таковой форму имеют и многие объекты, созданные человеком, включая детали технических устройств. Шар, как и любое тело вращения, имеет ось, которая совпадает с диаметром. Однако это не единственное важное свойство шара . Ниже рассмотрены основные свойства этой геометрической фигуры и способ нахождения ее площади.

Инструкция

Если взять или круг и провернуть его вокруг своей оси, получится тело, называемое шаром. Иными словами, шаром называется тело, ограниченное сферой. Сфера представляет собой оболочку шара , и ее окружность. От шара она отличается тем, что является полой. Ось как у шара , так и у сферы совпадает с диаметром и проходит через центр. Радиусом шара называется отрезок, проложенный от его центра до любой внешней точки. В противоположность сфере, сечения шара представляют собой круги. Форму, близкую к шарообразной, имеет большинство и небесных тел. В разных точках шара имеются одинаковые по форме, но неодинаковые по величине, так называемые сечения - круги разной площади.

Шар и сфера - взаимозаменяемые тела, в отличие от конуса, несмотря на то, что также является телом вращения. Сферические поверхности всегда в своем сечении образуют окружность, независимо от того, как именно она - по горизонтали или по вертикали. Коническая же поверхность получается лишь при вращении треугольника вдоль его оси, перпендикулярной основанию. Поэтому конус, в отличие от шара , и не считается взаимозаменяемым телом вращения.

Самый большой из возможных кругов получается при сечении шара , проходящей через центр О. Все круги, которые через центр О, пересекаются между собой в одном диаметре. Радиус всегда равен половине диаметра. Через две точки A и B, располагающиеся в любом месте поверхности шара , может проходить бесконечное количество кругов или окружностей. Именно по этой причине через Земли может быть проведено неограниченное количество меридианов.

При нахождении площади шара рассматривается, прежде всего, площадь сферической поверхности.Площадь шара , а точнее, сферы, образующей его поверхность, может быть рассчитана на основании с тем же радиусом R. Поскольку площадь круга есть произведение полуокружности на радиус, его можно рассчитать следующим образом:S = ?R^2Так как через центр шара проходят четыре основных больших круга, то, соответственно площадь шара (сферы) равна:S = 4 ?R^2

Данная может быть полезна в том случае, если известен либо диаметр, либо радиус шара или сферы. Однако, эти параметры приведены в качестве условий не во всех геометрических задачах. Существуют и такие задачи, в которых шар вписан в цилиндр. В этом случае, следует воспользоваться теоремой Архимеда, суть которой заключается в том, что площадь поверхности шара в полтора раза меньше полной поверхности цилиндра:S = 2/3 S цил., где S цил. -площадь полной поверхности цилиндра.

Видео по теме

Зная лишь длину диаметра окружности, можно вычислить не только площадь круга, но и площади некоторых других геометрических фигур. Это вытекает из того, что диаметры вписанных или описанных вокруг таких фигур окружностей совпадают с длинами их сторон либо диагоналей.

Инструкция

Если надо найти площадь (S) по известной длине его диаметра (D), умножайте число пи (π) на возведенную в длину диаметра , а результат делите на четыре: S=π ²*D²/4. Например,