Лекция 1. Химический состав клеток. Вода, соли

Общая биология (греч. bios – жизнь, logos – наука ) – наука, изучающая общие закономерности строения, обмена веществ, размножения и развития живых организмов, законы наследственности и изменчивости, многообразие живых организмов и закономерности их совместной эволюции и существования в сообществах.

Уровни организации жизни на Земле.

Жизнь изучается на различных уровнях, самый простой из которых – молекулярный . На этом уровне изучаются неорганические и органические молекулы, входящие в состав живых организмов – их строение и функции в живом организме.

На клеточном уровне изучается строение клеток, строение и функции клеточных органоидов. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение.

У многоклеточных организмов клетки специализируются, начинают гораздо более эффективно выполнять различные функции, появляется тканевый уровень.

Дальнейшее усложнение организмов связано с появлением органного уровня. Орган выполняет более конкретную функцию и еще более эффективно, чем просто ткань. Обычно орган содержит все ткани, но в связи с выполняемыми функциями в нем преобладает одна или две ткани, например, в сердце преобладает мышечная ткань, в щитовидной железе – железистая.

Органы приспосабливаются к совместной работе, такие совместно выполняющие определенные функции органы образуют системный уровень – за пищеварение отвечает целый ряд органов, образующих пищеварительную систему.

Таким образом, большинство многоклеточных организмов включают в себя все предыдущие уровни, которые формируют организменный уровень. Правда существуют и одноклеточные организмы.

Для существования во времени необходимо воспроизведение себе подобных, и группы живых организмов образуют виды, состоящие из популяций – это уже популяционно -видовой уровень.

Но виды существуют не изолированно, а в природном сообществе, взаимодействуют с другими видами живых организмов и приспосабливаются к факторам неживой природы, формируется биогеоценотический уровень.

Самый сложный уровень жизни на Земле – биосферный , это земная оболочка, заселенная живыми организмами.

Свойства живых организмов .

1. Отличительным свойством живых организмов от неживой природы является в первую очередь обмен веществ . Внешними проявлениями этого процесса является потребление и выделение организмом веществ и энергии. Вещества, поглощенные организмом, используются как строительный материал в реакциях пластического обмена и как источник энергии в реакциях энергетического обмена. И если горящая свеча тоже потребляет кислород и выделяет углекислый газ, то уж пластического обмена при этом не происходит.

2. Важнейшее свойство живых организмов – раздражимость . В ответ на внешнее воздействие происходит возбуждение и ответная реакция на раздражитель, позволяющая приспособиться к изменившимся условиям внешней среды.

3. Движение . У растений движение проявляется в форме тропизмов , ростовых движений, у животных без нервной системы – таксисы , у многоклеточных животных с нервной системой – рефлексы . Кроме того, движение проявляется в движении внутренних сред организма, движении цитоплазмы и органоидов, даже в движении молекул.

4. Рост организмов, который осуществляется за счет образования новых клеток и внеклеточных структур.

5. Развитие – неотъемлемое свойство живых организмов, в результате которого происходит постепенное усложнение организмов, заканчивается развитие старением организма и его смертью.

6. Размножение – свойство живых организмов, благодаря которому виды существуют не только в пространстве, но и во времени. Известно два основных типа размножения – бесполое и половое. При бесполом размножении организм наследует признаки одного организма и не происходит слияния генетического материала, при половом – новый организм образуется всегда после слияния генетического материала и всегда отличается по набору генов от родительских организмов.

7, 8. Для живых организмов характерна высокая степень организации и адаптированность , которая проявляется в сложном строении биологических молекул, органоидов, клеток, органов, их специализации к выполнению определенных функций. В результате естественного отбора организмы удивительным образом адаптировались к конкретным условиям обитания. Эта адаптация началась с эволюции на уровне молекул, затем на уровне органоидов клетки – на клеточном уровне, затем на уровне многоклеточного организма.

Многообразие жизни.

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными . По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы , элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K, Na, Ca, Mg, S, P, Cl, Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.


Жизнь является многоуровневой системой (от греч. система - объединение, совокупность). Выделяют такие основные уровни организации живого: молекулярный, клеточный, органно-тканевой, организменный, популяционно-видовой, экосистемный, биосферный. Все уровни тесно связаны между собой и возникают один из другого, что свидетельствует о целостности живой природы.

Молекулярный уровень организации живого

Это единство химического состава (биополимеры: белки, углеводы, жиры, нуклеиновые кислоты), химических реакций. С этого уровня начинаются процессы жизнедеятельности организма: энергетический, пластический и прочие обмены, изменение и реализация генетической информации.

Клеточный уровень организации живого

Клеточный уровень организации живого. Животная клетка

Клетка является элементарной структурной единицей живого. Это единица развития всех живых организмов, живущих на Земле. В каждой клетке происходят процессы обмена веществ, преобразования энергии, обеспечивается сохранение, преобразование и передача генетической информации.

Каждая клетка состоит из клеточных структур, органелл, которые выполняют определенные функции, поэтому возможно выделить субклеточный уровень .

Органно-тканевой уровень организации живого

Органно-тканевой уровень организации живого. Эпителиальные ткани, соединительные ткани, мышечные ткани и нервные клетки

Клетки многоклеточных организмов, которые выполняют подобные функции, имеют одинаковое строение, происхождение, объединяются в ткани. Различают несколько типов тканей, которые имеют отличия в строении и выполняют разные функции (тканевой уровень).

Ткани в разном соединении образуют разные органы, которые имеют определенное строение и выполняют определенные функции (органный уровень).

Органы объединяются в системы органов (системный уровень).

Организменный уровень организации живого

Организменный уровень организации живого

Ткани объединяются в органы, системы органов и функционируют как единое целое - организм. Элементарной единицей этого уровня является особь, которая рассматривается в развитии от момента зарождения до конца существования как единая живая система.

Популяционно-видовой уровень организации живого

Популяционно-видовой уровень организации живого

Совокупность организмов (особей) одного вида, имеющего общее место обитания, образует популяции. Популяция является элементарной единицей вида и эволюции, так как в ней происходят элементарные эволюционные процессы, этот и следующие уровни - надорганизменные.

Экосистемный уровень организации живого

Экосистемный уровень организации живого

Совокупность организмов разных видов и уровней организации образует этот уровень. Здесь можно выделить биоценотический и биогеоценотический уровни.

Популяции разных видов взаимодействуют между собой, образуют многовидовые группировки (биоценотический уровень).

Взаимодействие биоценозов с климатическими и другими небиологическими факторами (рельефом, почвой, соленостью и т. п.) приводит к образованию биогеоценозов (биогеоценотический). В биогеоценозах происходит поток энергии между популяциями разных видов и круговорот веществ между его неживой и живой частями.

Биосферный уровень организации живого

Биосферный уровень организации живого. 1 – молекулярный; 2 – клеточный; 3 – организменный; 4 – популяционно-видовой; 5 – биогеоценотический; 6 – биосферный

Представлен частью оболочек Земли, где существует жизнь, - биосферой. Биосфера состоит из совокупности биогеоценозов, функционирует как единая целостная система.

Не всегда можно выделить весь перечисленный набор уровней. Например, у одноклеточных клеточный и организменный уровни совпадают, а органно-тканевой уровень отсутствует. Иногда можно выделить дополнительные уровни, например, субклеточный, тканевой, органный, системный.

Свойства живых организмов

1. Обмен веществ и энергии с окружающей средой (главный признак живого).


2. Раздражимость (способность реагировать на воздействия).


3. Размножение (самовоспроизведение).

Уровни организации живой материи

1. Молекулярный - это уровень сложных органических веществ - белков и нуклеиновых кислот. На этом уровне происходят химические реакции обмена веществ (гликолиз, кроссинговер и т.п.), но молекулы сами по себе еще не могут считаться живыми.


2. Клеточный . На этом уровне возникает жизнь , потому что клетка - минимальная единица, обладающая всеми свойствами живого.


3. Органно-тканевой - характерен только для многоклеточных организмов.


4. Организменный - за счет нервно-гуморальной регуляции и обмена веществ на этом уровне осуществляется гомеостаз , т.е. сохранение постоянства внутренней среды организма.


5. Популяционно-видовой . На этом уровне происходит эволюция , т.е. изменение организмов, связанное с приспособлением их к среде обитания под действием естественного отбора. Наименьшей единицей эволюции является популяция.


6. Биогеоценотический (совокупность популяций разных видов, связанных между собой и окружающей неживой природой). На этом уровне происходит

  • круговорот веществ и превращение энергии , а так же
  • саморегуляция , за счет которой поддерживается устойчивость экосистем и биогеоценозов.

7. Биосферный . На этом уровне происходит

  • глобальный круговорот веществ и превращение энергии , а так же
  • взаимодействие живого и неживого вещества планеты.

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают значение фотосинтеза в природе?
1) биосферном
2) клеточном
3) биогеоценотическом
4) молекулярном
5) тканево-органном

Ответ


Выберите один, наиболее правильный вариант. Какой уровень организации живой природы представляет собой совокупность популяций разных видов, связанных между собой и окружающей неживой природой
1) организменный
2) популяционно-видовой
3) биогеоценотический
4) биосферный

Ответ


Выберите один, наиболее правильный вариант. Генные мутации происходят на уровне организации живого
1) организменном
2) клеточном
3) видовом
4) молекулярном

Ответ


Выберите один, наиболее правильный вариант. Элементарная структура, на уровне которой проявляется в природе действие естественного отбора
1) организм
2) биоценоз
3) вид
4) популяция

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки служат сходными для живых и неживых объектов природы?
1) клеточное строение
2) изменение температуры тела
3) наследственность
4) раздражимость
5) перемещение в пространстве

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каких уровнях организации живого изучают особенности реакций фотосинтеза у высших растений?
1) биосферном
2) клеточном
3) популяционно-видовом
4) молекулярном
5) экосистемном

Ответ


Ниже приведен перечень понятий. Все они, кроме двух, являются уровнями организации живого. Найдите два понятия, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) биосферный
2) генный
3) популяционно-видовой
4) биогеоценотический
5) биогенный

Ответ


1. Установите, в какой последовательности располагаются уровни организации живого. Запишите соответствующую последовательность цифр.
1) популяционный
2) клеточный
3) видовой
4) биогеоценотический
5) молекулярно-генетический
6) организменный

Ответ


2. Установите последовательность усложнения уровней организации живого. Запишите соответствующую последовательность цифр.
1) биосферный
2) клеточный
3) биогеоценотический
4) организменный
5) популяционно-видовой

Ответ


3. Расположите в правильном порядке уровни организации жизни, начиная с наименьшего.
1) биоценоз
2) популяция
3) нейрон
4) многоклеточный организм
5) биосфера

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточный уровень организации совпадает с организменным у
1) бактериофагов
2) амёбы дизентерийной
3) вирус полиомиелита
4) кролика дикого
5) эвглены зелёной

Ответ


2. Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Клеточному и организменному уровням организации жизни одновременно соответствуют.
1) гидра пресноводная
2) спирогира
3) улотрикс
4) амеба дизентерийная
5) цианобактерия

Ответ


3. Выберите два верных ответа. У каких организмов совпадают клеточный и организменный уровни жизни?
1) серобактерия
2) пеницилл
3) хламидомонада
4) пшеница
5) гидра

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Одна амеба обыкновенная одновременно находится на:
1) Молекулярном уровне организации жизни
2) Популяционно-видовом уровне организации жизни
3) Клеточном уровне организации жизни
4) Тканевом уровне организации жизни
5) Организменном уровне организации жизни

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Живое от неживого отличается
1) способностью изменять свойства объекта под воздействием среды
2) способностью участвовать в круговороте веществ
3) способностью воспроизводить себе подобных
4) изменять размеры объекта под воздействием среды
5) способность изменять свойства других объектов

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки присущи только живому веществу?
1) рост
2) движение
3) самовоспроизведение
4) ритмичность
5) наследственность

Ответ


3. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Для всех живых организмов характерно
1) образование органических веществ из неорганических
2) поглощение из почвы растворённых в воде минеральных веществ
3) активное передвижение в пространстве
4) дыхание, питание, размножение
5) раздражимость

Ответ


4. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие признаки характерны только для живых систем?
1) способность к передвижению
2) обмен веществ и энергии
3) зависимость от температурных колебаний
4) рост, развитие и способность к самовоспроизведению
5) устойчивость и относительно слабая изменчивость

Ответ


Установите соответствие между уровнями организации живого и их характеристиками и явлениями: 1) биоценотический, 2) биосферный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) процессы охватывают всю планету
Б) симбиоз
В) межвидовая борьба за существование
Г) передача энергии от продуцентов консументам
Д) испарение воды
Е) сукцессия (смена природных сообществ)

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Онтогенез, метаболизм, гомеостаз, размножение происходят на … уровнях организации.
1) клеточном
2) молекулярном
3) организменном
4) органном
5) тканевом

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. На популяционно-видовом уровне организации жизни находятся
1) рыбы озера Байкал
2) птицы Арктики
3) Амурские тигры Приморского края России
4) городские воробьи Парка культуры и отдыха
5) синицы Европы

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Какие из уровней организации жизни являются надвидовыми?
1) популяционно-видовой
2) органоидно-клеточный
3) биогеоценотический
4) биосферный
5) молекулярно-генетический

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Клеточному уровню организации жизни соответствует
1) хламидомонада
2) серобактерия
3) бактериофаг
4) ламинария
5) лишайник

Ответ


Выберите два варианта. Энергетический обмен у обыкновенной амёбы происходит на уровне организации живого
1) клеточном
2) биосферном
3) организменном
4) биогеоценотическом
5) популяционно-видовом

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. На каком уровне организации происходят такие процессы, как раздражимость и обмен веществ?
1) популяционно-видовой
2) организменный
3) молекулярно-генетический
4) биогеоценотический
5) клеточный

Ответ

© Д.В.Поздняков, 2009-2019


Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов - молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.

2. Клеточный уровень. Клетка является структурной и функциональной единицей всех живых организмов на Земле. Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм (одноклеточные водоросли, хламидомонады, хлорелла и простейшие животные - амеба, инфузория и др.). У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.

3. Тканевый уровень.

Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом. Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная.

4.Органный уровень.

У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

5. Организменный уровень.

Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм. А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, - питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

6. Популяционно-видовой уровень.

Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.

7. Биогеоценотический уровень.

Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.

8. Биосферный уровень.

Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют " живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение " биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и " косных" веществ, т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

1) Основателем экологии считается немецкий биолог Э. Геккель (1834- 1919 гг.), который впервые в 1866 г. употребил термин «экология». Он писал: «Под экологией мы подразумеваем общую науку об отношении организма и окружающей среды, куда мы относим все "условия существования" в широком смысле этого слова. Они частично являются органической частично неорганической природы».

Первоначально этой наукой была биология, изучающая популяции животных и растений в среде их обитания.

Экология изучает системы уровня выше отдельного организма. Основными объектами ее изучения являются:

    популяция - группа организмов, относящихся к одному или сходным видам и занимающих определенную территорию;

    экосистема , включающая биотическое сообщество (совокупность популяций на рассматриваемой территории) и среду обитания;

    биосфера- область распространения жизни на Земле.

Взаимодействие Человека с Природой имеет свою специфику. Человек наделен разумом, и это дает ему возможность осознать свое место в природе и предназначение на Земле. С начала развития цивилизации Человек задумывался о своей роли в природе. Являясь, безусловно, частью природы, человек создал особую среду обитания, которая называется человеческой цивилизацией. По мере развития она все больше вступала в противоречие с природой. Сейчас человечество уже подошло к осознанию того, что дальнейшая эксплуатация природы может угрожать его собственному существованию. Цели и задачи современной экологии

Одной из главных целей современной экологии как науки является изучение основных закономерностей и развитие теории рационального взаимодействия в системе «человек - общество - природа», рассматривая человеческое общество как неотъемлемую часть биосферы.

Главнейшая цель современной экологии на данном этапе развития человеческого общества - вывести Человечество из глобального экологического кризиса на путь устойчивого развития, при котором будет достигнуто удовлетворение жизненных потребностей нынешнего поколения без лишения такой возможности будущих поколении.

Для достижения этих целей экологической науке предстоит решить ряд разнообразных и сложных задач, в том числе:

    разработать теории и методы оценивания устойчивости экологических систем на всех уровнях;

    исследовать механизмы регуляции численности популяций и биотического разнообразия, роли биоты (флоры и фауны) как регулятора устойчивости биосферы;

    изучить и создать прогнозы изменений биосферы под влиянием естественных и антропогенных факторов;

    оценивать состояния и динамики природных ресурсов и экологических последствий их потребления;

    разрабатывать методы управления качеством окружающей среды;

    формировать понимание проблем биосферы и экологическую культуру общества.

Окружающая нас живая среда не является беспорядочным и случайным сочетанием живых существ. Она представляет собой устойчивую и организованную систему, сложившуюся в процессе эволюции органического мира. Любые системы поддаются моделированию, т.е. можно предсказать, как та или иная система отреагирует на внешнее воздействие.Системный подход - основа изучения проблем экологии. Место экологии в системе естественных наук. Современная экология относится к тому типу наук, которые возникли на стыке многих научных направлений. Она отражает как глобальность современных задач, стоящих перед человечеством, так и различные формы интеграции методов направлений и научного поиска. Превращение экологии из сугубо биологической дисциплины в отрасль знания, включившую также общественные и технические науки, в сферу деятельности, основанную на решении ряда сложнейших политических, идеологических, экономических, этических и других вопросов, обусловило ей значительное место в современной жизни, сделало ее своеобразным узлом, в котором объединяются различные направления науки и человеческой практики. Экология, на мой взгляд, все больше становится одной из наук о человеке и интересует многие научные направления. И хотя этот процесс еще весьма далек от завершения, его основные тенденции уже достаточно отчетливо просматриваются в наше время.

2) Предмет, задачи и методы экологии Экология (греч. oikos - жилище, местопребывание, logos - наука)- биологическая наука о взаимоотношениях между живыми организмами и средой их обитания.

Объектами экологии являются преимущественно системы выше уровня организмов, т. е. изучение организации и функционирования надорганизменных систем: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы в целом. Другими словами, главным объектом изучения в экологии являются экосистемы, т. е. единые природные комплексы, образованные живыми организмами и средой обитания.

Задачи экологии меняются в зависимости от изучаемого уровня организации живой материи. Популяционная экология исследует закономерности динамики численности и структуры популяций, а также процессы взаимодействий (конкуренция, хищничество) между популяциями разных видов. В задачи экологии сообществ (биоценологии) входит изучение закономерностей организации различных сообществ, или биоценозов, их структуры и функционирования (круговорот веществ и трансформация энергии в цепях питания).

Главная же теоретическая и практическая задача экологии - раскрыть общие закономерности организации жизни и на этой основе разработать принципы рационального использования природных ресурсов в условиях все возрастающего влияния человека на биосферу.

В круг проблем экологии включены также вопросы экологического воспитания и просвещения, морально-этические, философские и даже правовые вопросы. Следовательно, экология становится наукой не только биологической, но и социальной. Методы экологии подразделяются на полевые (изучение жизни организмов и их сообществ в естественных условиях, т. е. длительное наблюдение в природе с помощью различной аппаратуры) и экспериментальные (эксперименты в стационарных лабораториях, где имеется возможность не только варьировать, но и строго контролировать влияние на живые организмы любых факторов по заданной программе). При этом экологи оперируют не только биологическими, но и современными физическими и химическими методами, используют моделирование биологических явлений, т. е. воспроизведение в искусственных экосистемах различных процессов, происходящих в живой природе. Посредством моделирования можно изучить поведение любой системы с целью оценки возможных последствий применения различных стратегий и методов управления ресурсами, т. е. для экологического прогнозирования. 3) В истории развития экологии как науки можно выделить три основных этапа.Первый этап - зарождение и становление экологии как науки (до 1960-х годов), когда накапливались данные о взаимосвязи живых организмов со средой их обитания, были сделаны первые научные обобщения. В этот же период французский биолог Ламарк и английский священник Мальтус впервые предупреждают человечество о возможных негативных последствиях воздействия человека на природу.

Второй этап - оформление экологии в самостоятельную отрасль знаний (после 1960-х до 1950-х годов). Начало этапа ознаменовалось выходом в свет работ русских ученыхК.Ф. Рулье, Н.А. Северцева, В.В. Докучаева, впервые обосновавших ряд принципов и понятий экологии. После исследований Ч. Дарвина в области эволюции органического мира немецкий зоолог Э. Геккель первый понял, что Дарвин называл «борьбой за существование», представляет собой самостоятельную область биологии,и назвал ее экологией (1866 г.).

Как самостоятельная наука экология окончательно оформилась в начале XX столетия. В этот период американский ученый Ч. Адаме создал первую сводку по экологии, публикуются и другие важные обобщения. Крупнейший русский ученый XX в. В.И. Вернадский создает фундаментальноеучение о биосфере.

В 1930-1940-е годы сначала английский ботаник А. Тенсли (1935 г.) выдвинулпонятие «экосистема» , а несколько позжеВ. Я. Сукачев (1940 г.) обосновал близкое ему представлениео биогеоценозе.

Третий этап (1950-е годы - до настоящего времени) - превращение экологии в комплексную науку, включающую в себя науки об охране окружающей человека среды. Одновременно с развитием теоретических основ экологии решались и прикладные вопросы, связанные с экологией.

В нашей стране в 1960-1980-е годы практически ежегодно правительство принимало постановления об усилении охраны природы; были изданы земельный, водный, лесной и иные кодексы. Однако, как показала практика их применения, они не дали требуемых результатов.

Сегодня Россия переживает экологический кризис: около 15% территории фактически являются зонами экологического бедствия; 85% населения дышат воздухом, загрязненным существенно выше ПДК. Растет число «экологически обусловленных» заболеваний. Наблюдается деградация и сокращение природных ресурсов.

Аналогичное положение сложилось и в других странах мира. Вопрос о том, что произойдет с человечеством в случае деградации природных экологических систем и утраты биосферой способности поддерживать биохимические циклы, становится одним из наиболее актуальных.

4) 1. Молекулярный уровень организации живой природы

    Химический состав клеток: органические и неорганические вещества,

    Обмен веществ(метаболизм): процессы диссимиляции и ассимиляции,

    поглощение и выделение энергии.

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма - от одно- до многоклеточных.

Этот уровень сложно назвать «живым» . Это скорее «биохимический» уровень - поэтому он является основой для всех остальных уровней организации живой природы. Поэтому именно он лег в основу классификации Живой природына царства - какоепитательное вещество является основным у организма:у животных - белок, у грибов - хитин, у растений это- углеводы.

Науки, которые изучают живые организмы именно на этом уровене:

2. Клеточный уровень организации живой природы

Включает в себя предыдущий - молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

    Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);

    Органойды клетки;

    Жизненные циклы - зарождение, рост и развитие и деление клеток

Науки, изучающие клеточный уровень организации :

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня - молекулярный и клеточный .

Этот уровень можно назвать « многоклеточным » - ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

Наука - Гистология

4. Органнный (ударение на первый слог) уровень организации жизни

    У одноклеточных органы - это органеллы - есть общие органеллы - характерные для всех эукариотическихили прокариотических клеток, есть отличающиеся.

    У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

Тканевый и органный уровни организации - изучают науки:

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный , клеточный, тканевый уровни и органный .

На этом уровне идет деление Живой природы на царства - животных, растений и грибов.

Характеристики этого уровня:

    Обмен веществ (как на уровне организма, так и на клеточном уровне тоже)

    Строение (морфология) организма

    Питание (обмен веществ и энергии)

    Гомеостаз

    Размножение

    Взаимодействие между организмами (конкуренция, симбиоз и т.д.)

    Взаимодействие с окружающей средой

6. Популяционно-видовой уровень организации жизни

Включает молекулярный , клеточный, тканевый уровни, органный и организменный .

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

    Взаимодействие организмов между собой (конкуренция или размножение)

    микроэволюция (изменение организма под действием внешних условий)

Науки, изучающие этот уровень:

7. Биогеоценотический уровень организации жизни

На этом уровне уже учитывается почти все:

    Пищевое взаимодействие организмов между собой - пищевые цепи и сети

    Меж- и внутривидовое взаимодействие организмов - конкуренция и размножение

    Влияние окружающей среды на организмы и, соответственно, влияние организмов на среду их обитания

Наука, изучающая этот уровень - Экология

Ну и последний уровень - высший!

8. Биосферный уровень организации живой природы

Он включает в себя:

    Взаимодействие, как живых, так и неживых компонентов природы

    Биогеоценозы

    Влияние человека - «антропогенные факторы»

    Круговорот веществ в природе

5) Экологическая система, или экосистема, - основная функциональная единица в экологии, так как в нее входят организмы и

неживая среда - компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Терминэкосистема впервые был предложен в 1935 г. английским экологомА. Тенсли.

Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B. Н Сукачевым. По его определению, биогеоценоз - «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

В биогеоценозе В.Н. Сукачев выделял два блока:экотоп - совокупность условий абиотической среды ибиоценоз - совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп - как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

Экосистема = Биотоп + Биоценоз.

Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

Рис. 8.2. Продуценты

Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена - консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

Экосистема - практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы - древнейшее свойство жизни.

С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Экосистема (экологическая система) - основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

Рис. 8. Различные экосистемы: а - пруда средней полосы (1 - фитопланктон; 2 - зоопланктон; 3 - жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 - щуки; 6 - личинки хорономид (комаров-дергунцов); 7- бактерии; 8 - насекомые прибрежной растительности; б - луга (I - абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А - травоядные (кобылки, полевые мыши и т.д.); В - косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

С функциональной точки зрения экосистему целесообразно анализировать в следующих направлениях:

1) потоки энергии;

2) пищевые цепи;

3) структура пространственно-временного разнообразия;

4) биогеохимические круговороты;

5) развитие и эволюция;

6) управление (кибернетика);

Можно также классифицировать экосистемы по:

· Структуре;

· Продуктивности;

· Устойчивости;

Типы экосистем (по Комову):

· Аккумулятивные (верховые болота);

· Транзитные (мощный вынос вещества);