Вспомните!

Какова структура белков и нуклеиновых кислот?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации - вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

ДНК – двойная спираль, РНК – одинарные цепи, состоящие из нуклеотидов.

Какие типы РНК вам известны?

и-РНК, т-РНК, р-РНК.

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка.

т-РНК – транспорт аминокислот к месту синтеза белка – к рибосомам.

Где образуются субъединицы рибосом?

р-РНК – синтезируется в ядрышках ядра, и образует сами рибосомы клетки.

Какую функцию рибосомы выполняют в клетке?

Биосинтез белка – сборка белковой молекулы

Вопросы для повторения и задания

1. Вспомните полное определение понятия «жизнь».

Ф. Энгельс «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка. И у неорганических тел может происходить подобный обмен веществ, который и происходит с течением времени повсюду, так как повсюду происходят, хотя бы и очень медленно, химические действия. Но разница заключается в том, что в случае неорганических тел обмен веществ разрушает их, в случае же органических тел он является необходимым условием их существования»

2. Назовите основные свойства генетического кода и поясните их значение.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов, т.е. закодировать 64 аминокислоты, но в живом используется только 20.

Код однозначен – каждый триплет шифрует только одну аминокислоту.

Между генами имеются знаки препинания – знаки необходимы для правильной группировки в триплеты монотонной последовательности нуклеотидов, т.к. между триплетами нет знаков раздела. Роль разметки генов выполняют три триплета, не кодирующие никаких аминокислот – УАА, УАГ, УГА. Они означают конец белковой молекулы, как точка в предложении.

Внутри гена нет знаков препинания – поскольку генкод подобен языку; посмотрим это свойство на примере фразы:

ЖИЛ БЫЛ КОТ ТИХ БЫЛ СЕР МИЛ МНЕ ТОТ КОТ

Ген хранится в таком виде:

ЖИЛБЫЛКОТТИХБЫЛСЕРМИЛМНЕТОТКОТ

Смысл будет восстановлен, если правильно сгруппировать тройки, даже при отсутствии знаков препинания. Если же мы начнем группировку со второй буквы (второго нуклеотида), то получится такая последовательность:

ИЛБ ЫЛК ОТТ ИХБ ЫЛС ЕРМ ИЛМ НЕТ ОТК ОТ

Эта последовательность уже не имеет биологического смысла, и если она будет реализована, то получится чужеродное для данного организма вещество. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания и завершение.

Код универсален – един для всех живущих на Земле существ: у бактерии, грибов, человека одни и те же триплеты кодируют одни и те же аминокислоты.

3. Какие процессы лежат в основе передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?

В основе передачи наследственной информации из поколения в поколение лежит мейоз. Транскрипция (от лат. transcription - переписывание). Информация о структуре белков хранится в виде ДНК в ядре клетки, а синтез белков происходит на рибосомах в цитоплазме. В качестве посредника, передающего информацию о строении определённой белковой молекулы к месту её синтеза, выступает информационная РНК. Трансляция (от лат. trans lation - передача). Молекулы иРНК выходят через ядерные поры в цитоплазму, где начинается второй этап реализации наследственной информации - перевод информации с «языка» РНК на «язык» белка.

4. Где синтезируются все виды рибонуклеиновых кислот?

Все виды РНК синтезируются на матрице ДНК.

5. Расскажите, где происходит синтез белка и как он осуществляется.

Этапы биосинтеза белка:

– Транскрипция (от лат. переписывание): процесс синтеза и-РНК на матрице ДНК, это перенос генетической информации с ДНК на РНК, транскрипция катализируется ферментом РНК-полимеразой. 1) Движения РНК-полимеразы – расплетание и восстановление двойной спирали ДНК, 2) Информация с гена ДНК – на и-РНК по принципу комплементарности.

– Соединение аминокислот с т-РНК: Строение т-РНК: 1) аминокислота ковалентно присоединяется т-РНК с помощью фермента т-РНК-синтетазы соответвственно антикодону, 2) К черешку листа т-РНК присоединяется определенная аминокислота

– Трансляция: рибосомный синтез белка из аминокислот на и-РНК, протекающий в цитоплазме. 1) Инициация - начало синтеза. 2) Элонгация - собственно синтез белка. 3) Терминация - узнавание стоп-кодона – окончание синтеза.

6. Рассмотрите рис. 45. Определите, в каком направлении - справа налево или слева направо - движется относительно и-РНК изображённая на рисунке рибосома. Докажите свою точку зрения.

и-РНК движется свела направо рибосома всегда движется в противоположном направлении, чтобы не мешать процессы, так как на одной нити и-РНК одновременно может сидеть несколько рибосом (полисома). А также показано в какую сторону движутся т-РНК – справа налево как и рибосома.

Подумайте! Вспомните!

1. Почему углеводы не могут выполнять функцию хранения информации?

Нет принципа комплементарности у углеводов, невозможно создавать генетические копии.

2. Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?

Образование в клетках других органических молекул, таких как жиры, углеводы, витамины и т. д., связано с действием белков-катализаторов (ферментов). Например, ферменты, обеспечивающие синтез жиров у человека, «делают» человеческие липиды, а аналогичные катализаторы у подсолнечника - подсолнечное масло. Ферменты углеводного обмена у животных образуют резервное вещество гликоген, а у растений при избытке глюкозы синтезируется крахмал.

3. При каком структурном состоянии молекулы ДНК могут быть источниками генетической информации?

В состоянии спирализации, так как в таком состоянии ДНК входит в состав хромосом.

4. Какие особенности строения молекул РНК обеспечивают их функцию переноса информации о структуре белка от хромосом к месту его синтеза?

и-РНК – синтезируется в ядре на матрице ДНК, является основой для синтеза белка. Состав РНК – нуклеотиды комплементарные нуклеотидам ДНК, малый размер по сравнению с ДНК (что обеспечивает выход из ядерных пор).

5. Объясните, почему молекула ДНК не могла быть построена из нуклеотидов трёх типов.

Код триплетен и избыточен – из 4 нуклеотидов можно создать 64 разных триплетов (43), т.е. закодировать 64 аминокислоты, но в живом используется только 20. Это необходимо для замены любого нуклеотида, если вдруг в клетке его нет, то нуклеотид будет автоматически заменен на аналогичный, кодирующий эту же аминокислоту. Если бы было три нуклеотида, то 33 это будет всего 9 аминокислот, что невозможно, так как необходимо 20 аминокислот для любого организма.

6. Приведите примеры технологических процессов, в основе которых лежит матричный синтез.

Матричный принтер,

Нанотехнологии,

Матрица фотоаппарата

Матрица экрана ноутбука

Матрица жидко-кристаллических экранов

7. Представьте, что в ходе некоего эксперимента для синтеза белка были взяты тРНК из клеток крокодила, аминокислоты мартышки, АТФ дрозда, иРНК белого медведя, необходимые ферменты квакши и рибосомы щуки. Чей белок был в итоге синтезирован? Объясните свою точку зрения.

Генетический код зашифрован в и-РНК, значит – белого медведя.

Вопрос 1. Вспомните полное определение понятия «жизнь».
В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классическое определение жизни дополнено представлением об исключительной значимости нуклеиновых кислот - молекул, которые содержат генетическую информацию, позволяющую организмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определений,. данное советским учёным-биологом М.В.Волькенштейном 1965 г.), «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот». При этом понятие «открытая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выделение); понятие «саморегуляция» - способность к поддержанию постоянства химического состава, структуры и свойств. Важным условием успешной саморегуляции является раздражимость - способность организма реагировать на информацию, поступающую из внешнего мира.

Вопрос 2. Назовите основные свойства генетического кода и поясните их значение.
Генетический код – это последовательность нуклеотидов в ДНК, контролирующая последовательность аминокислот в белковой молекуле.
Свойства кода
1. Триплетность. Одну аминокислоту кодирует три нуклеотида, которые называют триплетом или кодоном.
2. Вырожденность или избыточность. Каждая аминокислота зашифрована более чем одним кодоном. Для кодирования 20 аминокислот (в основном столько входит в состав белка) используется 61 комбинация нуклеотидов (4 3 = 64). Три кодона: УАА, УАГ, УГА - называют триплетами терминации, т.е. они несут информацию о прекращении синтеза белка.
3. Универсальность. У всех организмов на Земле одни и те же триплеты кодируют одинаковые аминокислоты.
4. Однозначность. Каждый триплет кодирует только одну аминокислоту.
5. Колинеарность или линейность. Нуклеотиды в ДНК и и-РНК располагаются линейно и так же линейно будут расположены аминокислоты в белковой молекуле.
6. Неперекрываемость. Информация считывается триплетами, т.е. каждый нуклеотид входит в состав только одного кодона.
7. Полярность. Существуют триплеты, определяющие начало и конец отдельных генов. т.д.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
При передаче наследственной информации из поколения в поколение молекулы ДНК удваиваются в процессе дупликации. Каждая дочерняя клетка получает одну из двух идентичных молекул ДНК. При бесполом размножении генотип дочернего организма идентичен материнскому. При половом размножении организм потомка получает собственный диплоидный набор хромосом, собранный из гаплоидного материнского и гаплоидного отцовского наборов.
При передаче наследственной информации из ядра в цитоплазму ключевым процессом является транскрипция - синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фрагмента ДНК - гена и содержит информацию о строении определенного белка. Такая молекула иРНК является посредником между хранилищем генетической информации - ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как матрицу («инструкцию») для синтеза белка в процессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?
Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъединиц рибосом происходят в особых участках ядра - ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Вопрос 5. Расскажите, где происходит синтез белка и как он осуществляется.
Синтез белка происходит в цитоплазме и осуществляется с помощью специализированных органоидов - рибосом. Молекула иРНК соединяется с рибосомой тем концом, с которого должен начаться синтез белка. Аминокислоты, необходимые для синтеза белковой цепи, доставляются молекулами транспорт¬ных РНК (тРНК). Каждая тРНК может переносить только одну из 20 аминокислот (например, только цистеин). Какую конкретно аминокислоту переносит тРНК, определяет триплет нуклеотидов, расположенный на верхушке центральной петли тРНК, - антикодон. Если антикодон окажется комплементарен триплету нуклеотидов иРНК, находящемуся в данный момент в контакте с рибосомой, про¬изойдет временное связывание тРНК с иРНК, и аминокислота будет включена в белковую цепь.BR> На следующем этапе освободившаяся тРНК уйдет в цитоплазму, а рибосома сделает «шаг» и сдвинется к следующему триплету иРНК. Затем к этому триплету подойдет тРНК с соответствующим антикодоном и доставит очередную аминокислоту, которая будет присоединена к растущему белку.
Таким образом, включение аминокислот в белковую цепь происходит строго в соответствии с последовательностью расположения триплетов цепи иРНК.
Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в три этапа:
I Транскрипция - (лат. transcriptio -переписывание)- это переписывание информации по принципу комплементарности с ДНК на и-РНК.
II Процессинг - (лат. processing - обработка) – это созревание и-РНК.
В результате процессинга образуется короткая зрелая и-РНК или еще ее называют матричная (м-РНК). Эти два этапа идут в ядре. Через ядерные поры зрелая короткая и-РНК выходит в цитоплазму.
III Трансляция - (лат. translatio – перевод) - это синтез на рибосомах полипептидных цепей. На и-РНК может объединиться несколько рибосом и такая структура называется полирибосома или полисома. Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью т-РНК. К основанию т-РНК присоединяется аминокислота, которая кодируется антикодоном.
Специфичность белка определяется порядком, количеством и разнообразием аминокислот, входящих в его состав.

Код триплетен. В состав РНК входят 4
нуклеотида: А, Г, Ц, У. Если бы мы
пытались обозначить одну аминокислоту
одним нуклеотидом, то 16 из 20
аминокислот остались бы не
зашифрованы. Двухбуквенный код
позволил бы зашифровать 16 аминокислот
(из четырех нуклеотидов можно составить
16 различных комбинаций, в каждой из
которых имеется два нуклеотида) .
Природа создала трехбуквенный, или
триплетный, код. Это означает, что каждая
из 20 аминокислот зашифрована
последовательностью трех нуклеотидов,
называемых триплетом или кодоном. Из 4
нуклеотидов можно создать 64 различные
комбинации по 3 нуклеотида в каждой
(4*4*4=64). Этого с избытком хватает для
кодирования 20 аминокислот и, казалось
бы, 44 кодона являются лишними. Однако
это не так.
2. Код вырожден. Это означает, что каждая
аминокислота шифруется более чем одним
кодоном (от двух до шести) . Исключение
составляют аминокислоты метионин и
триптофан, каждая из которых кодируется
только одним триплетом. (Это видно из
таблицы генетического кода.) Тот факт,
что метионин кодируется одним триплетом
АУТ, имеет особый смысл, который вам
станет понятен позже (16).
3. Код однозначен. Каждый кодон шифрует
только одну аминокислоту. У всех
здоровых людей в гене, несущем
информацию о бета-цепи гемоглобина,
триплет ГАА или ГАГ, стоящий на шестом
месте, кодирует глутаминовую кислоту. У
больных серповидноклеточной анемией
второй нуклеотид в этом триплете заменен
на У. Как видно из таблицы, триплеты ГУА
или ГУГ, которые в этом случае
образуются, кодируют аминокислоту валин.
К чему приводит такая замена, вы уже
знаете из раздела о ДНК.
4. Между генами имеются "знаки
препинания". В печатном тексте в конце
каждой фразы стоит точка. Несколько
связанных по смыслу фраз составляют
абзац. На языке генетической информации
таким абзацем являются оперон и
комплементарная ему и-РНК. Каждый ген в
опероне кодирует одну полипептидную
цепочку - фразу. Так как в ряде случаев
по матрице и-РНК последовательно
создается несколько разных
полипептидных цепей, они должны быть
отделены друг от друга. Для этого в
генетическом коде существуют три
специальные триплета - УАА, УАГ, УГА,
каждый из которых обозначает
прекрдщение синтеза одной полипептидной
цепи. Таким образом, эти триплеты
выполняют функцию знаков препинания.
Они находятся в конце каждого гена.
Внутри гена нет "знаков препинания".
Поскольку генетический код подобен
языку, разберем это свойство на примере
такой составленной из триплетов фразы:
жил был кот тих был сер мил мне тот кот.
Смысл написанного понятен, несмотря на
отсутствие "знаков препинания. Если же мы
уберем в первом слове одну букву (один
нуклеотид в гене) , но читать будем также
тройками букв, то получится бессмыслица:
илб ылк отт ихб ылс ерм илм нет отк от
Нарушение смысла возникает и при
выпадении одного или двух нуклеотидов из
гена. Белок, который будет считываться с
такого испорченного гена, не будет иметь
ничего общего с тем белком, который
кодировался нормальным геном.
6. Код универсален. Генетический код един
для всех живущих на Земле существ. У
бактерий и грибов, пшеницы и хлопка, рыб
и червей, лягушки и человека одни и те же
триплеты кодируют одни и те же
аминокислоты.

Ранее мы подчёркивали, что нуклеотиды имеют важную для формирования жизни на Земле особенность – при наличии в растворе одной полинуклеотидной цепочки спонтанно происходит процесс образования второй (параллельной) цепочки на основании комплементарного соединения родственных нуклеотидов. Одинаковое число нуклеотидов, в обоих цепочках и их химическое родство, является непременным условием для осуществления такого рода реакций. Однако при синтезе белка, когда информация с иРНК реализуется в структуру белка никакой речи о соблюдении принципа комплементарности идти не может. Это связано с тем, что в иРНК, и в синтезированном белке различно не только число мономеров, но и, что особенно важно, отсутствует структурное сходство между ними (с одной стороны нуклеотиды, с другой аминокислоты). Понятно, что в этом случае возникает необходимость создания нового принципа точного перевода информации с полинуклеотида в структуру полипептида. В эволюции такой принцип был создан и в его основу был заложен генетический код.

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Генетический код имеет несколько свойств.

    Триплетность.

    Вырожденность или избыточность.

    Однозначность.

    Полярность.

    Неперекрываемость.

    Компактность.

    Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 4 3 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую либо аминокислоту, их называют смысловые кодоны . Три триплета не кодируют

Таблица 1.

Кодоны информационной РНК и соответствующие им аминокислоты

О с н о в а н и я к о д о н о в

Нонсенс

Нонсенс

Нонсенс

Мет

Вал

аминокислот а являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три – УАА, УАГ, УГА , их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называютнонсенс-мутация . Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться – синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» - Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции .

б. Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон - это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами - УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин - двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках.

И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент - гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части – глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит гем, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона , который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид – первый, второй или третий. Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка - глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные -цепи и две -цепи. Молекула -цепи содержит 141 аминокислотных остатков, -цепочка - 146, - и -цепи различаются по многим аминокислотным остаткам. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. Ген, кодирующий -цепь располагается в коротком плече 16 хромосомы, -ген - в коротком плече 11 хромосомы. Замена в гене, кодирующем -цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” - приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту - тирозин Фенотипически это проявится в тяжёлом заболевании.. Аналогичная замена в 63 положении -цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении -цепи является причиной тяжелейшего заболевания - серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в -цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам - они обе гидрофильны. Валин - гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина - у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту – гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

в. Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

Кодон аминокислота

Вырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

г. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

д. Неперекрываемость.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33,А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов (см. рис.34) третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Однако многочисленные опыты показали, что при нарушении одного нуклеотида в ДНК, нарушения в белке всегда касаются только одной аминокислоты, что характерно для неперекрывающегося кода.

ГЦУГЦУГ ГЦУГЦУГ ГЦУГЦУГ

ГЦУ ГЦУ ГЦУ УГЦ ЦУГ ГЦУ ЦУГ УГЦ ГЦУ ЦУГ

*** *** *** *** *** ***

Аланин – Аланин Ала – Цис – Лей Ала – Лей – Лей – Ала – Лей

А Б В

Не перекрывающийся код Перекрывающийся код

Рис. 34. Схема, объясняющая наличие в геноме не перекрывающегося кода (объяснение в тексте).

Неперекрываемость генетического кода связана с ещё одним свойством – считывание информации начинается с определённой точки – сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ.

Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

е. Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

ж. Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

МЗ. Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны,

соответствующие аминокислотам в белке. Генетический код имеет несколько свойств.

1. Генетический код триплетен. 3 расположенных рядом нуклеотида несут информацию об одной аминокислоте. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка.

2. Генетический код вырожден (аминокислот 20, а кодонов 61), т.е. одну аминокислоту могут кодировать несколько кодонов (от двух до шести). Метионин и триптофан имеют по одному кодону, т.к. с них начинается синтез белка (старт-сигнал).

3. Код однозначен – несет информацию только об одной аминокислоте.

4. Код коллинеарен, т.е. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен – один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания».

6. Генетический код универсален – одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту. 66.Что такое обратная транскрипция? Каким образом этот процесс связан с развитием вирусов?

ОБРАТНАЯ ТРАНСКРИПЦИЯ - это метод получения копии РНК в виде двунитевой ДНК из вируса. Методика часто используется в ГЕННОЙ ИНЖЕНЕРИИ для получения копий ИНФОРМАЦИОННОЙ РНК в виде ДНК. Достигается путем использования ФЕРМЕНТА ревертаза, который встречается в РЕТРОВИРУСАХ.

Вирусы, использующие обратную транскрипцию, содержат одноцепочечную РНК или двухцепочечную ДНК. РНК-содержащие вирусы, способные к обратной транскрипции (ретровирусы, например, ВИЧ), используют ДНК-копию генома как промежуточную молекулу при репликации РНК, а содержащие ДНК (параретровирусы, например, вирус гепатита B) - РНК. В обоих случаях используется обратная транскриптаза, или РНК-зависимая-ДНК-полимераза.

Ретровирусы встраивают ДНК, образующуюся в процессе обратной транскрипции, в геном хозяина, такое состояние вируса называется провирусом. Вирусы, использующие обратную транскрипцию, восприимчивы к противововирусным препаратам.

67. Опишите строение генов эукариот. Чем гены эукариот отличаются от прокариот?

Ген – участок ДНК, с которого копируется РНК.

Строение генов у эукариот: общепринятая модель строения гена – экзон – интронная структура.

Экзон – последовательность ДНК, которая представлена в зрелой РНК. В состав гена должен входить как минимум один экзон. В среднем в гене содержится 8 экзонов. Факторы инициации и терминации транскрипции входят в состав первого и последнего экзона соответственно.

Интрон – последовательность ДНК, включенная между экзонами, не входит в состав зрелой РНК. Интроны имеют определенные нуклеотидные последовательности, определяющие их границы с экзонами: на 5 конце – GU, на 3 – AG. Могут кодировать регуляторные РНК.

Сигнал полиаденилирования 5 – AATAAA -3 входит в состав последнего экзона. Поли сайты защищают мРНК от деградации.

5 и 3 фланкирующие последовательности – копирование гена происходит в направлении 5 – 3 , на флангах находятся специфические сайты, ограничивающие ген и содержащие регуляторные элементы его транскрипции.

Регуляторные элементы – промотор, энхансеры, сайленсеры, инсуляторы (способствуют образованию петель хромосом, ограничивающих влияние соседних регуляторных элементов).

Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции.


Похожая информация:

  1. A. Animal and Vegetable Kingdom 6 страница. Если даже элементарные частицы - основа материального мира - проявляют столь противоречивые свойства