Явление преломления света.

Если световой пучок падает на поверхность, разделяющую две прозрачные среды разной оптической плотности, например воздух и воду, то часть света отражается от этой поверхности, а другая часть - проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе этих сред. Это явление называется преломле­нием света.

Рассмотрим преломление света подробнее. На рисунке п оказаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр CD, восстановленный из точки падения О к поверхности, разделяющей две разные среды. Угол АОС - угол падения, угол DOB - угол преломле­ния. Угол преломления DOB меньше угла падения АОС.

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD. Вода - среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачней средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать: если свет идет из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения.

Опыты показывают, что при одном и том же угле падения угол преломления тем меньше, чем плотнее в оптическом отношении среда, в которую проникает луч.
Если на пути преломлённого луча расположить перпендикулярно лучу зеркало, то свет отразится от зеркала и выйдет из воды в воздух по направлению падающего луча. Следовательно, лучи падающий и преломлённый обратимы так же, как обратимы падающий и отражённый лучи.
Если свет идёт из среды более оптически плотной в среду менее плотную, то угол преломления луча больше угла падения.

Давайте проведем дома маленький эксперимент. м дома маленькийэксперимент. ам надо опустить в стакан с водой карандаш, и он покажется поломанным. Э то можно объяснить только тем, что лучи света, идущие от карандаша, имеют в воде другое направление, чем в воздухе, т. е. происходит преломление света на границе воздуха с водой. Когда свет переходит из одной среды в другую, на границе раздела происходит отражение части падающего на неё света. Остальная часть света проникает в новую среду. Если свет падает под углом к поверхности раздела, отличным от прямого, от на границе световой луч изменяет своё направление.
Это и называется явлением преломлением света. Явление преломления света наблюдается на границе двух прозрачных сред и объясняется разной скоростью распространения света в различных средах. В вакууме скорость света составляет приблизительно 300000 км/с, во всех других

с редах она меньше.

На рисунке ниже показан луч, переходящий из воздуха в воду. Угол называется углом падения луча, а - углом преломления. Обратите внимание на то, что в воде луч приближается к нормали. Так происходит всякий раз, когда луч попадает в среду, где скорость света меньше. Если же свет распространяется из одной среды в другую, где скорость света больше, то он отклоняется от нормали.

Преломлением обусловлен целый ряд широко известных оптических иллюзий. Например, наблюдателю на берегу, кажется, что у человека, зашедшего в воду по пояс, ноги стали короче.

Законы преломления света.

Из всего сказанного заключаем:
1 . На границе раздела двух сред различной оптической плотности луч света при переходе из одной среды в другую меняет своё направление.
2. При переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла паде ния.
Преломление света сопровождается отражением, причём с увеличением угла падения яркость отражённого пучка возрастает, а преломлённого ослабевает. Это можно увидеть проводя опыт, изображённом на рисунке. С ледовательно, отражённый пучок уносит с собой тем больше световой энергии, чем больше угол падения.

Пусть MN -граница раздела двух про зрачных сред, например, воздуха и воды, АО -падающий луч, ОВ - преломленный луч, -угол падения, -угол преломления, -скорость распространения света в первой среде, - скорость распространения света во второй среде.

Первый закон преломления звучит так: отношение синуса угла падения к синусу угла преломления является постоянной величиной для данных двух сред:

, где - относительный показатель преломления (показатель преломления второй среды относительно первой).

Второй закон преломления света очень напоминает второй закон отражения света:

падающий луч, луч преломленный и перпендикуляр, проведенный в точку падения луча, лежит в одной плоскости.

Абсолютный показатель преломления.

Скорость распространения света в воздухе почти не отличается от скорости света в вакууме: с м/с.

Если свет попадает из вакуума в какую-нибудь среду, то

где n - абсолютный показатель преломления данной среды. Относительный показатель преломления двух сред связанный с абсолютными показателями преломления этих сред, где и - соответственно абсолютные показатели преломления первой и второй сред.

Абсолютные показатели преломления света:

Вещество

Алмаз 2,42. Кварц 1,54. Воздух (при нормальных условиях) 1,00029. Этиловый спирт 1,36. Вода 1,33. Лёд 1,31. Скипидар 1,47. Плавленый кварц 1,46. Крон 1,52. Лёгкий флинт 1,58. Хлорид натрия (соль) 1,53.

(Как мы увидим в дальнейшем, показатель преломления n несколько меняется в зависимости от длины волны света – постоянное значение он сохраняет только в вакууме. Поэтому приведённые в таблице данные соответствуют желтому свету с длинной волны .)

Напимер, так как для алмаза , свет распространяется в алмазе со скоростью

Оптическая плотность среды.

Если абсолютный показатель преломления первой среды меньше абсолютного показателя преломления второй среды, то первая среда имеет меньшую оптическую плотность, нежели вторая и > . Оптическую плотность среды не следует путать с плотностью вещества.

Прохождение света сквозь плоско-параллельную пластинку и призму .

Большое практическое значение имеет прохождение света через прозрачные тела различной формы. Рассмотрим наиболее простые случаи.
Направим луч света сквозь толстую плоскопараллельную пластинку (пластинку, ограниченную параллельными гранями). Проходя через пластинку, луч света преломляется дважды: один раз при входе в пластинку, второй раз при выходе из пластинки в воздух.

Прошедший через пластинку луч света остаётся параллельным своему первоначальному направлению и только немного смещается. Это смещение тем больше, чем толще пластинка и чем больше угол падения. Величина смещения зависит и от того, из какого вещества изготовлена пластинка.
Примером плоскопараллельной пластинки служит оконное стекло. Но рассматривая предметы через стекло, мы не замечаем изменений в их расположении и форме потому, что стекло тонкое; лучи света, проходя оконное стекло, смещаются незначительно.
Если рассматривать какой-либо предмет через призму, то предмет кажетсясмещённым. Идущий от предмета луч света падает на призму в точке А, преломляется и идёт внутри призмы по направленшо АВ Дойдя до второй грани призмы. луч света ещё раз преломляется, отклоняясь к основанию призмы. Поэтому кажется, что луч идет из точки. располо женной на продолжении луча ВС, то есть предмет кажется смещённым к вершине угла, образованного преломляющими гранями призмы.

Полное отражение света.

Красивое зрелище представляет собой фонтан, у которого выбрасываемые струи освещаются изнутри. (Это можно изобразить в обычных условиях, проделав следующий опыт№1). Обьясним это явление чуть ниже.

При переходе света из оптически более плотной среды в оптически менее плотую наблюдается явление полного отражения света. Угол преломления в этом случае больший по сравнению с углом падения (рис. 141). При увеличении угла падения световых лучей от источника S на поверхность раздела двух сред МN наступит такой момент, когда преломленный луч пойдет вдоль границы раздела двух сред, то есть = 90°.

Угол падения , которому отвечает угол преломления = 90°, называют граничным углом полного отражения.

Если превысить этот угол, то лучи не выйдут из первой среды вообще, будет наблюдаться только явление отражения света от границы раздела двух сред.

Из первого закона преломления:

Так как , то .

Если вторая среда - воздух (вакуум), то где n - абсолютный показатель преломления среды, из которой идут лучи.

Объяснение явления наблюдаемого вами в опыте довольно простое. Луч света проходит вдоль струи воды и попадает на изогнутую поверхность под углом, большим предельного, испытывает полное внутреннее отражение, а затем опять попадает на противоположную сторону струи под углом опять больше предельного. Так луч проходит вдоль струи изгибаясь вместе с ней.

Но если бы свет полностью отражался внутри струи, то она не была бы видна извне. Часть света рассеивается водой, пузырьками воздуха и различными примесями, имеющимися в ней, а также вследствие неровностей поверхности струи, поэтому она видна снаружи.


На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

4.3.1 Закон преломления (частный случай)

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис.4.11 .

Среда O

Рис. 4.11. Преломление луча на границе ¾воздух–среда¿

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол между падающим лучом и нормалью углом падения. Луч OB это преломлённый луч; угол между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n = 1;6, а для воды n = 1;33. Вообще, у любой среды n > 1; показатель преломления равен единице только в вакууме. У воздуха n = 1;0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n = 1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход ¾воздух–среда¿).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно показателю преломле-

ния среды:

Поскольку n > 1, из соотношения (4.1 ) следует, что sin > sin , то есть > угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v < c. И вот оказывается,

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомби-

нируем формулы (4.1 ) и (4.2 ):

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу (4.3 ), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

4.3.2 Обратимость световых лучей

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 4.12 ) Единственное отличие рис.4.12 от рис.4.11 состоит в том, что направление луча поменялось на противоположное.

Среда O

Рис. 4.12. Преломление луча на границе ¾среда–воздух¿

Раз геометрическая картинка не изменилась, той же самой останется и формула (4.1 ): отношение синуса угла к синусу угла по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол стал углом падения, а угол углом преломления.

В любом случае, как бы ни шёл луч из воздуха в среду или из среды в воздух работает следующее простое правило. Берём два угла угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

4.3.3 Закон преломления (общий случай)

Пусть свет переходит из среды 1 с показателем преломления n1 в среду 2 с показателем преломления n2 . Среда с б´ольшим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 4.13 ). В этом случае угол падения больше угла преломления: > .

Рис. 4.13. n1 < n2 ) >

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4.14 ). Здесь угол падения меньше угла преломления:

Рис. 4.14. n1 > n2 ) <

Оказывается, оба этих случая охватываются одной формулой общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.

1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая

в точке падения, лежат в одной плоскости.

2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

Нетрудно видеть, что сформулированный ранее закон преломления для перехода ¾воздух– среда¿ является частным случаем данного закона. В самом деле, полагая в формуле (4.4 ) n1 = 1 и n2 = n, мы придём к формуле (4.1 ).

Вспомним теперь, что показатель преломления это отношение скорости света в вакууме к скорости света в данной среде: n1 = c=v1 , n2 = c=v2 . Подставляя это в (4.4 ), получим:

Формула (4.5 ) естественным образом обобщает формулу (4.3 ). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

4.3.4 Полное внутреннее отражение

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 4.15 ).

S B 1

Рис. 4.15. Полное внутреннее отражение

Луч SO1 падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O1 A1 ) и частично отражается назад в воду (луч O1 B1 ). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии отражённому лучу.

Угол падения луча SO2 больше. Этот луч также разделяется на два луча преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O2 A2 будет тусклее, чем луч O1 A1 (то есть получит меньшую долю энергии), а отражённый луч O2 B2 соответственно ярче, чем луч O1 B1 (он получит б´ольшую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё б´ольшая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения 0 , которому отвечает угол преломления 90 . В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение 0 все такие лучи целиком отражаются назад в воду. Угол0 называется предельным углом полного отражения.

Величину 0 легко найти из закона преломления. Имеем:

sin 0

Но sin 90 = 1, поэтому

sin 0

0 = arcsin

Так, для воды предельный угол полного отражения равен:

0 = arcsin1; 1 33 48;8:

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

В одном из древнегреческих трактатов описан опыт: «Надо встать так, чтобы плоское кольцо, расположенное на дне сосуда, спряталось за его краем. Затем, не меняя положения глаз, налить в сосуд воду. Свет преломится на поверхности воды, и кольцо станет видимым». Такой «фокус» вы можете показать своим друзьям и сейчас (см. рис. 12.1), а вот объяснить его сможете только после изучения данного параграфа.

Рис. 12.1. «Фокус» с монетой. Если в чашке нет воды, мы не видим монету, лежащую на ее дне (а); если же налить воду, дно чашки будто поднимется и монета станет видимой (б)

Устанавливаем законы преломления света

Направим узкий пучок света на плоскую поверхность прозрачного стеклянного полуцилиндра, закрепленного на оптической шайбе.

Свет не только отразится от поверхности полуцилиндра, но и частично пройдет сквозь стекло. Это означает, что при переходе из воздуха в стекло направление распространения света изменяется (рис. 12.2).

Изменение направления распространения света на границе раздела двух сред называют преломлением света.

Угол γ (гамма), который образован преломленным лучом и перпендикуляром к границе раздела двух сред, проведенным через точку падения луча, называют углом преломления.

Проведя ряд опытов с оптической шайбой, заметим, что с увеличением угла падения угол преломления тоже увеличивается, а с уменьшением угла падения угол преломления уменьшается (рис. 12.3). Если же свет падает перпендикулярно границе раздела двух сред (угол падения α = 0), направление распространения света не изменяется.

Первое упоминание о преломлении света можно найти в трудах древнегреческого философа Аристотеля (IV в. до н. э.), который задавался вопросом: «Почему палка в воде кажется сломанной?» А вот закон, количественно описывающий преломление света, был установлен только в 1621 г. голландским ученым Виллебрордом Снеллиусом (1580-1626).

Законы преломления света:

2. Отношение синуса угла падения к синусу угла преломления для двух данных сред является неизменной величиной:

где n 2 1 — физическая величина, которую называют относительным показателем преломления среды. 2 (среды, в которой свет распространяется после преломления) относительно среды 1 (среды, из которой свет падает).

Узнаём о причине преломления света

Так почему свет, переходя из одной среды в другую, изменяет свое направление?

Дело в том, что в разных средах свет распространяется с разной скоростью, но всегда медленнее, чем в вакууме. Например, в воде скорость света в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в стекло, его скорость уменьшается еще в 1,3 раза; в воздухе скорость распространения света в 1,7 раза больше, чем в стекле, и лишь немного меньше (примерно в 1,0003 раза), чем в вакууме.

Именно изменение скорости распространения света при переходе из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде (чем больше показатель преломления), тем больше оптическая плотность среды.

Как вы считаете, оптическая плотность какой среды больше — воды или стекла? оптическая плотность какой среды меньше — стекла или воздуха?

Выясняем физический смысл показателя преломления

Относительный показатель преломления (n 2 1) показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше) скорости распространения света в среде 2:

Вспомнив второй закон преломления света:

Проанализировав последнюю формулу, делаем выводы:

1) чем больше на границе раздела двух сред изменяется скорость распространения света, тем больше свет преломляется;

2) если луч света переходит в среду с большей оптической плотностью (то есть скорость света уменьшается: v 2 < v 1), то угол преломления меньше угла падения: γ<α (см., например, рис. 12.2, 12.3);

3) если луч света переходит в среду с меньшей оптической плотностью (то есть скорость света увеличивается: v 2 > v 1), то угол преломления больше угла падения: γ > а (рис. 12.4).


Обычно скорость распространения света в среде сравнивают со скоростью его распространения в вакууме. Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления.

Абсолютный показатель преломления показывает, во сколько раз скорость распространения света в среде меньше, чем в вакууме:

где c — скорость распространения света в вакууме (c=3 · 10 8 м/с); v — скорость распространения света в среде.

рис. 12.4. При переходе света из среды с большей оптической плотностью в среду с меньшей оптической плотностью угол преломления больше угла падения (γ>α)

Скорость распространения света в вакууме больше, чем в любой среде, поэтому абсолютный показатель преломления всегда больше единицы (см. таблицу).

Рис. 12.5. Если свет попадает из стекла в воздух, то при увеличении угла падения угол преломления приближается к 90°, а яркость преломленного пучка уменьшается

рассматривая переход света из воздуха в среду, будем считать, что относительный показатель преломления среды равен абсолютному.

Явление преломления света используется в работе многих оптических устройств. О некоторых из них вы узнаете позже.

Применяем явление полного внутреннего отражения света

Рассмотрим случай, когда свет переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью (рис. 12.5). Видим, что при увеличении угла падения (α 2 >«ι) угол преломления γ приближается к 90°, яркость преломленного пучка уменьшается, а яркость отраженного, наоборот, увеличивается. Понятно, что если и дальше увеличивать угол падения, то угол преломления достигнет 90°, преломленный пучок исчезнет, а падающий пучок полностью (без потерь энергии) вернется в первую среду — свет полностью отразится.

Явление, при котором преломление света отсутствует (свет полностью отражается от среды с меньшей оптической плотностью), называют полным внутренним отражением света.

Явление полного внутреннего отражения света хорошо знакомо тем, кто плавал под водой с открытыми глазами (рис. 12.6).

рис. 12.6. Наблюдателю, находящемуся под водой, часть поверхности воды кажется блестящей, будто зеркало

Ювелиры много веков используют явление полного внутреннего отражения, чтобы повысить привлекательность драгоценных камней. Естественные камни огранивают — придают им форму многогранников: грани камня выполняют роль «внутренних зеркал», и камень «играет» в лучах падающего на него света.

Полное внутреннее отражение широко используют в оптической технике (рис. 12.7). Но главное применение этого явления связано с волоконной оптикой. Если в торец сплошной тонкой «стеклянной» трубки направить пучок света, после многократного отражения свет выйдет на ее противоположном конце независимо от того, какой будет трубка — изогнутой или прямой. Такую трубку называют световодом (рис. 12.8).

Световоды применяют в медицине для исследования внутренних органов (эндоскопия); в технике, в частности для выявления неисправностей внутри двигателей без их разборки; для освещения солнечным светом закрытых помещений и т. п. (рис. 12.9).

Но чаще всего световоды используют в качестве кабелей для передачи информации (рис. 12.10). «Стеклянный кабель» намного дешевле и легче медного, он практически не изменяет свои свойства под воздействием окружающей среды, позволяет передавать сигналы на большие расстояния без усиления. Сегодня волоконно-оптические линии связи стремительно вытесняют традиционные. Когда вы будете смотреть телевизор или пользоваться Интернетом, вспомните, что значительную часть своего пути сигнал проходит по «стеклянной дороге».

Учимся решать задачи Задача. Световой луч переходит из среды 1 в среду 2 (рис. 12.11, а). Скорость распространения света в среде 1 равна 2,4 · 10 8 м/с. Определите абсолютный показатель преломления среды 2 и скорость распространения света в среде 2.

Анализ физической проблемы

Из рис. 12.11, а видим, что на границе раздела двух сред свет преломляется, значит, скорость его распространения изменяется.

Выполним пояснительный рисунок (рис. 12.11, б), на котором:

1) изобразим лучи, приведенные в условии задачи;

2) проведем через точку падения луча перпендикуляр к границе раздела двух сред;

3) обозначим α угол падения и γ — угол преломления.

Абсолютный показатель преломления — это показатель преломления относительно вакуума. Поэтому для решения задачи следует вспомнить значение скорости распространения света в вакууме и найти скорость распространения света в среде 2 (v 2).

Чтобы найти v 2 , определим синус угла падения и синус угла преломления.

Анализ решения. По условию задачи угол падения больше угла преломления, и это значит, что скорость света в среде 2 меньше скорости света в среде 1. Следовательно, полученные результаты реальны.

Подводим итоги

Световой пучок, падая на границу раздела двух сред, разделяется на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит во вторую среду, изменяя свое направление.

Законы преломления света:

1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, проведенный через точку падения луча, лежат в одной плоскости.

2. Для двух данных сред отношение синуса угла падения α к синусу угла преломления γ является неизменной величиной:

Причина преломления света — изменение скорости его распространения при переходе из одной среды в другую. Относительный показатель преломления n 2 i показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше), чем скорость распространения света

в среде 2:

Когда свет попадает в среду из вакуума, показатель преломления n называют абсолютным показателем преломления: n = c / v .

Если при переходе света из среды 1 в среду 2 скорость распространения света уменьшилась (то есть показатель преломления среды 2 больше показателя преломления среды 1: n 2 > n 1), то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью (и наоборот).

Контрольные вопросы

1. Какие опыты подтверждают явление преломления света на границе раздела двух сред? 2. Сформулируйте законы преломления света. 3. В чем причина преломления света? 4. Что показывает показатель преломления света? 5. Как скорость распространения света связана с оптической плотностью среды? 6. Дайте определение абсолютного показателя преломления.

Упражнение № 12

1. Перенесите рис. 1 в тетрадь. Считая, что среда 1 имеет бо"льшую оптическую плотность, чем среда 2, для каждого случая схематически постройте падающий (или преломленный) луч, обозначьте угол падения и угол преломления.

2. Вычислите скорость распространения света в алмазе; воде; воздухе.

3. Луч света падает из воздуха в воду под углом 60°. Угол между отраженным и преломленным лучами равен 80°. Вычислите угол преломления луча.

4. Когда мы, стоя на берегу водоема, пытаемся на глаз определить его глубину, она всегда кажется меньше, чем на самом деле. Воспользовавшись рис. 2, объясните, почему это так.

5. За какое время свет доходит от дна озера глубиной 900 м до поверхности воды?

6. Объясните «фокус» с кольцом (монетой), описанный в начале § 12 (см. рис. 12.1).

7. Световой луч переходит из среды 1 в среду 2 (рис. 3). Скорость распространения света в среде 1 равна 2,5 · 10 8 м/с. Определите:

1) какая среда имеет большую оптическую плотность;

2) показатель преломления среды 2 относительно среды 1;

3) скорость распространения света в среде 2;

4) абсолютный показатель преломления каждой среды.

8. Следствием преломления света в атмосфере Земли является возникновение миражей, а также тот факт, что мы видим Солнце и звезды немного выше их реального положения. Воспользуйтесь дополнительными источниками информации и узнайте об этих природных явлениях подробнее.

Экспериментальные задания

1. «Фокус с монетой». Продемонстрируйте кому-нибудь из своих друзей или близких опыт с монетой (см. рис. 12.1) и объясните его.

2. «Водное зеркало». Понаблюдайте полное отражение света. Для этого заполните стакан примерно наполовину водой. Опустите в стакан какой-либо предмет, например корпус пластмассовой ручки, желательно с надписью. Держа стакан в руке, расположите его на расстоянии приблизительно 25—30 см от глаз (см. рисунок). В ходе опыта вы должны следить за корпусом ручки.

Сначала, подняв глаза, вы будете видеть весь корпус ручки (как подводную, так и надводную части). Медленно передвигайте от себя стакан, не изменяя высоты его расположения.

Когда стакан будет достаточно удален от ваших глаз, поверхность воды станет для вас зеркальной — вы увидите зеркальное отражение подводной части корпуса ручки.

Объясните наблюдаемое явление.

ЛАБОРАТОРНАЯ РАБОТА № 4

Тема. Исследование преломления света.

Цель: определить показатель преломления стекла относительно воздуха.

Оборудование: стеклянная пластинка с параллельными гранями, карандаш, угольник с миллиметровой шкалой, циркуль.

УКАЗАНИЯ К РАБОТЕ

Подготовка к эксперименту

1. Перед выполнением работы вспомните:

1) требования безопасности при работе со стеклянными предметами;

2) законы преломления света;

3) формулу для определения показателя преломления.

2. Подготовьте рисунки для выполнения работы (см. рис. 1). Для этого:

1) положите стеклянную пластинку на страницу тетради и остро заточенным карандашом очертите контур пластинки;

2) на отрезке, соответствующем положению верхней преломляющей грани пластинки:

Отметьте точку О;

Проведите через точку О прямую k, перпендикулярную данному отрезку;

С помощью циркуля постройте окружность радиусом 2,5 см с центром в точке О;

3) под углом примерно 45° начертите луч, который будет задавать направление пучка света, падающего в точку О; обозначьте точку пересечения луча и окружности буквой А;

4) повторите действия, описанные в пунктах 1-3, еще дважды (выполните еще два рисунка), сначала увеличив, а затем уменьшив заданный угол падения луча света.


Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац учебника).

1. Наложите стеклянную пластинку на первый контур.

2. Глядя на луч АО сквозь стекло, у нижней грани пластинки поставьте точку М так, чтобы она казалась расположенной на продолжении луча АО (рис. 2).

3. Повторите действия, описанные в пунктах 1 и 2, еще для двух контуров.

Обработка результатов эксперимента

Результаты измерений и вычислений сразу заносите в таблицу.

Для каждого опыта (см. рис. 3):

1) проведите преломленный луч OM;

2) найдите точку пересечения луча OM с окружностью (точку Б);

3) из точек A и Б опустите перпендикуляры на прямую k, измерьте длины а и b полученных отрезков и радиус окружности г;

4) определите показатель преломления стекла относительно воздуха:


Анализ эксперимента и его результатов

Проанализируйте эксперимент и его результаты. Сформулируйте вывод, в котором укажите: 1) какую физическую величину вы определяли; 2) какой результат получили; 3) зависит ли значение полученной величины от угла падения света; 4) в чем причины возможной погрешности эксперимента.

Творческое задание

Воспользовавшись рис. 4, продумайте и запишите план проведения эксперимента по определению показателя преломления воды относительно воздуха. По возможности проведите эксперимент.

Задание «со звездочкой»

где п изм — полученное во время эксперимента значение показателя преломления стекла относительно воздуха; n — табличное значение абсолютного показателя преломления стекла, из которого изготовлена пластинка (выясните у учителя).

Это материал учебника

Проведение опыта

Каждый из вас, наверное, обращал внимание на то, что в стакане с водой торчащая ложка на границе между водой и воздухом, кажется, что имеет какой-то переломанный вид. Точно такую же картину мы наблюдаем на берегу озера или реки, из водоема которой видна растущая трава. Когда мы на нее смотрим, то у нас создается впечатление, что на границе воды и воздуха эта травинка, как бы отклоняется в сторону. Конечно же, мы прекрасно понимаем, что эти предметы остаются такими же, как и были до того как попали в воду. А вот то, что мы наблюдаем и от чего возникает такой зрительный эффект, то это является преломлением света при его распространении.

Из пройденного материала, который вы уже изучали на предыдущих уроках, вы должны помнить то, что чтобы определить, в какую сторону будет отклоняться луч света при его переходе через границу, которая разделяет две среды, нам необходимо знать, в какой из них скорость света меньше, а в какой больше.

Для большей наглядности мы с вами проведем небольшой опыт. Давайте, например, возьмем оптический диск и в его центр поместим стеклянную пластину. А теперь попробуем направить на эту пластину луч света. И что мы с вами видим? А увидели мы то, что в том месте, где проходит граница воздуха со стеклом свет отражается. Но, кроме того, что свет отразился, мы еще видим, как он проник вовнутрь стекла и при этом еще и изменил направление своего распространения.

А теперь посмотрите, как это показано на рисунке:



А теперь давайте попробуем дать определение этому явлению.

Преломлением света называют такое явление, которое изменяет направления движения светового луча в момент перехода из одной среды в другую.

Давайте опять вернемся к нашему рисунку. На нем мы видим, что АО, обозначает падающий луч, ОВ является отраженным лучом, а ОЕ – это преломленный луч. А что бы произошло, если бы мы взяли и направили луч по направлению ЕО? А произошло вот то, что по закону «обратимости световых лучей», этот луч вышел бы из стекла по направлению ОА.

Из этого следует, что те среды, которые способны пропускать свет, как правило, имеют различную оптическую плотность и разную скорость света. И чтобы вы понимали, что от величины плотности зависит скорость света. То есть, чем большую оптическую плотность имеет среда, тем в ней будет меньшая скорость света и при этом она будет сильнее преломлять свет, который попадает извне.

Как же происходит преломление света?

Впервые такому явлению, как преломление света, в XVII в. дал объяснение патер Меньян. Согласно его утверждениям, следует, что при переходе света из одной среды в другую, его луч изменяет свое направление, которое можно сравнить с движением «солдатского фронта», который во время строевой ходьбы изменяет свое направление. Давайте представим луг, по которому идет колонна солдат, а дальше этот луг преграждается пашней, у которой граница проходит в отношении фронта под углом.

Солдаты, которые дошли до пашни, начинают замедлять свое движение, а те солдаты, которые до этой границы пока не дошли, продолжают свой путь с той же скоростью. А дальше происходит то, что у солдат, которые перешли рубеж и идут по пашне, начинают отставать от побратимов, которые все еще идут по лугу и так постепенно колонна войск начинает разворачивается. Для наглядности этого процесса можно посмотреть на рисунок ниже.



Точно такой же процесс мы наблюдаем и с лучом света. Для того чтобы узнать, в какую сторону будет отклоняться луч света, в момент его перехода границ двух сред, необходимо иметь представление, в какой из них скорость света будет больше, а в какой наоборот меньше.

А так как мы уже имеем представление о том, что свет является электромагнитными волнами, то все то, что мы знаем о скорости распространения электромагнитных волн, также относится и к скорости света.

Следует отметить, что в вакууме скорость света максимальна:



В веществе скорость света, в отличие от вакуума, всегда меньше: v



Оптическая плотность среды

Оптическая плотность среды определяется по тому, как распространяется световой луч в среде. Оптически более плотной будет та среда, которая имеет меньшую скорость света.

Среда, у которой скорость света меньше, называется «оптически более плотной»;
Среда, в которой скорость света больше, носит название «оптически менее плотной».

Если для сравнения оптической плотности взять воздух, стекло и воду, то при сравнении воздуха и стекла, оптически более плотной средой обладает стекло. Также в сравнении стекла и воды, оптически более плотной средой будет стекло.


Угол преломления

Из этого опыта мы видим, что при попадании в среду, которая более плотная, луч света отклоняется от того направления, которое он имел вначале и меняет направление в сторону к перпендикуляру, где находится граница раздела двух сред. А после попадания в среду, которая оптически менее плотная, в этом случае луч света отклоняется в обратную сторону.



«α» - угол падения, «β» - угол преломления.

Преломление света в треугольной призме

При помощи закона преломления света, есть возможность расчета хода лучей и для стеклянной треугольной призмы.

На рисунке 87 вы можете более подробно проследить за ходом лучей в данной призме:


Преломление света в глазу

Вы когда-нибудь замечали, что набрав в ванную воду, складывалось впечатление, что там ее меньше, чем на самом деле. В отношении реки, пруда и озера, складывается такая же картина, а вот причиной всего этого как раз и есть такое явление, как преломление света.

Но, как вы понимаете, во всех этих процессах активное участие принимают и наши глаза. Вот, например, чтобы мы смогли увидеть какую-то определенную точку «S» на дне водоема, в первую очередь необходимо, чтобы лучи света прошли через эту точку и попали в глаз того человека, который на нее смотрит.

А дальше пучок света, пройдя период преломления на границе воды с воздухом уже будет восприниматься глазом как свет, который идет от кажущегося изображения «S1», но находящегося выше, чем точка «S» на дне водоема.



Мнимая глубина водоема «h» составляет приблизительно ¾ его истинной глубины Н. Такое явление впервые было описано Евклидом.

Домашнее задание

1. Наведите свои примеры преломления света, которые вам встречались в повседневной жизни.

2. Найдите информацию об опыте Евклида и попробуйте этот опыт повторить.