Понятие о количестве теплоты сформировалось на ранних стадиях развития современной физики, когда еще не существовало внятных представлений о внутреннем строении вещества, о том, что такое энергия, о том какие формы энергии существуют в природе и об энергии, как форме движения и превращения материи.

Под количеством теплоты понимается физическая величина эквивалентная переданной материальному телу энергии в процессе теплового обмена.

Устаревшей единицей количества теплоты является калория, равная 4.2 Дж, сегодня данная единица практически не применяется, а ее место занял джоуль.

Изначально предполагалось, что переносчиком тепловой энергии является некая совершенно невесомая среда, имеющая свойства жидкости. Многочисленные физические задачи теплопереноса решались и до сих пор решаются исходя из такой предпосылки. Существование гипотетического теплорода было положено в основу множества правильных в сущности построений. Считалось, что теплород выделяется и поглощается в явлениях нагрева и остывания, плавления и кристаллизации. Верные уравнения процессов теплообмена были получены исходя из неверных физических концепций. Известен закон, согласно которому количество теплоты прямо пропорционально массе тела, участвующего в теплообмене, и градиенту температуры:

Где Q – количество теплоты, m масса тела, а коэффициент с – величина, получившая название удельной теплоемкости. Удельная теплоемкость – есть характеристика вещества участвующего в процессе.

Работа в термодинамике

В результат тепловых процессов может совершаться чисто механическая работа. Например, нагреваясь, газ увеличивает свой объем. Возьмем ситуацию, как на рисунке ниже:

В данном случае механическая работа окажется равной силе давления газа на поршень умноженной на путь, проделанный поршнем под давлением. Разумеется, это простейший случай. Но даже в нем можно заметить одну сложность: сила давления будет зависеть от объема газа, а, значит, мы имеем дело не с константами, а с переменными величинами. Поскольку все три переменные: давление, температура и объем связаны друг с другом, то подсчет работы существенно усложняется. Выделяют некоторые идеальные, бесконечно-медленные процессы: изобарный, изотермический, адиабатный и изохорный – для которых такие расчеты можно выполнить относительно просто. Строится график зависимости давления от объема и работа вычисляется как интеграл вида.

Изменить внутреннюю энергию газа в цилиндре можно не только совершая работу, но и нагревая газ (рис. 43). Если закрепить поршень, то объем газа не будет изменяться, но температура, а следовательно, и внутренняя энергия будут возрастать.
Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.

Энергию, переданную телу в результате теплообмена, называют количеством теплоты. Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.

Молекулярная картина теплообмена. При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с более быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую: часть внутренней энергии горячего тела передается холодному телу.

Количество теплоты и теплоемкость. Из курса физики VII класса известно, что для нагревания тела массой m от температуры t 1 до температуры t 2 необходимо сообщить ему количество теплоты

Q = cm(t 2 – t 1) = cmΔt. (4.5)

При остывании тела его извечная температура t 2 меньше начальной t 1 и количество теплоты, отдаваемое телом, отрицательно.
Коэффициент c в формуле (4.5) называют удельной теплоемкостью . Удельная теплоемкость – это количество теплоты, которое получает или отдает 1 кг вещества при изменении его температуры на 1 К.

Удельную теплоемкость выражают в джоулях, деленных на килограмм, умноженный на кельвин. Различным телам требуется неодинаковое количество энергии для увеличения температуры на 1 К. Так, удельная теплоемкость воды 4190 Дж/(кг · К), а меди 380 Дж/(кг · К).

Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1°C при постоянном давлении ему нужно будет передать большее количество теплоты, чем для нагревания его при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.

Удельная теплота парообразования. Для превращения жидкости в пар необходима передача ей определенного количества теплоты. Температура жидкости при этом превращении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии. Ведь среднее расстояние между молекулами газа во много раз больше, чем между молекулами жидкости. Кроме того, увеличение объема при переходе вещества из жидкого состояния в газообразное требует совершения работы против сил внешнего давления.

Количество теплоты, необходимое для превращения при настоянной температуре 1 кг жидкости в пар, называют удельной теплотой парообразования. Обозначают эту величину буквой r и выражают в джоулях на килограмм.

Очень велика удельная теплота парообразования воды: 2,256 · 10 6 Дж/кг при температуре 100°C. У других жидкостей (спирт, эфир, ртуть, керосин и др.) удельная теплота парообразования меньше в 3-10 раз.

Для превращения в пар жидкости массой m требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты

Q k = –rm. (4.7)

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Количество теплоты λ (лямбда), необходимое для превращения 1 кг кристаллического вещества при температуре плавления в жидкость той же температуры, называют удельной теплотой плавления.

При кристаллизации 1 кг вещества выделяется точно такое же количество теплоты. Удельная теплота плавления льда довольно велика: 3,4 · 10 5 Дж/кг.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Q пл = λm. (4.8)

Количество теплоты, выделяемое при кристаллизации тела, равно:

Q кр = – λm. (4.9)

1. Что называют количеством теплоты? 2. От чего зависит удельная теплоемкость веществ? 3. Что называют удельной теплотой парообразования? 4. Что называют удельной теплотой плавления? 5. В каких случаях количество переданной теплоты отрицательно?

Задание 81.
Вычислите количество теплоты, которое выделится при восстановлении Fe 2 O 3 металлическим алюминием, если было получено 335,1 г железа. Ответ: 2543,1 кДж.
Решение:
Уравнение реакции:

= (Al 2 O 3) - (Fe 2 O 3) = -1669,8 -(-822,1) = -847,7 кДж

Вычисление количества теплоты, которое выделяется при получении 335,1 г железа, про-изводим из пропорции:

(2 . 55,85) : -847,7 = 335,1 : х; х = (0847,7 . 335,1)/ (2 . 55,85) = 2543,1 кДж,

где 55,85 атомная масс железа.

Ответ: 2543,1 кДж.

Тепловой эффект реакции

Задание 82.
Газообразный этиловый спирт С2Н5ОН можно получить при взаимодействии этилена С 2 Н 4 (г) и водяных паров. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Ответ: -45,76 кДж.
Решение:
Уравнение реакции имеет вид:

С 2 Н 4 (г) + Н 2 О (г) = С2Н 5 ОН (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Рассчитаем тепловой эффект реакции, используя следствие из закона Гесса, получим:

= (С 2 Н 5 ОН) – [ (С 2 Н 4) + (Н 2 О)] =
= -235,1 -[(52,28) + (-241,83)] = - 45,76 кДж

Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы . Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - жидкое, к

Если в результате реакции выделяется теплота, то < О. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

С 2 Н 4 (г) + Н 2 О (г) = С 2 Н 5 ОН (г) ; = - 45,76 кДж.

Ответ: - 45,76 кДж.

Задание 83.
Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

а) ЕеО (к) + СО (г) = Fe (к) + СO 2 (г); = -13,18 кДж;
б) СO (г) + 1/2O 2 (г) = СO 2 (г) ; = -283,0 кДж;
в) Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж.
Ответ: +27,99 кДж.

Решение:
Уравнение реакции восстановления оксида железа (II) водородом имеет вид:

ЕеО (к) + Н 2 (г) = Fe (к) + Н 2 О (г) ; = ?

= (Н2О) – [ (FeO)

Теплота образования воды определяется уравнением

Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж,

а теплоту образования оксида железа (II) можно вычислить, если из уравнения (б) вычесть уравнение (а).

=(в) - (б) - (а) = -241,83 – [-283,o – (-13,18)] = +27,99 кДж.

Ответ: +27,99 кДж.

Задание 84.
При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод СS 2 (г) . Напишите термохимическое уравнение этой реакции, предварительно вычислите ее тепловой эффект. Ответ: +65,43 кДж.
Решение:
г - газообразное, ж - жидкое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г); = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) +(СS 2) – [(Н 2 S) + (СO 2)];
= 2(-241,83) + 115,28 – = +65,43 кДж.

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г) ; = +65,43 кДж.

Ответ: +65,43 кДж.

Tермохимическое уравнение реакции

Задание 85.
Напишите термохимическое уравнение реакции между СО (г) и водородом, в результате которой образуются СН 4 (г) и Н 2 О (г). Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия? Ответ: 618,48 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - кое, к - кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

СО (г) + 3Н 2 (г) = СН 4 (г) + Н 2 О (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) + (СН 4) – (СO)];
= (-241,83) + (-74,84) – (-110,52) = -206,16 кДж.

Термохимическое уравнение будет иметь вид:

22,4 : -206,16 = 67,2 : х; х = 67,2 (-206,16)/22?4 = -618,48 кДж; Q = 618,48 кДж.

Ответ: 618,48 кДж.

Теплота образования

Задание 86.
Тепловой эффект какой реакции равен теплоте образования. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:
а) 4NH 3 (г) + 5О 2 (г) = 4NO (г) + 6Н 2 O (ж) ; = -1168,80 кДж;
б) 4NH 3 (г) + 3О 2 (г) = 2N 2 (г) + 6Н 2 O (ж); = -1530,28 кДж
Ответ: 90,37 кДж.
Решение:
Стандартная теплота образования равна теплоте реакции образования 1 моль этого вещества из простых веществ при стандартных условиях (Т = 298 К; р = 1,0325 . 105 Па). Образование NO из простых веществ можно представить так:

1/2N 2 + 1/2O 2 = NO

Дана реакция (а), в которой образуется 4 моль NO и дана реакция (б), в которой образуется 2 моль N2. В обеих реакциях участвует кислород. Следовательно, для определения стандартной теплоты образования NO составим следующий цикл Гесса, т. е. нужно вы-честь уравнение (а) из уравнения (б):

Таким образом, 1/2N 2 + 1/2O 2 = NO; = +90,37 кДж.

Ответ: 618,48 кДж.

Задание 87.
Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлороводорода. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия? Ответ: 78,97 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие кое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

NH 3 (г) + НCl (г) = NH 4 Cl (к). ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (NH4Cl) – [(NH 3) + (HCl)];
= -315,39 – [-46,19 + (-92,31) = -176,85 кДж.

Термохимическое уравнение будет иметь вид:

Теплоту, выделившуюся при реакции 10 л аммиака по этой реакции, определим из про-порции:

22,4 : -176,85 = 10 : х; х = 10 (-176,85)/22,4 = -78,97 кДж; Q = 78,97 кДж.

Ответ: 78,97 кДж.

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

На этом уроке мы продолжим изучение внутренней энергии тела, а конкретнее - способов её изменения. И предметом нашего внимания на этот раз станет теплообмен. Мы вспомним, на какие виды он разделяется, в чём измеряется, и по каким соотношениям можно вычислить количество теплоты, переданное в результате теплообмена, также мы дадим определение удельной теплоёмкости тела.

Тема: Основы термодинамики
Урок: Количество теплоты. Удельная теплоемкость

Как мы уже знаем из младших классов, и как мы вспомнили на прошлом уроке, существует два способа изменить внутреннюю энергию тела: выполнить над ним работу или передать ему некое количество теплоты. О первом способе нам уже известно из, опять-таки, прошлого урока, но и о втором мы достаточно много говорили в курсе восьмого класса.

Процесс передачи теплоты (количества теплоты или энергии) без совершения работы называется теплообменом или теплопередачей. Разделяется он по механизмам передачи, как мы знаем, на три вида:

  1. Теплопроводность
  2. Конвекция
  3. Излучение

В результате одного из этих процессов телу передаётся некое количество теплоты, на значение которого, собственно, и меняется внутренняя энергия. Охарактеризуем эту величину.

Определение. Количество теплоты . Обозначение - Q. Единицы измерения - Дж. При изменении температуры тела (что эквивалентно изменению внутренней энергии) количество теплоты, затраченное на это изменение, можно вычислить по формуле:

Здесь: - масса тела; - удельная теплоёмкость тела; - изменение температуры тела.

Причём, если , то есть при охлаждении, говорят, что тело отдало некоторое количество теплоты, или же телу передали отрицательное количество теплоты. Если же , то есть наблюдается нагрев тела, количество переданной теплоты, конечно же, будет положительным.

Особое внимание следует обратить на величину удельной теплоёмкости тела.

Определение. Удельная теплоёмкость - величина, численно равная количеству теплоты, которую необходимо передать, чтобы нагреть один килограмм вещества на один градус. Удельная теплоёмкость - индивидуальная величина для каждого отдельного вещества. Поэтому это табличная величина, заведомо известная при условии, что нам известно, порции какого вещества передаётся тепло.

Единицу измерения удельной теплоёмкости в системе СИ можно получить из вышеприведённого уравнения:

Таким образом:

Рассмотрим теперь случаи, когда передача некого количества теплоты приводит к изменению агрегатного состояния вещества. Напомним, что такие переходы называются плавлением, кристаллизацией, испарением и конденсацией.

При переходе от жидкости к твёрдому телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота плавления тела (количество теплоты, необходимое для полного плавления одного килограмма вещества).

Для того чтобы расплавить тело, ему необходимо передать некое количество теплоты, а при конденсации тело само отдаёт в окружающую среду некое количество теплоты.

При переходе от жидкости к газообразному телу и наоборот количество теплоты высчитывается по формуле:

Здесь: - масса тела; - удельная теплота парообразования тела (количество теплоты, необходимое для полного испарения одного килограмма вещества).

Для того чтобы испарить жидкость, ей необходимо передать некое количество теплоты, а при конденсации пар сам отдаёт в окружающую среду некое количество теплоты.

Следует подчеркнуть также, что и плавление с кристаллизацией, и испарение с конденсацией проходят при постоянной температуре (температура плавления и кипения соответственно) (рис. 1).

Рис. 1. График зависимости температуры (в градусах Цельсия) от полученного количества вещества ()

Отдельно стоит отметить вычисление количества теплоты, выделяющееся при сгорании некоторой массы топлива:

Здесь: - масса топлива; - удельная теплота сгорания топлива (количество теплоты, выделяющееся при сгорании одного килограмма топлива).

Особое внимание нужно обратить на тот факт, что помимо того, что для разных веществ удельные теплоёмкости принимают разные значения, этот параметр может быть различным и для одного и того же вещества при различных условиях. Например, выделяют разные значения удельных теплоёмкостей для процессов нагревания, протекающих при постоянном объёме () и для процессов, протекающих при постоянном давлении ().

Различают также молярную теплоёмкость и просто теплоёмкость.

Определение. Молярная теплоёмкость () - количество теплоты, необходимое для того, чтобы нагреть один моль вещества на один градус.

Теплоёмкость (C ) - количество теплоты, необходимое, чтобы нагреть на один градус порцию вещества определённой массы. Связь теплоёмкости с удельной теплоёмкостью:

На следующем уроке мы рассмотрим такой важный закон, как первый закон термодинамики, который связывает изменение внутренней энергии с работой газа и количеством переданной теплоты.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Словари и энциклопедии на Академике ().
  2. Tt.pstu.ru ().
  3. Elementy.ru ().

Домашнее задание

  1. Стр. 83: № 643-646. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Как связаны между собой молярная и удельная теплоёмкости?
  3. Почему иногда поверхности окон запотевают? С какой стороны окон это происходит?
  4. В какую погоду быстрее высыхают лужи: в спокойную или в ветреную?
  5. *На что затрачивается теплота, полученная телом при плавлении?