В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно, а неорганические соединения - ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу - гомологическую разницу CH 2 . Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми (циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН 3 -СН 2 -СН 2 -СН 3 (бутан)

СН 3 -СН(СН 3)-СН 3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.


Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.

Органические соединения классифицируют, учитывая два основных структурных признака:


Строение углеродной цепи(углеродного скелета);


Наличие и строение функциональных групп.


Углеродный скелет (углеродная цепь) - последовательность химически связанных между собой атомов углерода.


Функциональная группа - атом или группа атомов, определяющие принадлежность соединения к определенному классу и ответственные за его химические свойства.

Классификация соединений по строению углеродной цепи

В зависимости от строения углеродной цепи органические соединения делят на ациклические и циклические.


Ациклические соединения - соединения с открытой (незамкнутой) углеродной цепью. Эти соединения называются также алифатическими.


Среди ациклических соединений различают предельные (насыщенные), содержащие в скелете только одинарные связи C-C и непредельные (ненасыщенные),включающие кратные связи C = C и C C.

Ациклические соединения

Предельные:




Непредельные:




Ациклические соединения подразделяют также на соединения с не разветвленной и разветвленной цепью. В этом случае учитывается число связей атома углерода с другими углеродными атомами.



Цепь, в которую входят третичные или четвертичные атомы углерода, является разветвленной (в названии часто обозначается приставкой «изо»).


Например:




Атомы углерода:


Первичный;


Вторичный;


Третичный.


Циклические соединения - соединения с замкнутой углеродной цепью.


В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.


Карбоциклические соединения содержат в цикле только атомы углерода. Они делятся на две существенно различающихся по химическим свойствам группы: алифатические циклические - сокращенно алициклические - и ароматические соединения.

Карбоциклические соединения

Алицеклические:




Ароматические:




Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной) - кислород, азот, серу и др.

Гетероциклические соединения

Классификация соединений по функциональным группам

Соединения, в состав которых входят только углерод и водород, называются углеводородами.


Другие, более многочисленные, органические соединения можно рассматривать как производные углеводородов, которые образуются при введении в углеводороды функциональных групп, содержащих другие элементы.


В зависимости от природы функциональных групп органические соединения делят на классы. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:

Классы органических соединений



Примечание: к функциональным группам иногда относят двойную и тройную связи.


В состав молекул органических соединений могут входить две или более одинаковых или различных функциональных групп.


Например: HO- CH 2 - CH 2 -OH (этиленгликоль); NH 2 -CH 2 - COOH (аминокислота глицин ).


Все классы органических соединений взаимосвязаны. Переход от одних классов соединений к другим осуществляется в основном за счет превращения функциональных групп без изменения углеродного скелета. Соединения каждого класса составляют гомологический ряд.

Введение

1. Предельные углеводороды

1.1. Насыщенные неразветвленные соединения

1.1.1. Одновалентные радикалы

1.2. Насыщенные разветвленные соединения с одним заместителем

1.3. Насыщенные разветвленные соединения с несколькими заместителями

2. Непредельные углеводороды

2.1. Ненасыщенные неразветвленные углеводороды с одной двойной связью (алкены)

2.2. Ненасыщенные неразветвленные углеводороды с одной тройной связью (алкины)

2.3. Ненасыщенные разветвленные углеводороды

3. Циклические углеводороды

3.1. Алифатические углеводороды

3.2. Ароматические углеводороды

3.3. Гетероциклические соединения

4. Углеводороды содержащие функциональные группы

4.1. Спирты

4.2. Альдегиды и кетоны 18

4.3. Карбоновые кислоты 20

4.4. Эфиры 22

4.4.1. Простые эфиры 22

4.4.2. Сложные эфиры 23

4.5. Амины 24

5. Органические соединения с несколькими функциональными группами 25

Литература

Введение

В основу научной классификации и номенклатуры органических соединений положены принципы теории химического строения органических соединений А.М. Бутлерова.

Все органические соединения подразделяют на следующие основные ряды:

Ациклические - их называют также алифатическими, или соединениями жирного ряда. Эти соединения имеют открытую цепь углеродных атомов.

К ним относятся:

  1. Предельные (насыщенные)
  2. Непредельные (ненасыщенные)

Циклические - соединения с замкнутой в кольцо цепью атомов. К ним относятся:

  1. 1. Карбоциклические (изоциклические) – соединения, в кольцевую систему которых входят только углеродные атомы это:
    а) алициклические (предельные и непредельные);
    б) ароматические.
  2. Гетероциклические - соединения, в кольцевую систему которых, кроме атома углерода, входят атомы других элементов - гетероатомы (кислород, азот, сера и др.)

В настоящее время для наименования органических соединений применяются три типа номенклатуры: тривиальная, рациональная и систематическая номенклатура - номенклатура IUPAC (ИЮПАК) - International Union of Pure and Applied Chemistry (Международного союза теоретической и прикладной химии).

Тривиальная (историческая) номенклатура - первая номенклатура, возникшая в начале развития органической химии, когда не существовало классификации и теории строения органических соединений. Органическим соединениям давали случайные названия по источнику получения (щавелевая кислота, яблочная кислота, ванилин), цвету или запаху (ароматические соединения), реже - по химическим свойствам (парафины). Многие такие названия часто применяются до сих пор. Например: мочевина, толуол, ксилол, индиго, уксусная кислота, масляная кислота, валериановая кислота, гликоль, аланин и многие другие.

Рациональная номенклатура - по этой номенклатуре за основу наименования органического соединения обычно принимают название наиболее простого (чаще всего первого) члена данного гомологического ряда. Все остальные соединения рассматриваются как производные этого соединения, образованные замещением в нем атомов водорода углеводородными или иными радикалами (например: триметилуксусный альдегид, метиламин, хлоруксусная кислота, метиловый спирт). В настоящее время такая номенклатура применяется только в тех случаях, когда она дает особенно наглядное представление о соединении.

Систематическая номенклатура - номенклатура IUPAC - международная единая химическая номенклатура. Систематическая номенклатура основывается на современной теории строения и классификации органических соединений и пытается решить главную проблему номенклатуры: название каждого органического соединения должно содержать правильные названия функций (заместителей) и основного скелета углеводорода и должно быть таким, чтобы по названию можно было написать единственно правильную структурную формулу.

Процесс создания международной номенклатуры был начат в 1892 г. (Женевская номенклатура ), продолжен в 1930 г. (Льежская номенклатура ), с 1947 г. дальнейшее развитие связано с деятельностью комиссии ИЮПАК по номенклатуре органических соединений. Публиковавшиеся в разные годы правила ИЮПАК собраны в 1979 г. в “голубой книге ” . Своей задачей комиссия ИЮПАК считает не создание новой, единой системы номенклатуры, а упорядочение, “кодификацию”, имеющейся практики. Результатом этого является сосуществование в правилах ИЮПАК нескольких номенклатурных систем, а, следовательно, и нескольких допустимых названий для одного и того же вещества. Правила ИЮПАК опираются на следующие системы: заместительную, радикало-функциональную, аддитивную (соединительную), заменительную номенклатуру и т.д.

В заместительной номенклатуре основой названия служит один углеводородный фрагмент, а другие рассматриваются как заместители водорода (например, (C 6 H 5) 3 CH – трифенилметан).

В радикало-функциональной номенклатуре в основе названия лежит название характеристической функциональной группы, определяющей химический класс соединения, к которому присоединяют наименование органического радикала, например:

C 2 H 5 OH - этиловый спирт ;

C 2 H 5 Cl - этилхлорид ;

CH 3 –O–C 2 H 5 - метилэтиловый эфир ;

CH 3 –CO–CH = CH 2 - метилвинилкетон .

В соединительной номенклатуре название составляют из нескольких равноправных частей (например, C 6 H 5 –C 6 H 5 бифенил) или добавляя обозначения присоединенных атомов к названию основной структуры (например, 1,2,3,4-тетрагидронафталин, гидрокоричная кислота, этиленоксид, стиролдихлорид).

Заменительную номенклатуру применяют при наличии неуглеродных атомов (гетероатомов) в молекулярной цепи: корни латинских названий этих атомов с окончанием “а” (а-номенклатура) присоединяют к названиям всей структуры, которая получилась бы, если бы вместо гетероатомов был углерод (например, CH 3 –O–CH 2 –CH 2 –NH–CH 2 –CH 2 –S–CH 3 2-окса-8-тиа-5-азанонан).

Система ИЮПАК является общепризнанной в мире, и лишь адаптируется соответственно грамматике языка страны. Полный набор правил применения системы ИЮПАК ко многим менее обычным типам молекул длинен и сложен. Здесь представлено лишь основное содержание системы, но это позволяет осуществлять наименование соединений, для которых применяется система.

1. ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ

1.1. Насыщнные неразветвленные соединения

Названия первых четырех предельных углеводородов тривиальные (исторические названия) - метан, этан, пропан, бутан. Начиная с пятого, названия образованы греческими числительными, соответствующими количеству атомов углерода в молекуле, с добавлением суффикса "–АН ", за исключением числа "девять", когда корнем служит латинское числительное "нона".

Таблица 1. Названия предельных углеводородов

НАЗВАНИЕ

НАЗВАНИЕ

1.1.1. Одновалентные радикалы

Одновалентные радикалы, образованные из насыщенных неразветвленных предельных углеводородов отнятием водорода от конечного углеродного атома, называют заменяя суффикс"–АН " в названии углеводорода суффиксом "–ИЛ ".

Атом углерода со свободной валентностью получает номер? Эти радикалы называют нормальными или неразветвленными алкилами :

СН 3 – - метил;

СН 3 –СН 2 –СН 2 –СН 2 – - бутил;

СН 3 –СН 2 –СН 2 –СН 2 –СН 2 –СН 2 – - гексил.

Таблица 2. Названия углеводородных радикалов

1.2. Насыщенные разветвленные соединения с одним заместителем

Номенклатура ИЮПАК для алканов в индивидуальных названиях сохраняет принцип Женевской номенклатуры. Называя алкан, исходят из названия углеводорода, отвечающего самой длиной углеродной цепи в данном соединении (главная цепь), а затем указывают радикалы, примыкающие к этой основной цепи.

Главная углеродная цепь, во-первых, должна быть самой длинной, во-вторых, если имеются две или более одинаковые по длине цепи, то из них выбирается наиболее разветвленная.

*Для названия насыщенных разветвленных соединений выбирают самую длинную цепочку из атомов углерода:

* Нумеруют выбранную цепь от одного конца до другого арабскими цифрами, причем, нумерацию начинают с того конца, к которому ближе находится заместитель:

*Указывают положение заместителя (номер атома углерода, у которого находиться алкильный радикал):

*Называют алкильный радикал в соответствии с его положением в цепи:

*Называют основную (самую длинную углеродную цепь):

Если заместителем будет являться галоген (фтор, хлор, бром, йод), то все номенклатурные правила сохраняются:

Тривиальные названия сохраняются только для следующих углеводородов:

Если в углеводородной цепи находятся, несколько одинаковых заместителей, то перед их названием ставится приставка “ди”, “три”, “тетра”, “пента”, “гекса” и т.д., обозначающая число присутствующих групп:

1.3. Насыщенные разветвлнные соединения с несколькими заместителями

При наличии двух и более разных боковых цепей, их можно перечислять: а) в алфавитном порядке или б) в порядке возрастания сложности.

а) При перечислении разных боковых цепей в алфавитном порядке умножающие префиксы не учитываются. Сперва названия атомов и групп располагают в алфавитном порядке, а затем вставляют умножающие префиксы и цифры местоположения (локанты):

2-метил-5-пропил-3,4-диэтилоктан

б) При перечислении боковых цепей в порядке возрастания сложности исходят из следующих принципов:

Менее сложной является цепь, у которой общее число углеродных атомов меньше, например:

менее сложна, чем

Если общее число атомов углерода в разветвленном радикале одинаково, то менее сложной будет боковая цепь с наиболее длинной основной цепочкой радикала, например:

менее сложна, чем

Если две или более боковые цепи находятся в равнозначном положении, то более низкий номер получает та цепь, которая в названии перечисляется первой, независимо от того, соблюдается ли порядок возрастающей сложности или алфавитный:

а) алфавитный порядок:

б) порядок расположения по сложности:

Если в углеводородной цепи находятся несколько углеводородных радикалов и они различны по сложности, а при нумерации получаются различающиеся ряды нескольких цифр, их сравнивают, расположив цифры в рядах в порядке возрастания. “Наименьшими” считают цифры того ряда, в котором первая отличающаяся цифра меньше (например: 2, 3, 5 меньше, чем 2, 4, 5 или 2, 7, 8 меньше, чем 3, 4, 9). Этот принцип соблюдается независимо от природы заместителей.

В некоторых справочниках для определения выбора нумерации используют сумму цифр, нумерацию начинают с той стороны, где сумма цифр, обозначающих положение заместителей, наименьшая:

2, 3 , 5, 6, 7, 9 - ряд цифр наименьший

2, 4 , 5, 6, 8, 9

2+3+5+6+7+9 = 32 - сумма номеров заместителей наименьшая

2+4+5+6+8+9 = 34

следовательно, углеводородную цепь нумеруют слева направо, тогда название углеводорода будет:

(2, 6, 9–триметил–5,7–дипропил–3,6–диэтилдекан)

(2,2,4–триметилпентан, но не 2,4,4–триметилпентан)

Если в углеводородной цепи находится, несколько различных заместителей (например, углеводородные радикалы и галогены), то перечисление заместителей производится либо в алфавитном порядке, либо в порядке возрастания сложности (фтор, хлор, бром, йод):

а) алфавитный порядок 3–бром–1–иод –2–метил –5–хлорпентан;

б) порядок возрастания сложности: 5–хлор–3–бром–1–иод–2–метилпентан.

Литература

  1. Номенклатурные правила ИЮПАК по химии. М., 1979, т.2, полутома 1,2
  2. Справочник химика. Л., 1968
  3. Бенкс Дж. Названия органических соединений. М., 1980

Все вещества, которые содержат углеродный атом, помимо карбонатов, карбидов, цианидов, тиоционатов и угольной кислоты, представляют собой органические соединения. Это значит, что они способны создаваться живыми организмами из атомов углерода посредством ферментативных или прочих реакций. На сегодняшний день многие органические вещества можно синтезировать искусственно, что позволяет развивать медицину и фармакологию, а также создавать высокопрочные полимерные и композитные материалы.

Классификация органических соединений

Органические соединения являются самым многочисленным классом веществ. Здесь присутствует порядка 20 видов веществ. Они различны по химическим свойствам, отличаются физическими качествами. Их температура плавления, масса, летучесть и растворимость, а также агрегатное состояние при нормальных условиях также различны. Среди них:

  • углеводороды (алканы, алкины, алкены, алкадиены, циклоалканы, ароматические углеводороды);
  • альдегиды;
  • кетоны;
  • спирты (двухатомные, одноатомные, многоатомные);
  • простые эфиры;
  • сложные эфиры;
  • карбоновые кислоты;
  • амины;
  • аминокислоты;
  • углеводы;
  • жиры;
  • белки;
  • биополимеры и синтетические полимеры.

Данная классификация отражает особенности химического строения и наличие специфических атомных групп, определяющих разность свойств того или иного вещества. В общем виде классификация, в основе которой лежит конфигурация углеродного скелета, не учитывающая особенностей химических взаимодействий, выглядит по-другому. Соответственно ее положениям, органические соединения делятся на:

  • алифатические соединения;
  • ароматические вещества;
  • гетероциклические вещества.

Данные классы органических соединений могут иметь изомеры в разных группах веществ. Свойства изомеров различны, хотя их атомный состав может быть одинаковым. Это вытекает из положений, заложенных А. М. Бутлеровым. Также теория строения органических соединений является руководящей основой при проведении всех исследований в органической химии. Ее ставят на один уровень с менделеевским Периодическим законом.

Само понятие о химическом строении ввел А. М. Бутлеров. В истории химии оно появилось 19 сентября 1861 года. Ранее в науке существовали различные мнения, а часть ученых вовсе отрицало наличие молекул и атомов. Потому в органической и неорганической химии не было никакого порядка. Более того, не существовало закономерностей, по которым можно было судить о свойствах конкретных веществ. При этом были и соединения, которые при одинаковом составе проявляли разные свойства.

Утверждения А. М. Бутлерова во многом направили развитие химии в нужное русло и создали для нее прочнейший фундамент. Посредством нее удалось систематизировать накопленные факты, а именно, химические или же физические свойства некоторых веществ, закономерности вступления их в реакции и прочее. Даже предсказание путей получения соединений и наличие некоторых общих свойств стало возможным благодаря данной теории. А главное, А. М. Бутлеров показал, что структуру молекулы вещества можно объяснить с точки зрения электрических взаимодействий.

Логика теории строения органических веществ

Поскольку до 1861 года в химии многие отвергали существование атома или же молекулы, то теория органических соединений стала революционным предложением для ученого мира. И поскольку сам Бутлеров А. М. исходит лишь из материалистических умозаключений, то ему удалось опровергнуть философские представления об органике.

Ему удалось показать, что молекулярное строение можно распознать опытным путем посредством химических реакций. К примеру, состав любого углевода можно выяснить посредством сжигания его определенного количества и подсчета образовавшейся воды и углекислого газа. Количество азота в молекуле амина подсчитывается также при сжигании путем измерения объема газов и выделения химического количества молекулярного азота.

Если рассматривать суждения Бутлерова о химическом строении, зависящем от структуры, в обратном направлении, то напрашивается новый вывод. А именно: зная химическое строение и состав вещества, можно эмпирически предположить его свойства. Но самое главное - Бутлеров объяснил, что в органике встречается огромное количество веществ, проявляющих разные свойства, но имеющие одинаковый состав.

Общие положения теории

Рассматривая и исследуя органические соединения, Бутлеров А. М. вывел некоторые важнейшие закономерности. Он объединил их в положения теории, объясняющей строение химических веществ органического происхождения. Положения теории таковы:

  • в молекулах органических веществ атомы соединены между собой в строго определенной последовательности, которая зависит от валентности;
  • химическое строение - это непосредственный порядок, согласно которому соединены атомы в органических молекулах;
  • химическое строение обуславливает наличие свойств органического соединения;
  • в зависимости от строения молекул с одинаковым количественным составом возможно появление различных свойств вещества;
  • все атомные группы, участвующие в образовании химического соединения, имеют взаимное влияние друг на друга.

Все классы органических соединений построены согласно принципам данной теории. Заложив основы, Бутлеров А. М. смог расширить химию как область науки. Он пояснил, что благодаря тому, что в органических веществах углерод проявляет валентность равную четырем, обуславливается многообразие данные соединений. Наличие множества активных атомных групп определяет принадлежность вещества к определенному классу. И именно за счет наличия специфических атомных групп (радикалов) появляются физические и химические свойства.

Углеводороды и их производные

Данные органические соединения углерода и водорода являются самыми простыми по составу среди всех веществ группы. Они представлены подклассом алканов и циклоалканов (насыщенных углеводородов), алкенов, алкадиенов и алкатриенов, алкинов (непредельных углеводородов), а также подклассом ароматических веществ. В алканах все атомы углерода соединены только одинарной С-С связью, из-за чего в состав углеводорода уже не может быть встроен ни один атом Н.

В непредельных углеводородах водород может встраиваться по месту наличия двойной С=С связи. Также С-С связь может быть тройной (алкины). Это позволяет данным веществам вступать во множество реакций, связанных с восстановлением или присоединением радикалов. Все остальные вещества для удобства изучения их способности вступать в реакции рассматриваются как производные одного из классов углеводородов.

Спирты

Спиртами называются более сложные, чем углеводороды органические химические соединения. Они синтезируются в результате протекания ферментативных реакций в живых клетках. Самым типичным примером является синтез этанола из глюкозы в результате брожения.

В промышленности спирты получают из галогеновых производных углеводородов. В результате замещения галогенового атома на гидроксильную группу и образуются спирты. Одноатомные спирты содержат лишь одну гидроксильную групп, многоатомные - две и более. Примером двухатомного спирта является этиленгликоль. Многоатомный спирт - это глицерин. Общая формула спиртов R-OH (R - углеродная цепь).

Альдегиды и кетоны

После того как спирты вступают в реакции органических соединений, связанные с отщеплением водорода от спиртовой (гидроксильной) группы, замыкается двойная связь между кислородом и углеродом. Если данная реакция проходит по спиртовой группе, расположенной у концевого углеродного атома, то в результате ее образуется альдегид. Если углеродный атом со спиртовой расположен не на конце углеродной цепи, то результатом реакции дегидратации является получение кетона. Общая формула кетонов - R-CO-R, альдегидов R-COH (R - углеводородный радикал цепи).

Эфиры (простые и сложные)

Химическое строение органических соединений данного класса усложненное. Простые эфиры рассматриваются как продукты реакции между двумя молекулами спиртов. При отщеплении воды от них образуется соединение образца R-O-R. Механизм реакции: отщепление протона водорода от одного спирта и гидроксильной группы от другого спирта.

Сложные эфиры - продукты реакции между спиртом и органической карбоновой кислотой. Механизм реакции: отщепление воды от спиртовой и карбоновой группы обеих молекул. Водород отщепляется от кислоты (по гидроксильной группе), а сама ОН-группа отделяется от спирта. Полученное соединение изображается как R-CO-O-R, где буковой R обозначены радикалы - остальные участки углеродной цепи.

Карбоновые кислоты и амины

Карбоновыми кислотами называются особенные вещества, играющие важную роль в функционировании клетки. Химическое строение органических соединений такое: углеводородный радикал (R) с присоединенной к нему карбоксильной группой (-СООН). Карбоксильная группа может располагаться только у крайнего атома углерода, потому как валентность С в группе (-СООН) равна 4.

Амины - это более простые соединения, которые являются производными углеводородов. Здесь у любого атома углерода располагается аминный радикал (-NH2). Существуют первичные амины, у которых группа (-NH2) присоединяется к одному углероду (общая формула R-NH2). У вторичных аминов азот соединяется с двумя углеродными атомами (формула R-NH-R). У третичных аминов азот соединен с тремя углеродными атомами (R3N), где р - радикал, углеродная цепь.

Аминокислоты

Аминокислоты - комплексные соединения, которые проявляют свойства и аминов, и кислот органического происхождения. Существует несколько их видов в зависимости от расположения аминной группы по отношению к карбоксильной. Наиболее важны альфа-аминокислоты. Здесь аминная группа расположена у атома углерода, к которому присоединена карбоксильная. Это позволяет создавать пептидную связь и синтезировать белки.

Углеводы и жиры

Углеводы являются альдегидоспиртами или кетоспиртами. Это соединения с линейной или циклической структурой, а также полимеры (крахмал, целлюлоза и прочие). Их важнейшая роль в клетке - структурная и энергетическая. Жиры, а точнее липиды, выполняют те же функции, только участвуют в других биохимических процессах. С точки зрения химического строения жир является сложным эфиром органических кислот и глицерина.

При переходе от неорганической к органической химии можно проследить, как отличается классификация органических и неорганических веществ. Мир органических соединений обладает разнообразием и многочисленностью их вариантов. Классификация органических веществ не только помогает разобраться в этом изобилии, но и подводит чёткую научную базу под их изучение.

В качестве основы для распределения по классам избрана теория химического строения. Основу изучения органики составляет работа с самым многочисленным классом, который принято называть основным для органических веществ - углеводородами. Прочие представители мира органики рассматриваются как их производные. Действительно, при изучении их структуры не трудно заметить, что синтезирование этих веществ происходит путём замены (замещения) в структуре углеводорода одного, а иногда и нескольких водородных звеньев на атомы других химических элементов, а иногда и на целые ветки-радикалы.

Классификация органических веществ взяла за основу углеводороды ещё и по причине простоты их состава, да и углеводородная составляющая является наиболее весомой частью большинства известных органических соединений. На сегодняшний день из всех известных относящихся к миру органики, соединения, построенные на основе имеют значительное преобладание. Все остальные вещества либо находятся в меньшинстве, позволяя отнести их в разряд исключения из общего правила, либо настолько неустойчивы, что их получение затруднительно даже в наше время.

Классификация органических веществ путём разделения на отдельные группы и классы позволяет выделить два крупных органических класса ациклических и циклических соединений. Само их название позволяет сделать вывод о типе построения молекулы. В первом случае это цепочка из углеводородных звеньев, а во втором - молекула представляет собой кольцо.

Ациклические соединения могут иметь разветвления, а могут составлять простую цепочку. Среди названий этих веществ можно встретить выражение "жирные или алифатические углеводороды". Они могут быть предельными (этан, изобутан, или непредельными (этилен, ацетилен, изопрен), в зависимости от типа связи некоторых углеродных звеньев.

Классификация органических веществ, относящихся к циклическим соединениям, подразумевает дальнейшее разделение их на группу карбоциклических и группу гетероциклических углеводородов.

Карбоциклические «кольца» составлены лишь атомами углерода. Они могут быть алициклическими (насыщенными и ненасыщенными), а также являться ароматическими карбоциклическими соединениями. В алициклических соединениях просто происходит соединение двух концов углеродной цепочки, а вот ароматические в своей структуре имеют так называемое бензольное кольцо, которое оказывает существенное влияние на их свойства.

В гетероциклических веществах можно встретить атомы других веществ, наиболее часто эту функцию выполняет азот.

Следующим составляющим элементом, влияющим на свойства органических веществ, является наличие функциональной группы.

Для галогенопроизводных углеводородов в качестве функциональной группы может выступить один, а то и несколько атомов галогенов. Спирты получают свои свойства благодаря наличию гидроксогрупп. Для альдегидов характерной особенностью является наличие альдегидных групп, для кетонов - карбонильных групп. Карбоновые кислоты отличаются тем, что в их состав входят карбоксильные группы, а амины обладают аминогруппой. Для нитросоединений характерно наличие нитрогруппы.

Многообразие видов углеводородов, а также их свойств, основано на самом различном типе комбинирования. К примеру, состав одной молекулы может включать две и более одинаковых, а иногда и различных функциональных группы, определяя специфические свойства этого вещества глицерин).

Большую наглядность даст для рассмотрения вопроса (классификация органических веществ) таблица, которую легко можно составить на основе информации, изложенной в тексте данной статьи.