Проделаем несколько опытов.

Опыт 1. Поместим деревянный брусок на деревянный стол. Прикрепим к бруску динамометр и начнем прикладывать усилие к динамометру. Указатель динамометра покажет, что на брусок будет действовать сила , которая возрастает с ростом наших усилий. Брусок, несмотря на возрастание силы , некоторое время остается в покое. Покой же возможен в том случае, когда действие сил на тело компенсируется. Следовательно, можно предположить, что между бруском и столом возникает какая-то сила, противоположно направленная силе , действующей со стороны динамометра. Эту силу назвали силой трения покоя (рис.4.35).

Ее обозначают буквой . Опыт показывает, что с ростом силы будет расти и сила трения покоя .

Продолжим наши эксперименты.

Опыт 2. Будем увеличивать силу , действующую со стороны динамометра. В некоторый момент времени брусок все-таки сдвинется с места, и будет продолжать двигаться под действием некоторой постоянной силы равномерно и прямолинейно. Равномерность движения бруска означает, что на наш брусок действует сила, препятствующая его движению. Она равна по модулю силе и направлена противоположно ей. (рис.4.36).

Эту силу стали называть силой трения скольжения и обозначают буквой .

Опыт 3. Повторим данный опыт, поместив деревянный брусок на стеклянный стол. Мы обнаружим, что результаты опыта не изменятся. Изменится только численное значение сил , и . А это означает, что силы трения возникают на любых соприкасающихся поверхностях. Такой вид трения называется сухим трением.

Изучением сил сухого трения занимались французские физики Шарль Огюстен Кулон и Гильом Амонтон. Экспериментально они установили следующие законы сухого трения:

1. Максимальная сила трения покоя равна силе трения скольжения

2. Сила трения скольжения прямо пропорциональна силе нормального давления, т.е.

где m - коэффициент пропорциональности, который определяется, родом материала, соприкасающихся поверхностей, качеством их обработки и т.д. Этот коэффициент пропорциональности называется коэффициентом трения скольжения.

3. Сила сухого трения не зависит от площади соприкасающихся поверхностей.

Формула (1) называется законом Кулона - Амонтона.

Опыт 4 . Поместим на горизонтальный стол брусок и деревянный цилиндр одинаковой массы и приведем их в движении в одном направлении с одинаковой скоростью (рис. 4.37).

Эксперимент покажет, что цилиндр отъедет на гораздо большее расстояние, чем брусок. Это означает, что сила трения, действующая на цилиндр гораздо меньше, чем силы трения скольжения бруска. Необходимо обратить внимание на то, что в процессе движения брусок соприкасается с поверхностью стола только одной своей поверхностью, а цилиндр катится по ней. Сила трения, возникающая тогда, когда тело катится по какой-либо поверхности, называется трением качения. Величина этой силы находится по формуле

В этой формуле k - коэффициентом трения качения.

Необходимо отметить, что физический смысл коэффициента трения скольжения и коэффициента трения качения совершенно разный. Поэтому их нельзя сравнивать.

Проведя эти опыты, мы с вами выяснили, что существует три вида сухого трения: трение покоя, трение скольжения, трение качения.

Оказалось, что в природе существует и жидкое трение, которое возникает между соприкасающимися слоями жидкости и газа. Сила сопротивления, возникающая при движении твердых тел в жидкостях и газах, так же является силой жидкого трения. Жидкое трение изучал И. Ньютон. Жидкое трение гораздо меньше сухого трения. Законы жидкого трения, установленные Ньютоном, достаточно сложны и вы их узнаете при дальнейшем изучении физики.

Попытаемся разобраться в причине возникновения сил сухого трения. Поверхности соприкасающихся тел имеют шероховатости, чаще всего невидимые невооруженным глазом (рис.4.38).

Шероховатости поверхности одного тела приходят в зацепление с шероховатостями поверхности соприкасающегося с ним тела, и при этом возникает деформация, появляется упругая сила, препятствующая относительному движению соприкасающихся тел. Это и есть сила сухого трения, которая, как и сила упругости, имеет электромагнитную природу.

Попробуем теперь объяснить законы сухого трения, установленные Кулоном и Амонтоном. Так, если тело лежит на горизонтальном столе, то шероховатости обоих поверхностей не деформированы вдоль этой поверхности. Следовательно, сила трения между ними равна нулю. Как только мы подействуем на тело динамометром вдоль стола, то возникнут деформации шероховатостей и появится сила трения, равная показаниям динамометра и противоположно направленная. Если при этом тело остается в покое, то эта сила и будет силой трения покоя. С ростом силы натяжения будет увеличиваться и сила трения покоя, т.к. возрастает деформация шероховатостей. Но, рано или поздно, произойдет срыв между зацеплениями шероховатостей, и тело придет в движение. В момент начала движения сила трения покоя достигает своего максимального значения и в дальнейшем она практически не изменяется. Сила трения, действующая в процессе движения, называется силой трения скольжения. Следовательно, максимальная сила трения покоя равна силе трения скольжения.

Очевидно и другое: если тело прижимать к поверхности все с большей силой (рис.4.38), то зацепление между шероховатостями соприкасающихся поверхностей увеличится, что приведет к увеличению силы трения. Это легко доказать опытным путем: при увеличении силы давления на тело, показания динамометра будут возрастать. Это доказывает закон Кулона – Амонтона.

Рис.4.39а и б

Если помещать деревянный брусок на стол разными его гранями, имеющие разные площади, и каждый раз двигать его равномерно и прямолинейно с помощью динамометра (рис.4.40), то можно обнаружить, что сила трения остается неизменной, т.е. сила трения не зависит от площади соприкасающихся поверхностей. Это подтверждает третий закон сухого трения.

Понятно и то, что если отшлифовать соприкасающиеся поверхности, то сила трения уменьшится. Происходит это из-за того, что размеры шероховатостей уменьшаются.

Оказывается, что если поверхности будут отшлифованы так, что их шероховатости (бугорки, впадины) станут соизмеримыми с размерами атомов, то сила трения резко возрастет. Это происходит потому, что с уменьшением расстояния между атомами электромагнитные силы их взаимодействия возрастают.

Необходимо отметить, что в том случае, когда тело движется по горизонтальной поверхности под действием силы, направленной вдоль этой поверхности, то в роли силы нормального давления будет выступать сила тяжести mg . В этом случае сила трения скольжения будет равна:

Трение, как и любое физическое явление, может быть и вредным и полезным. В том случае, когда трение вредно, его стараются уменьшить. Для этого используют смазку, заменяя сухое трение жидким, применяют магнитную или воздушную подушку, применяют шариковые, роликовые подшипники или колеса, заменяя трение скольжения трением качения.

Когда же трение полезно, то его стараются увеличить. В гололед посыпают тротуары и дороги песком, применяют шипы на обуви или автошинах, или подбирают соприкасающиеся материалы с большим коэффициентом трения, например, материалы из резины.

Трудно представить себе, что происходило бы на Земле, если бы исчезли силы сухого трения.

Вопросы для самоконтроля:

1. Какая сила называется силой трения?

2. Как возникает сила трения?

3. Какова природа силы трения?

4. В чем состоит различие между силой трения покоя и силой трения скольжения?

5. Какое трение называется сухим?

6. Каковы итоги исследования сухого трения Кулоном и Амонтоном?

7. Когда возникает сила трения качения?

8. От каких факторов зависит коэффициент трения скольжения?

9. Как изменится сила трения, если увеличить а)площадь соприкосновения двух тел; б)нагревать тела; в) отшлифовать соприкасающиеся поверхности?

10. Приведите примеры вредного и полезного проявления сил трения.

11. Какое трение называется жидким и как оно возникает?

12. Для чего смазывают трущиеся детали, например, солидолом?

13. Напишите реферат об исследованиях сухого трения, которые провели французские физики Ш.О. Кулон и Г. Амонтон.

Большинство людей, вспоминая свои школьные годы, уверены, что физика - это весьма скучный предмет. Курс включает множество задач и формул, которые никому в последующей жизни не пригодятся. С одной стороны, эти утверждения правдивы, но, как и любой предмет, физика имеет и другую сторону медали. Только ее не каждый открывает для себя.

Очень многое зависит от учителя

Возможно, в этом виновата наша система образования, а может быть, все дело в учителе, который думает только о том, что нужно отчитать утвержденный свыше материал, и не стремится заинтересовать своих учеников. Чаще всего виноват именно он. Однако если детям повезет, и урок у них будет вести преподаватель, который сам любит свой предмет, то он сможет не только заинтересовать учеников, но и поможет им открыть для себя что-то новое. Что в результате приведет к тому, что дети начнут с удовольствием посещать такие занятия. Конечно, формулы являются неотъемлемой частью этого учебного предмета, от этого никуда не деться. Но есть и положительные моменты. Особый интерес у школьников вызывают опыты. Вот об этом мы и поговорим более детально. Мы рассмотрим некоторые занимательные опыты по физике, которые вы сможете провести вместе со своим ребенком. Это должно быть интересно не только ему, но и вам. Вполне вероятно, что при помощи таких занятий вы привьете своему чаду неподдельный интерес к учебе, а любимым предметом для него станет "скучная" физика. проводить совсем несложно, для этого потребуется совсем немного атрибутов, главное, чтобы было желание. И, возможно, тогда вы сможете заменить своему ребенку школьного учителя.

Рассмотрим некоторые интересные опыты по физике для маленьких, ведь начинать нужно с малого.

Бумажная рыбка

Чтобы провести данный эксперимент, нам необходимо вырезать из плотной бумаги (можно картона) маленькую рыбку, длина которой должна составить 30-50 мм. Делаем в середине круглое отверстие диаметром примерно 10-15 мм. Далее со стороны хвоста прорезаем узкий канал (ширина 3-4 мм) до круглого отверстия. После чего наливаем воду в таз и аккуратно помещаем туда нашу рыбку таким образом, чтобы одна плоскость лежала на воде, а вторая - оставалась сухой. Теперь необходимо в круглое отверстие капнуть масла (можно воспользоваться масленкой от швейной машинки или велосипеда). Масло, стремясь разлиться по поверхности воды, потечет по прорезанному каналу, а рыбка под действием вытекающего назад масла поплывет вперед.

Слон и Моська

Продолжим проводить занимательные опыты по физике со своим ребенком. Предлагаем вам познакомить малыша с понятием рычага и с тем, как он помогает облегчать работу человека. Например, расскажите, что при помощи него легко можно приподнять тяжелый шкаф или диван. А для наглядности показать элементарный опыт по физике с применением рычага. Для этого нам понадобятся линейка, карандаш и пара маленьких игрушек, но обязательно разного веса (вот почему мы и назвали этот опыт «Слон и Моська»). Крепим нашего Слона и Моську на разные концы линейки при помощи пластилина, или обычной нитки (просто привязываем игрушки). Теперь, если положить линейку средней частью на карандаш, то перетянет, конечно же, слон, ведь он тяжелее. А вот если сместить карандаш в сторону слона, то Моська запросто перевесит его. Вот в этом и заключается принцип рычага. Линейка (рычаг) опирается на карандаш - это место является точкой опоры. Далее ребенку следует рассказать, что этот принцип используется повсеместно, он заложен в основу работы крана, качелей и даже ножниц.

Домашний опыт по физике с инерцией

Нам понадобятся банка с водой и хозяйственная сетка. Ни для кого не будет секретом, что если открытую банку перевернуть, то вода выльется из нее. Давайте попробуем? Конечно, для этого лучше выйти на улицу. Ставим банку в сетку и начинаем плавно раскачивать ее, постепенно наращивая амплитуду, и в результате делаем полный оборот - один, второй, третий и так далее. Вода не выливается. Интересно? А теперь заставим воду выливаться вверх. Для этого возьмем жестяную банку и сделаем в донышке отверстие. Ставим в сетку, наполняем водой и начинаем вращать. Из отверстия бьет струя. Когда банка в нижнем положении, это не удивляет никого, а вот когда она взлетает вверх, то и фонтан продолжает бить в том же направлении, а из горловины - ни капли. Вот так-то. Все это может объяснить принцип инерции. При вращении банка стремится улететь прямо, а сетка не пускает ее и заставляет описывать окружности. Вода также стремится лететь по инерции, а в том случае, когда мы в донышке сделали отверстие, ей уже ничего не мешает вырваться и двигаться прямолинейно.

Коробок с сюрпризом

Теперь рассмотрим опыты по физике со смещением Нужно положить спичечный коробок на край стола и медленно двигать его. В тот момент, когда он пройдет свою среднюю отметку, произойдет падение. То есть масса выдвинутой за край столешницы части превысит вес оставшейся, и коробок опрокинется. Теперь сместим центр массы, например, положим внутрь (как можно ближе к краю) металлическую гайку. Осталось поместить коробок таким образом, чтобы малая ее часть оставалась на столе, а большая висела в воздухе. Падения не произойдет. Суть этого эксперимента заключатся в том, что вся масса находится выше точки опоры. Этот принцип также используется повсюду. Именно благодаря ему в устойчивом положении находятся мебель, памятники, транспорт, и многое другое. Кстати, детская игрушка Ванька-встанька тоже построена на принципе смещения центра массы.

Итак, продолжим рассматривать интересные опыты по физике, но перейдем к следующему этапу - для школьников шестых классов.

Водяная карусель

Нам потребуются пустая консервная банка, молоток, гвоздь, веревка. Пробиваем при помощи гвоздя и молотка в боковой стенке у самого дна отверстие. Далее, не вытягивая гвоздь из дырки, отгибаем его в сторону. Необходимо, чтобы отверстие получилось косое. Повторяем процедуру со второй стороны банки - сделать нужно так, чтобы дырки получились друг напротив друга, однако гвозди были загнуты в разные стороны. В верхней части сосуда пробиваем еще два отверстия, в них продеваем концы каната или толстой нити. Подвешиваем емкость и наполняем ее водой. Из нижних отверстий начнут бить два косых фонтана, а банка начнет вращаться в противоположную сторону. На этом принципе работаю космические ракеты - пламя из сопел двигателя бьет в одну сторону, а ракета летит в другую.

Опыты по физике - 7 класс

Проведем эксперимент с плотностью масс и узнаем, как можно заставить яйцо плавать. Опыты по физике с различными плотностями лучше всего проводить на примере пресной и соленой воды. Возьмем банку, заполненную горячей водой. Опустим в нее яйцо, и оно сразу утонет. Далее насыпаем в воду поваренную соль и размешиваем. Яйцо начинает всплывать, причем, чем больше соли, тем выше оно поднимется. Это объясняется тем, что соленая вода имеет более высокую плотность, чем пресная. Так, всем известно, что в Мертвом море (его вода самая соленая) практически невозможно утонуть. Как видите, опыты по физике могут существенно увеличить кругозор вашего ребенка.

и пластиковая бутылка

Школьники седьмых классов начинают изучать атмосферное давление и его воздействие на окружающие нас предметы. Чтобы раскрыть эту тему глубже, лучше провести соответствующие опыты по физике. Атмосферное давление оказывает влияние на нас, хоть и остается невидимым. Приведем пример с воздушным шаром. Каждый из нас может его надуть. Затем мы поместим его в пластиковую бутылку, края оденем на горлышко и зафиксируем. Таким образом, воздух сможет поступать только в шар, а бутылка станет герметичным сосудом. Теперь попробуем надуть шар. У нас ничего не получится, так как атмосферное давление в бутылке не позволит нам этого сделать. Когда мы дуем, шар начинает вытеснять воздух в сосуде. А так как бутылка у нас герметична, то ему деваться некуда, и он начинает сжиматься, тем самым становится гораздо плотнее воздуха в шаре. Соответственно, система выравнивается, и шар надуть невозможно. Теперь сделаем отверстие в донышке и пробуем надуть шар. В таком случае никакого сопротивления нет, вытесняемый воздух покидает бутылку - атмосферное давление выравнивается.

Заключение

Как видите, опыты по физике совсем не сложные и довольно интересные. Попробуйте заинтересовать своего ребенка - и учеба для него будет проходить совсем по-другому, он начнет с удовольствием посещать занятия, что в конце концов скажется и на его успеваемости.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Зима - любимое время многих малышей Прикамья! Ведь можно с ветерком скатиться с горки, тихо-тихо проехать по сказочному зимнему лесу и весело кататься с друзьями на коньках. Я тоже люблю зимние забавы!

Проблема: понять, что мешало мне так далеко уехать без ледянки.

Цель данного проекта : раскрытие тайны силы трения.

Задачи:

    проследить исторический опыт человечества по использованию и применению этого явления;

    выяснить природу силы трения;

    провести эксперименты, подтверждающие закономерности и зависимости силы трения;

    понять, где может встретится с силой трения ученица 2 класса;

Для достижения поставленных целей, над данным проектом мы работали по следующим направлениям:

1) Исследование общественного мнения;

2) Изучение теории;

3) Эксперимент;

4) Конструирование.

Гипотеза: сила трения необходима в жизни людей.

Научный интерес заключается в том, что в процессе изучения данного вопроса получены некоторые сведения о практическом применении явления трения.

1 . Что такое трение (немного теории)

Цели: изучить природу сил трения.

Сила трения

Почему со снежной горки лучше ехать на ледянке? Как разгоняется автомобиль, и какая сила замедляет его при торможении? Как удерживаются растения в почве? Почему живую рыбу трудно в руке удержать? Чем объяснить опасность гололедицы в зимний период? Оказывается, все эти вопросы про одно и то же!

Ответы на эти и многие другие вопросы, связанные с движением тел, дают законы трения. Из приведенных вопросов следует, что трение является и вредным и полезным явлением.

Любое тело, двигаясь по поверхности, зацепляется за его неровности и испытывает сопротивление. Это сопротивление называется силой трения . Трение определяется свойствами поверхности твердых тел, а они очень сложны и до конца еще не исследованы.

Если мы попытаемся сдвинуть с места шкаф, то сразу убе-димся, что не так-то просто это сделать. Его движению будет мешать взаимодействие ножек с полом, на котором он стоит. Что определяет величину силы трения? Повседневный опыт свидетельствует: чем сильнее прижать поверхности тел друг к другу, тем труднее вызвать их взаимное скольжение и поддерживать его. Мы постараемся доказать это на опыте.

1.1.Роль сил трения

Давайте представим себе, что однажды на Земле произошло нечто странное! Обратимся к мысленному эксперименту, вообразим, что в мире какому-то волшебнику удалось выключить трение . К чему это привело бы?

Во-первых, мы не смогли бы ходить, колеса машин без толку крутились бы на месте, бельевые прищепки ничего не смогли бы удержать…

Во-вторых, исчезли бы причины, порождающие трение. Во время скольжения одного предмета по другому происходит словно бы зацепление микроскопических бугорков друг за друга. Но если бы этих бугорков не было, то это не значило бы, что сдвин7уть предмет или тащить его стало бы легче. Возник бы так называемый эффект ПРИЛИПАНИЯ, который легко обнаружить, пытаясь, сдвинуть стопку книг в глянцевой обложке вдоль поверхности полированного стола.

Значит, не будь трения, не было бы этих крошечных попыток каждой частички вещества удержать около себя соседок. Но тогда как вообще эти частички держались бы вместе? То есть, внутри различных тел исчезло бы стремление «жить компанией», и вещество развалилось бы до мельчайших деталек, как домик из ЛЕГО.

Вот к каким неожиданным выводам можно прийти, если допустить отсутствие трения. Как и со всем, что нам мешает, с ним надо бороться, но абсолютно избавиться от него не получится, да и не надо!

В технике и в повседневной жизни силы трения играют ог-ромную роль. В одних случаях силы трения приносят пользу, в других - вред. Сила трения удерживает вбитые гвозди, винты, гайки; удерживает нитки в материи, завязанные узлы и т. д. При отсутствии трения нельзя было бы сшить одежду, собрать ста-нок, сколотить ящик.

Трение увеличивает прочность сооружений; без трения нельзя производить ни кладку стен здания, ни закрепление телеграфных столбов, ни скрепление частей машин и сооружений болтами, гвоздями, шурупами. Без трения не могли бы удерживаться растения в почве. Наличие трения покоя позволяет человеку передвигаться по поверхности Земли. Идя, человек отталкивает от себя Землю на-зад, а Земля с такой же силой толкает человека вперед. Сила, движущая человека вперед, равна силе трения покоя между по-дошвой ноги и Землей.

Чем сильнее человек толкает Землю назад, тем больше сила трения, приложенная к ноге, и тем быстрее движется че-ловек.

В гололедицу очень трудно ходить пешком и передвигаться на автомобилях, так как трение очень мало. В этих случаях посыпают тротуары песком и надевают цепи на колеса автомобилей, чтобы увеличить трение покоя.

Силой трения также пользуются для удержания тел в со-стоянии покоя или для их остановки, если они движутся. Вра-щение колес прекращается с помощью тормозов. Наиболее распространены воздушные тормоза, которые работают при помощи сжатого воздуха.

2. Конструкторская работа и выводы

Цели: создать демонстрационный эксперимент; объяснить результаты наблюдаемых явлений.

Изучив литературу, мы с папой сделали несколько опытов. Мы продумали эксперименты, и попытались объяснить их результаты.

Опыт №1

Вернемся к истории о моём катании на горке.

Как-то раз мы с папой катались с ледяной горки. Сначала я съезжала без ледянки. И мне удавалось добраться только до окончания ледяного склона. Затем я решила съехать на пластмассовой ледянке, и мой путь увеличился почти в два раза!

Сейчас, мне понятно, что сила трения в первый раз скатывания была больше, она заставила моё тело затормозить быстрее. Но еще в данном опыте имеет значение твердость тел. Мой зимний костюм гораздо мягче пластмассовой ледянки. Значит, костюм больше взаимодействует с горкой и производит большую силу трения. Жесткая ледянка меньше «сцепляется» с горкой, и трение - меньше!

Опыт №2

На кусок картона шириной в одну зубочистку, а длиной две зубочистки пластилином прикрепим зубочистку поперек картонки посередине. Затем загнем края картонки. Нарисуем на цветной бумаге паучка. Паучка нарисуем так, чтобы его тело было больше прямоугольника. К спинке паука приклеим картонку. Отрежем нитку длиной с руку. Вденем нитку в иголку и протянем ее через картонку. Натянем нитку с паучком и держим ее вертикально. Затем немного ослабим нитку. Как поведет себя паук?

Когда нитка сильно натянута, она касается зубочистки и между ними возникает ТРЕНИЕ. Трение не дает пауку соскальзывать вниз.

Опыт № 3

Этот опыт показывает, от чего зависит сила трения.

Возьмем лист бумаги. Вложим его между страницами лежащей на столе толстой книги. Попытаемся вытащить лист. Проведем опыт еще раз. Теперь вложим лист почти в самый конец книги. Попытаемся вытащить ещё раз. Опыт показывает, что проще вытащить лист из верхней части книги, чем из нижней. Значит, чем сильнее прижимаются поверхности тел друг к другу, тем больше их взаимодействие, то есть больше сила трения.

Опыт №4

При многократном разгибании и сгибании проволоки место изгиба нагревается. Это происходит за счет трения между отдельными слоями металла. Также при натирании монеты о поверхность, монета нагревается.

Опыт № 5

Этот простой опыт показывает применение силы трения.

Заточка ножей в мастерских. Когда нож затупился, его можно заострить специальным устройством. Явление основано на разглаживании зазубрин между соприкасающимися поверхностями.

Результатами этих опытов можно объяснить многие явления в природе и жизни человека. Теперь, когда мне стала известна тайна силы трения, я поняла, что она описывается и во многих сказках! Это для меня стало ещё одним открытием!

Очень хочу привести примеры сказок. В сказке «Колобок» - сила трения помогает главному герою выпутаться из сложных ситуаций («Колобок полежал, полежал, взял да и покатился - с окна на лавку, с лавки на пол, по полу к двери, прыг через порог - да в сени и покатился…»). В сказке «Курочка Ряба» - недостаток силы трения привел к неприятностям («Мышка бежала, хвостиком вильнула, яичко покатилось, упало и разбилось). В сказке «Репка» - трение репы о поверхность земли заставило всю семью сплотиться. Снежная Королева своим волшебством легко преодолевала силу трения («Сани объехали вокруг площади два раза. Кай живо привязал к ним свои санки и покатил»).

Интересно взглянуть на известные произведения иначе!

3. Исследование общественного мнения

Цели: показать, какую роль играет явление трения или его отсутствие в нашей жизни; ответить на вопрос: «Что мы знаем об этом явлении?»

Были изучены пословицы, поговорки, в которых проявляется сила трения покоя, качения, скольжения, изучали человеческий опыт в применении трения, способов борьбы с трением.

Пословицы и поговорки

Не будет снега, не будет и следа.

Тихий воз будет на горе.

Тяжело против воды плыть.

Любишь кататься, люби и саночки возить.

Терпенье и труд все перетрут.

От того и телега запела, что давно дегтя не ела.

И строчит, и валяет, и гладит, и катает. А все языком.

Врет, что шелком шьет.

Все приведенные пословицы, говорят о том, что существование силы трения люди заметили давно. Народ отражает в пословицах и поговорках усилия, которые нужно прикладывать для преодоления сил трения.

Возьмем монету и потрем ею о шершавую поверхность. Мы ощутим сопротивление - это и есть сила трения. Если тереть побыстрее, монета начнет нагреваться, напомнив нам о том, что при трении выделяется теплота - факт, известный еще человеку каменного века, ведь именно таким способом люди впервые научились добывать огонь.

Трение дает нам возможность ходить, сидеть, работать без опа-сения, что книги и тетради упадут со стола, что стол будет сколь-зить, пока не упрется в угол, а ручка выскользнет из пальцев.

Трение - не только тормоз для движения. Это еще и главная причина изнашивания технических устройств, проблема, с кото-рой человек столкнулся также на самой заре цивилизации. При раскопках одного из древнейших шумерских городов - Урука - обнаружены остатки массивных деревянных колес, которым 4,5 тыс. лет. Колеса обиты медными гвоздями с очевидной це-лью - защитить обоз от быстрого изнашивания.

И в нашу эпоху борьба с изнашиванием технических уст-ройств - важнейшая инженерная проблема, успешное решение которой позволило бы сэкономить десятки миллионов тонн ста-ли, цветных металлов, резко сократить выпуск многих машин, запасных частей к ним.

Уже в античную эпоху в распоряжении инженеров находи-лись такие важнейшие средства для снижения трения в самих механизмах, как сменный металлический подшипник смазываемый жиром или оливковым маслом.

Конечно, трение играет в нашей жизни и положительную роль. Никакое тело, будь оно величиной с каменную глыбу или песчинку, никогда не удержится одно на другом, все будет скользить и катиться. Не будь трения, Земля была бы без неровностей, как жидкости.

Я узнала столько интересного и нового о тайнах силы трения. Бороться с ней, чтобы развивать невиданную скорость нужно с умом. Я решила рассказать одноклассникам о том, как правильно и безопасно кататься с горок.

Зима - это время забав и веселых игр. Катание с горок — всеми любимое зимнее развлечение. Скорость, свист свежего ветра, буря переполняющих эмоций - для того, чтобы Ваш отдых был не только приятным, но и безопасным, стоит задуматься о выборе как горок, так и санок.

1.С малышом младше 3 лет не стоит идти на оживлённую горку, с которой катаются дети 7-10 лет и старше.

2. Если горка вызывает у вас опасения, сначала пусть прокатится с неё взрослый, без ребёнка — испытает спуск.

3. Если ребёнок уже катается на разновозрастной «оживлённой» горке, обязательно за ним должен следить взрослый. Лучше всего, если кто-то из взрослых следит за спуском сверху, а кто-то снизу помогает детям быстро освобождать путь.

4. Ни в коем случайте нельзя использовать в качестве горок железнодорожные насыпи и горки вблизи проезжей части автодорог.

Правила поведения на оживлённой горе:

    Подниматься на снежную или ледяную горку следует только в месте подъема, оборудованном ступенями, запрещается подниматься на горку там, где навстречу скатываются другие.

    Не съезжать, пока не отошёл в сторону предыдущий спускающийся.

    Не задерживаться внизу, когда съехал, а поскорее отползать или откатываться в сторону.

    Не перебегать ледяную дорожку.

    Во избежание травматизма нельзя кататься, стоя на ногах и на корточках.

    Стараться не съезжать спиной или головой вперёд (на животе), а всегда смотреть вперёд, как при спуске, так и при подъёме.

    Если мимо горки идет прохожий, подождать, пока он пройдет, и только тогда совершать спуск.

    Если уйти от столкновения (на пути дерево, человек т.д.) нельзя, то надо постараться завалиться на бок на снег или откатиться в сторону от ледяной поверхности.

    Избегать катания с горок с неровным ледовым покрытием.

    При получении травмы немедленно оказать первую помощь пострадавшему, сообщить об этом в службу экстренного вызова 01.

    При первых признаках обморожения, а также при плохом самочувствии, немедленно прекратить катание.

    Различных средств для катания с горок сейчас выпускается огромное количество, так что можно найти подходящее для того, чтобы получить удовольствие от катания с любой горки: от крутой ледяной до пологой, покрытой свежим снегом.

Удобные средства передвижения по ледяной горке:

Ледянка пластмассовая . Самое простое и дешёвое приспособление для катания с горок зимой. Предназначены они для одиночного катания по ледяным и накатанным снежным склонам. Рассчитаны ледянки для детей от 3-х лет, т.к. малышам трудно ими управлять. Ледянка в форме тарелки становится неуправляемой, если сесть в неё с ногами.

Ледянка-корыто очень неустойчива, при малейшей неровности норовит завалиться на бок — таким образом, подлетев на трамплине, приземлиться можно вниз головой. Ледянки не рассчитаны на трамплины или любые другие препятствия, т.к. любой резкий подскок на горке чреват неприятными последствиями для копчика и позвоночника ездока!

Обычные «советские» санки отлично подходят для любых снежных склонов. Можно рулить и тормозить ногами. Завалиться на бок, чтобы избежать опасного столкновения, тоже довольно легко и безопасно.

Снегокат . Для семейного катания не стоит выбирать снегокат - он рассчитан на одного-двух малышей возрастом от 5 до 10 лет. Ни раз были замечены случаи, когда снегокаты цеплялись передним полозом за препятствие (корень дерева, бугорок снега) и переворачивался. Со снегоката трудно слезть на большой скорости, а скорость это транспортное средство развивает немалую на любом склоне и разгоняется быстро. Тормоза расположены спереди, что повышает риск перевернуться через голову при попытке резко затормозить. Если взрослый едет с высокой горы вместе с ребёнком, посадив малыша на снегокат спереди, рулить, тормозить и эвакуироваться в случае опасности им будет очень трудно.

Ватрушки . В последнее время надувные санки всё чаще встречаются на наших горках. Наиболее распространены надувные круги — «санки-ватрушки». Ватрушка лёгкая и отлично едет даже по свежему снегу по совсем ненакатанной горке. Лучше всего кататься на ватрушках с пологих снежных склонов без препятствий в виде деревьев, других людей. Как только скорость движения возрастает, ватрушка становится довольно опасной. Разгоняются ватрушки молниеносно, и скорость развивают выше, чем санки или снегокат на аналогичном склоне, а соскочить с ватрушки на скорости невозможно. На ватрушках нельзя кататься с горок с трамплинами - при приземлении ватрушка сильно пружинит. Даже если не слетишь, можно получить сильные травмы спины и шейного отдела позвоночника. Хороший вариант «ватрушки» — маленькая надувная ледянка (примерно 50 см в поперечнике) - завалиться на бок (слезть) легко.

Внимательно относитесь к выбору горки и средств для катания!

Горка — место повышенной опасности, а не просто очередное развлечение на зимней прогулке наряду со строительством снеговиков и кормёжкой птиц! При катании детей со взрослыми важно не забывать что скорость зависит от массы. То есть чем круче и "ледянее" горка или больше масса ("папа большой и сильный, с ним не страшно"), тем убийственнее сила столкновения. Именно поэтому и в автомобилях детей требуют возить пристёгнутыми в автокреслах, а не на руках у взрослых и не пристёгнутых вместе со взрослым одним ремнём. Сила трения - не магическая сила, она не позволит остановиться мгновенно!

Заключение

    Мы выяснили, что человек издавна использует знания о яв-лении трения, полученные опытным путем.

    Теперь мы точно знаем когда возникает сила трения.

    Нами была создана серия экспериментов, помогающих по-нять и объяснить некоторые «трудные» явления природы.

    Нами были определены литературные произведения, в которых говорится о силе трения.

    Самое главное - мы поняли, как здорово до-бывать знания самим, а потом делиться ими с другими.

Список использованной литературы

1. Элементарный учебник физики:Учебное пособие. В 3-хт. /Под ред.Г.С.Ландсберга. Т.1 Механика.Молекулярная физика.М.:Наука, 1985.

2. Иванов А.С., Проказа А.Т. Мир механики и техники: Кн.для учащихся. - М.: Просвещение, 1993.

3. Энциклопедия для детей. Том 16. Физика Ч.1 Биография физики. Путешествие в глубь материи. Механическая картина мира/Глав. Ред. В.А.Володин. - М.:Аванта+, 2010

4. Детская энциклопедия. Я познаю мир: Физика/сост. А.А. Леонович, под ред. О.Г. Хинн. - М.: ООО «Фирма «Издательство АСТ».2010.-480с.

    http://demo.home.nov.ru/favorite.htm

    http://gannalv.narod.ru/tr/

    http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B5%D0%BD%D0%B8%D0%B5

    http://class-fizika.narod.ru/7_tren.htm

    http://www.physel.ru/component/option,com_frontpage/Itemid,1/

    http://62.mchs.gov.ru/document/1968180

Урок по физике «Сила трения»

Тема урока: Сила трения.

Цели урока: актуализировать и углубить знания учащихся о силе трения, выявить основные особенности силы трения, учет и применение в технике.

Оборудование: деревянный брусок, динамометр, набор грузов, листы наждачной бумаги, войлока, деревянная пластина, таблицы, дисковод, проектор, презентации урока.

Ход урока

I. Мотивация.

— Мы знаем, что физика – наука о природе. Вспомним Ф.И. Тютчева:

«Не то, что мните вы, природа:

Не слепок, не безликий лик, —

В ней есть душа, в ней есть свобода.

В ней есть любовь, в ней есть язык».

Да, у природы есть свой язык, и мы должны его понимать.

Падение яблока, взрыв сверхновой звезды, прыжок кузнечика или радиоактивный распад веществ происходят в результате взаимодействий. Существует четыре вида фундаментальных взаимодействий.

    Гравитационное взаимодействие

    Электромагнитное взаимодействие

    Слабое взаимодействие

    Сильное взаимодействие

Количественной мерой взаимодействия является – сила. Среди многочисленных сил электромагнитной природы выделим силу трения. В земных условиях трение сопутствует любому движению и покою тел.

II. Новый материал.

— Ребята, тема нашего урока «Сила трения».

С явлением трения мы знакомы уже давно. В походе можно услышать: «Не натрите ноги», в школе – «Сотрите с доски записи». Первые исследования трения были проведены великим итальянский ученым Леонардо да Винчи более 400 лет назад, но эти работы не были опубликованы. Законы трения были описаны французским ученым Гильомом Амонтоном в 1699 и Шарлем Кулоном в 1785 г.

— Ребята, дайте, пожалуйста, определение силы трения.

— Сила трения – сила, взаимодействующая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.

Выясним причины трения.

— Сейчас мы, пользуясь предложенным оборудованием, определим силу трения. У вас на столах динамометры. Возьмем брусок, прикрепим его к динамометру, и будем тянуть брусок по горизонтальной поверхности так, чтобы он двигался равномерно. Эта сила по модулю равна силе трения, действующей на брусок.

I ряд дерево — по дереву
II ряд дерево — по войлоку
III ряд дерево — наждачная бумага

— Почему получились разные значения?

    Причиной трения являются шероховатости соприкасающихся поверхностей: от смазки, веса тела, состояния трущихся поверхностей.

    Другая причина – межмолекулярное притяжение, действующее в местах контакта трущихся тел. (Проявляется в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы).

При контакте твердых тел возможны три вида трения.

Опыт №1. Брусок, динамометр (трение покоя)

Динамометр прикрепляем к бруску и тянем. Действующая сила между бруском и поверхностью – сила трения покоя.

Опыт №2. Брусок, динамометр (трение скольжения)

Брусок скользит по поверхности – возникающая сила трения – сила трения скольжения.

Опыт №3. Тележка, динамометр

Тележка катиться по поверхности. Динамометр показывает силу трения качения.

Трение качения меньше трения скольжения и покоя. Однако из самых гениальных изобретений человечества – колесо. Хорошо известно, что несравнимо легче везти груз на тележке, чем тащить его.

— А сейчас просмотрим презентацию к этой части урока.

Очевидно, в реальной жизни важно учитывать трение. Посмотрим, как это делается в задаче о движении автотранспорта по дороге.

Ребята, вы видите, что для полной остановки автомобиля требуется определенное время. Поэтому соблюдайте правила пешеходов при переходе через дорогу.

В природе и технике трение имеет большое значение. Оно может быть полезным и вредным. Когда оно полезно, его стараются увеличить. Например, поверхности шин у автомобиля делают с ребристыми выступами зимой, когда дорога бывает скользкая, ее посыпают песком.

Трение играет большую роль в жизни растений и животных.

Выступление учащихся.

О роли трения в жизни растений и животных.

В жизни многих растений трение играет положительную роль. Растения благодаря трению цепляются за находящиеся поблизости опоры, удерживаются на них и тянутся к свету. Трение здесь создается за счет того, что стебли многократно обвивают опоры и поэтому очень плотно прилегают к ним.

А вот растения, имеющие корнеплоды, такие, как морковь, свекла, брюква. Сила трения о грунт способствует удержанию корнеплода в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Именно поэтому так трудно вытащить из земли большую свеклу, редьку, репу.

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах.

Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Путем длительной эволюции организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Так, тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную синовиальную жидкость, которая служит как бы суставной «смазкой». При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной.

Действие органов хватания (к ним можно отнести клешни рака, передние конечности и хвост некоторых пород обезьян и др.) тоже тесно связано с трением. Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы. Поэтому органы хватания устроены так, что могут либо охватывать добычу с двух сторон и зажимать ее, либо обвивать несколько раз и за счет этого стягивать с большой силой.

Во всех этих примерах трение полезно. Но оно может быть и вредным, тогда его необходимо уменьшить. В этом случае применяют смазку или подшипники.

Казалось бы, что может быть общего между подшипником и памятнику Петру Великому в Санкт-Петербурге. Послушаем историческую справку.

Выступление учащихся.

Может быть, не всем известны некоторые технические подробности создания памятника великому организатору государства Российского.

Для пьедестала памятника подготовили монолитную гранитную глыбу весом 80 тыс. пудов, т.е. более тысячи тонн! И доставили ее из деревни Лахти, что на берегу Финского залива, в Петербург. Как же в XVIII веке, не имея ни мощных тягачей, ни подъемных кранов, люди могли совершить такое чудо?

Обнаружена эта глыба была местным крестьянином Вишняковым. Глыбу называли Гром-камнем, так как в него однажды ударила молния, отбив большой осколок. Около 9 км пропутешествовал Гром-камень по суше, а потом по Неве на плотах был доставлен в Петербург. Небывалый успех русской техники того времени был даже отмечен особой медалью, на которой была вычеканена надпись: «Дерзновению подобно, 1770 год». И действительно, это был акт дерзновенный! Вся Европа только и говорила об этой невиданной операции, какой не повторялось с времен перевозки в древний Рим египетских памятников. Как же это было сделано? Смелый, остроумный проект передвижения Гром-камня дал кузнец из казенных мужиков, оставшийся, к сожалению, неизвестным. Он предложил перекатить камень на специально отлитых бронзовых шарах, заключенных в салазки. Салазки представляли собой большие бревна с выдолбленными вдоль них желобами, обитыми внутри медью. Гранитную глыбу поместили на помост из нескольких рядов плотно уложенных бревен, под которым находились желоба с шарами. Согнанные из ближайших деревень крестьяне при помощи канатов и воротов двигали камень к берегу. Несколько мужиков должны были все время смазывать шары говяжьим салом и переставлять их вперед после того, как глыба пройдет через них; 120 дней путешествовал так по суше Гром-камень. Доставленный в Петербург и обработанный мастерами-каменотесами, он стал прекрасным пьедесталом памятника Петру.

Да, изобретение русских крестьян послужило прообразом современного подшипника. Их устанавливают в автомобилях, токарных станках, электрических двигателях и велосипедах.

— Вот и подошел к концу наш урок. Сегодня мы с вами подробно поговорили об одной из сил э/м природы.

Муниципальное бюджетное общеобразовательное учреждение

«Первомайская средняя общеобразовательная школа»

п. Первомайский

Исследовательская работа

«Сила трение и её полезные свойства»

Выполнил: Платон Алексей,

ученик 9 – «Д» класса

Руководитель:

,

учитель физики

п. Первомайский

Тамбовской области

2012

1. Введение 3

2. Исследование общественного мнения. 4

3. Что такое трение (немного теории). 5

3.1. Трение покоя. 5

3.2. Трение скольжения. 6

3.3. Трение качения. 6

3.4. Историческая справка. 8

3.5. Коэффициент трения. 9

3.6. Роль сил трения. 11

4. Результаты экспериментов. 12

5. Конструкторская работа и выводы. 13

6. Заключение. 15

7. Список использованной литературы. 16

1. Введение

Проблема: Понять – нужна ли нам сила трения и, узнать её полезные свойства.

Как разгоняется автомобиль, и какая сила замедляет его при торможении? Почему автомобиль «заносит» на скользкой дороге? Что служит причиной быстрого износа деталей? Почему автомобиль, разогнавшись до больших скоростей не может резко остановиться? Как удерживаются растения в почве? Почему живую рыбу трудно в руке удержать? Чем объяснить высокий процент травматизма и дорожно-транспортных происшествий во время гололедицы в зимний период?

Ответы на эти и многие другие вопросы, связанные с движением тел, дают законы трения.

Из приведенных вопросов следует, что трение является и вредным и полезным явлением.

В 18 веке французский физик открыл закон, согласно которому сила трения между твердыми телами не зависит от площади соприкосновения, а пропорциональна силе реакции опоры и зависит от свойств соприкасающихся поверхностей. Зависимость силы трения от свойств соприкасающихся поверхностей характеризуется коэффициентом трения. Коэффициент трения лежит в пределах от 0,5 до 0,15. Хотя с тех пор было выдвинуто немало гипотез, объясняющих этот закон, до сих пор полной теории силы трения не существует. Трение определяется свойствами поверхности твердых тел, а они очень сложны и до конца еще не исследованы.

Основные цели данного проекта : 1) Изучить природу сил трения; исследовать факторы, от которых зависит трение; рассмотреть виды трения.

2) Выяснить, как человек получил знания об этом явлении, какова его природа.

3)Показать, какую роль играет явление трения или его отсутствие в нашей жизни; ответить на вопрос: «Что мы знаем об этом явлении?»

4)Создать демонстрационные эксперименты; объяснить результаты наблюдаемых явлений.

Задачи: Проследить исторический опыт человечества по использованию и применению этого явления; выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие закономерности и зависимости силы трения; продумать и создать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей, от скорости относительного движения тел.

Для достижения поставленных целей над данным проектом работали по следующим направлениям:

1) Исследование общественного мнения;

2) Изучение теории трения;

3) Эксперимент;

4) Конструирование.

Актуальность проблемы. Явление трения встречается в нашей жизни очень часто. Все движения соприкасающихся тел друг относительно друга всегда происходит с трением. Сила трения всегда влияет в большей или меньшей степени на характер движения.

Гипотеза. Сила трения полезна, зависит от рода трущихся поверхностей, и силы давления.

Практическая значимость состоит в применении зависимости силы трения от силы реакции опоры, от свойств соприкасающихся поверхностей, от скорости движения в природе. Также необходимо это учитывать в технике и в быту.

Научный интерес заключается в том, что в процессе изучения данного вопроса получены некоторые сведения о практическом применении явления трения.

2. Исследование общественного мнения.

Цели: показать, какую роль играет явление трения или его отсутствие в нашей жизни; ответить на вопрос: «Что мы знаем об этом явлении?»

Были изучены пословицы, поговорки, в которых проявляется сила трения покоя, качения, скольжения, изучали человеческий опыт в применении трения, способов борьбы с трением.

Пословицы и поговорки:

Не будет снега, не будет и следа.

Тихий воз будет на горе.

Тяжело против воды плыть.

Любишь кататься, люби и саночки возить.

Терпенье и труд все перетрут.

От того и телега запела, что давно дегтя не ела.

И строчит, и валяет, и гладит, и катает. А все языком.

Врет, что шелком шьет.

Возьмем монету и потрем ею о шершавую поверхность. Мы отчетливо ощутим сопротивление - это и есть сила трения. Если тереть побыстрее, монета начнет нагреваться, напомнив нам о том, что при трении выделяется теплота - факт, известный еще человеку каменного века, ведь именно таким способом люди впервые научились добывать огонь.

Трение дает нам возможность ходить, сидеть, работать без опа­сения, что книги и тетради упадут со стола, что стол будет сколь­зить, пока не упрется в угол, а ручка выскользнет из пальцев.

Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, где их поставили.

Однако маленькое трение на льду может быть успешно ис­пользовано технически. Свидетельство этому так называемые ледяные дороги, которые устраивали для вывозки леса с места рубки к железной дороге или к пунктам сплава. На такой дороге, имеющей гладкие ледяные рельсы, две лошади тащат сани, на­груженные 70 тоннами бревен.

Трение - не только тормоз для движения. Это еще и главная причина изнашивания технических устройств, проблема, с кото­рой человек столкнулся также на самой заре цивилизации. При раскопках одного из древнейших шумерских городов - Урука - обнаружены остатки массивных деревянных колес, которым 4,5 тыс. лет. Колеса обиты медными гвоздями с очевидной це­лью - защитить обоз от быстрого изнашивания.

И в нашу эпоху борьба с изнашиванием технических уст­ройств - важнейшая инженерная проблема, успешное решение которой позволило бы сэкономить десятки миллионов тонн ста­ли, цветных металлов, резко сократить выпуск многих машин, запасных частей к ним.

Уже в античную эпоху в распоряжении инженеров находи­лись такие важнейшие средства для снижения трения в самих механизмах, как сменный металлический подшипник скольже­ния, смазываемый жиром или оливковым маслом, и даже под­шипник качения.

Первыми в мире подшипниками считаются ременные петли, поддерживающие оси допотопных шумерских повозок.

Подшипники со сменными металлическими вкладышами были хорошо известны в Древней Греции, где они применялись в колодезных воротах и мельницах.

Конечно, трение играет в нашей жизни и положительную роль, но оно и опасно для нас, особенно в зимний период, пери­од гололедов.

3. Что такое трение (немного теории)

Цели: изучить природу сил трения; исследовать факторы, от которых зависит трение; рассмотреть виды трения.

Сила трения

Если мы попытаемся сдвинуть с места шкаф, то сразу убе­димся, что не так-то просто это сделать. Его движению будет мешать взаимодействие ножек с полом, на котором он стоит. Различают 3 вида трения: трение покоя, трение скольжения, трение качения. Мы хотим выяснить, чем эти виды отличаются друг от друга и что между ними общего?

3.1. Трение покоя

Для того чтобы выяснить сущность этого явления, можно провести несложный эксперимент. Положим брусок на наклон­ную доску. При не слишком большом угле наклона доски бру­сок может остаться на месте. Что будет удерживать его от со­скальзывания вниз? Трение покоя.

Прижмем свою руку к лежащей на столе тетради и передви­нем ее. Тетрадь будет двигаться относительно стола, но поко­иться по отношению нашей ладони. С помощью чего мы заста­вили эту тетрадь двигаться? С помощью трения покоя тетради о руку. Трение покоя перемещает грузы, находящиеся на движу­щейся ленте транспортера, препятствует развязыванию шнур­ков, удерживает гвозди, вбитые в доску, и т. д.

Сила трения покоя может быть разной. Она растет вместе с силой, стремящейся сдвинуть тело с места. Но для любых двух соприкасающихся тел она имеет некоторое максимальное зна­чение, больше которого быть не может. Например, для деревян­ного бруска, находящегося на деревянной доске, максимальная сила трения покоя составляет примерно 0,6 от его веса. Прило­жив к телу силу, превышающую максимальную силу трения по­коя, мы сдвинем тело с места, и оно начнет двигаться. Трение покоя при этом сменится трением скольжения.

3.2. Трение скольжения

Из-за чего постепенно останавливаются санки, скатившиеся с горы? Из-за трения скольжения. Почему замедляет свое дви­жение шайба, скользящая по льду? Вследствие трения скольже­ния, направленного всегда в сторону, противоположную на­правлению движения тела. Причины возникновения силы тре­ния:

1) Шероховатость поверхностей соприкасающихся тел. Даже те поверхности, которые выглядят гладкими, на самом деле все­гда имеют микроскопические неровности (выступы, впадины). При скольжении одного тела по поверхности другого эти неров­ности зацепляются друг за друга и тем самым мешают движе­нию;

2) межмолекулярное притяжение, действующее в местах контакта трущихся тел. Между молекулами вещества на очень малых расстояниях возникает притяжение. Молекулярное при­тяжение проявляется в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы. Так, например, при отно­сительном скольжении двух металлов с очень чистыми и ров­ными поверхностями, обработанными в вакууме с помощью специальной технологии, сила трения оказывается намного сильнее, чем сила трения между брусками дерева друг с другом, и дальнейшее скольжение становится невозможно.

3.3. Трение качения

Если тело не скользит по поверхности другого тела, а, по­добно колесу или цилиндру, катится, то возникающее в месте их контакта трение называют трением качения. Катящееся колесо несколько вдавливается в полотно дороги, и потому перед ним всё время оказывается небольшой бугорок, который необходимо преодолевать. Именно тем, что катящемуся колесу постоянно приходится наезжать на появляющийся впереди бугорок, и обу­словлено трение качения. При этом, чем дорога тверже, тем тре­ние качения меньше. При одинаковых нагрузках сила трения качения значительно меньше силы трения скольжения (это было замечено еще в древности). Так, ножки тяжелых предметов, на­пример, кроватей, роялей и т. п., снабжают роликами. В технике для уменьшения трения в машинах широко пользуются под­шипниками качения, иначе называемыми шариковыми и роли­ковыми подшипниками.

Эти виды трения относятся к сухому трению. Мы знаем, по­чему книга не проваливается сквозь стол. Но что мешает ей со­скользнуть, если стол немного наклонен? Наш ответ - трение! Мы попытаемся объяснить природу силы трения.

На первый взгляд, объяснить происхождение силы трения очень просто. Ведь поверхность стола и обложка книги шерохо­ваты. Это чувствуется на ощупь, а под микроскопом видно, что поверхность твердого тела более всего напоминает горную страну. Бесчисленные выступы цепляются друг за друга, немно­го деформируются и не дают книге соскользнуть. Таким образом, сила трения покоя вызвана теми же силами взаимодействия молекул, что и обычная упругость.

Если мы увеличим наклон стола, то книга начнет скользить. Очевидно, при этом начинаются «скалывание» бугорков, разрыв молекулярных связей, не способных выдержать возросшую на­грузку. Сила трения по-прежнему действует, но это уже будет сила трения скольжения. Обнаружить «скалывание» бугорков не представляет труда. Результатом такого «скалывания» является износ трущихся деталей.

Казалось бы, чем тщательнее отполированы поверхности, тем меньше должна быть сила трения. До известной степени это так. Шлифовка снижает, например, силу трения между двумя стальными брусками. Но не беспредельно! Сила трения внезап­но начинает расти при дальнейшем увеличении гладкости по­верхности. Это неожиданно, по все же объяснимо.

По мере сглаживания поверхностей они все теснее и теснее прилегают друг к другу.

Однако до тех пор, пока высота неровностей превышает не­сколько молекулярных радиусов, силы взаимодействия между молекулами соседних поверхностей отсутствуют. Ведь это очень короткодействующие силы. При достижении некоего со­вершенства шлифовки поверхности сблизятся настолько, что силы сцепления молекул включатся в игру. Они начнут препят­ствовать смещению брусков друг относительно друга, что и обеспечивает силу трения покоя. При скольжении гладких бру­сков молекулярные связи между их поверхностями рвутся по­добно тому, как у шероховатых поверхностей разрушаются свя­зи внутри самих бугорков. Разрыв молекулярных связей - вот то главное, чем отличаются силы трения от сил упругости. При возникновении сил упругости таких разрывов не происходит. Из-за этого силы трения зависят от скорости.

Часто в популярных книгах и научно-фантастических рас­сказах рисуют картину мира без трения. Так можно очень на­глядно показать как пользу, так и вред трения. Но не надо забы­вать, что в основе трения лежат электрические силы взаимодействия молекул. Уничтожение трения фактически означало бы уничтожение электрических сил и, следовательно, неизбежный полный распад вещества.

Но ведь знания о природе трения пришли к нам не сами со­бой. Этому предшествовала большая исследовательская работа ученых-экспериментаторов на протяжении нескольких веков. Не все знания приживались легко и просто, многие требовали мно­гократных экспериментальных проверок, доказательств. Самые светлые умы последних столетий изучали зависимость модуля силы трения от многих факторов: от площади соприкосновения поверхностей, от рода материала, от нагрузки, от неровностей поверхностей и шероховатостей, от относительной скорости движения тел. Имена этих ученых: Леонардо да Винчи, Амон-тон, Леонард Эйлер, Шарль Кулон - это наиболее известные имена, но были еще рядовые труженики науки. Все ученые, уча­ствовавшие в этих исследованиях, ставили опыты, в которых совершалась работа по преодолению силы трения.

3.4. Историческая справка

Шел 1500 год. Великий итальянский художник, скульптор и ученый Леонардо да Винчи проводил странные опыты, чем удивлял своих учеников.

Он таскал по полу, то плотно свитую веревку, то ту же верев­ку во всю длину. Его интересовал ответ на вопрос: зависит ли сила трения скольжения от величины площади соприкасающих­ся в движении тел? Механики того времени были глубоко убеж­дены, что чем больше площадь касания, тем больше сила тре­ния. Они рассуждали примерно так, что чем больше таких точек, тем больше сила. Совершенно очевидно, что на большей по­верхности будет больше таких точек касания, поэтому сила тре­ния должна зависеть от площади трущихся тел.

Леонардо да Винчи усомнился и стал проводить опыты. И получил потрясающий вывод: сила трения скольжения не зави­сит от площади соприкасающихся тел. Попутно Леонардо да Винчи исследовал зависимость силы трения от материала, из которого изготовлены тела, от величины нагрузки на эти тела, от скорости скольжения и степени гладкости или шероховатости их поверхности. Он получил следующие результаты:

1. От площади не зависит.

2. От материала не зависит.

3. От величины нагрузки зависит (пропорционально ей).

4. От скорости скольжения не зависит.

5. Зависит от шероховатости поверхности.

1699 год. Французский ученый Амонтон в результате своих опытов так ответил на те же пять вопросов. На первые три - так же, на четвертый - зависит. На пятый - не зависит. Получалось, и Амонтон подтвердил столь неожиданный вывод Леонардо да Винчи о независимости силы трения от площади соприкасаю­щихся тел. Но в то же время он не согласился с ним в том, что сила трения не зависит от скорости скольжения; он считал, что сила трения скольжения зависит от скорости, а с тем, что сила трения зависит от шероховатостей поверхностей, не соглашался.

В течение восемнадцатого и девятнадцатого веков насчиты­валось до тридцати исследований на эту тему. Их авторы согла­шались только в одном - сила трения пропорциональна силе нормального давления, действующей на соприкасающиеся тела. А по остальным вопросам согласия не было. Продолжал вызы­вать недоумение даже у самых видных ученых эксперименталь­ный факт: сила трения не зависит от площади трущихся тел.

1748 год. Действительный член Российской Академии наук Леонард Эйлер опубликовал свои ответы на пять вопросов о трении. На первые три - такие же, как и у предыдущих, но в чет­вертом он согласился с Амонтоном, а в пятом - с Леонардо да Винчи.

1779 год. В связи с внедрением машин и механизмов в про­изводство назрела острая необходимость в более глубоком изу­чении законов трения. Выдающийся французский физик Кулон занялся решением задачи о трении и посвятил этому два года. Он ставил опыты на судостроительной верфи , в одном из портов Франции. Там он нашел те практические производственные ус­ловия, в которых сила трения играла очень важную роль. Кулон на все вопросы ответил - да. Общая сила трения в какой-то ма­лой степени все же зависит от размеров поверхности трущихся тел, прямо пропорциональна силе нормального давления, зави­сит от материала соприкасающихся тел, зависит от скорости скольжения и от степени гладкости трущихся поверхностей. В дальнейшем ученых стал интересовать вопрос о влиянии смазки, и были выделены виды трения: жидкостное, чистое, сухое и граничное.

Правильные ответы

Сила трения не зависит от площади соприкасающихся тел, а зависит от материала тел: чем больше сила нормального давле­ния, тем больше сила трения. Точные измерения показывают, что модуль силы трения скольжения зависит от модуля относи­тельной скорости.

Сила трения зависит от качества обработки трущихся по­верхностей и увеличения вследствие этого силы трения. Если тщательно отполировать поверхности соприкасающихся тел, то число точек касания при той же силе нормального давления увеличивается, а следовательно, увеличивается и сила трения. Трение связано с преодолением молекулярных связей между соприкасающимися телами.

3.5.Коэффициент трения

Сила трения зависит от силы, прижимающей данное тело к поверхности другого тела, т. е. от силы нормального давления N и от качества трущихся поверхностей.

В опыте с трибометром силой нормального давления служит вес бруска. Измерим силу нормального давления, равную весу чашечки с гирьками в момент равномерного скольжения бруска. Увеличим теперь силу нормального давления вдвое, поставив грузы на брусок. Положив на чашечку добавочные гирьки, снова заставим брусок двигаться равномерно.

Сила трения при этом увеличится вдвое. На основании по­добных опытов было установлено, что, при неизменных мате­риале и состоянии трущихся поверхностей сила их трения прямо пропорциональна силе нормального давления, т. е.

Величина, характеризующая зависимость силы трения от материала и качества обработки трущихся поверхностей, назы­вается коэффициентом трения. Коэффициент трения измеряется отвлеченным числом, показывающим, какую часть силы нор­мального давления составляет сила трения

μ зависит от ряда причин. Опыт показывает, что трение ме­жду телами из одинакового вещества, вообще говоря, больше, чем между телами из разных веществ. Так, коэффициент трения стали по стали больше, чем коэффициент трения стали по меди. Объясняется это наличием сил молекулярного взаимодействия, которые у однородных молекул значительно больше, чем у раз­нородных.

Влияет на трение и качество обработки трущихся поверхно­стей.

Когда качество обработки этих поверхностей различно, то неодинаковы и размеры шероховатостей на трущихся поверхно­стях, тем прочнее сцепление этих шероховатостей, т. е. больше μ трения. Следовательно, одинаковому материалу и качеству обработки обеих трущихся поверхностей соответствует наи­большее значение font-size:14.0pt;line-height:115%"> силы взаимодействия. Если в предыдущей формуле под F тр под­разумевали силу трения скольжения, то μ будет обозначать ко­эффициент трения скольжения, если же FTp заменить наиболь­шим значением силы трения покоя F макс ., то μ будет обозначать коэффициент трения покоя

Теперь проверим, зависит ли сила трения от площади сопри­косновения трущихся поверхностей. Для этого положим на по­лозья трибометра 2 одинаковых бруска и измерим силу трения между полозьями и «сдвоенным» бруском. Затем положим их на полозья порознь, сцепив друг с другом, и снова измерим силу трения. Оказывается, что, несмотря на увеличение площади трущихся поверхностей во втором случае, сила трения остается прежней. Отсюда следует, что сила трения не зависит от вели­чины трущихся поверхностей. Такой, на первый взгляд стран­ный, результат опыта объясняется очень просто. Увеличив пло­щадь трущихся поверхностей, мы тем самым увеличили количе­ство зацепляющихся друг за друга неровностей на поверхности тел, но одновременно уменьшили силу, с которой эти неровно­сти прижимаются друг к другу, так как распределили вес бру­сков на большую площадь.

Опыт показал, что сила трения зависит от скорости движе­ния. Однако при малых скоростях этой зависимостью можно пренебречь. Пока скорость движения невелика, сила трения воз­растает при увеличении скорости. Для больших скоростей дви­жения наблюдается обратная зависимость: с увеличением ско­рости силы трения убывает. Следует отметить, что все установ­ленные соотношения для силы трения носят приближённый характер.

Сила трения значительно изменяется в зависимости от со­стояния трущихся поверхностей. Особенно сильно она умень­шается при наличии жидкой прослойки, например масла, между трущимися поверхностями (смазка). Смазкой широко пользуют­ся в технике для уменьшения сил вредного трения.

3.6. Роль сил трения

В технике и в повседневной жизни силы трения играют ог­ромную роль. В одних случаях силы трения приносят пользу, в других - вред. Сила трения удерживает вбитые гвозди, винты, гайки; удерживает нитки в материи, завязанные узлы и т. д. При отсутствии трения нельзя было бы сшить одежду, собрать ста­нок, сколотить ящик.

Трение увеличивает прочность сооружений; без трения нельзя производить ни кладку стен здания, ни закрепление телеграфных столбов, ни скрепление частей машин и сооружений болтами, гвоздями, шурупами. Без трения не могли бы удерживаться растения в почве. Наличие трения покоя позволяет человеку передвигаться по поверхности Земли. Идя, человек отталкивает от себя Землю на­зад, а Земля с такой же силой толкает человека вперед. Сила, движущая человека вперед, равна силе трения покоя между по­дошвой ноги и Землей.

Чем сильнее человек толкает Землю назад, тем больше сила трения покоя, приложенная к ноге, и тем быстрее движется че­ловек.

Когда человек отталкивает Землю с силой большей, чем предельная сила трения покоя, то нога скользит назад, и это за­трудняет ходьбу. Вспомним, как трудно ходить по скользкому льду. Чтобы легче было идти, необходимо увеличить трение по­коя. С этой целью скользкую поверхность посыпают песком. Сказанное относится и к движению электровоза, автомобиля. Колёса, соединенные с двигателем, называются ведущими.

Когда ведущее колесо с силой, создаваемой двигателем, тол­кает рельс назад, то сила, равная трению покоя и приложенная к оси колеса, двигает вперед электровоз или автомобиль. Итак, трение между ведущим колесом и рельсом или Землей - полез­но. Если оно мало, то колесо буксует, а электровоз или автомо­биль стоит на месте. Трение же, например, между движущимися частями работающей машины вредно. Для увеличения трения посыпают рельсы песком. В гололедицу очень трудно ходить пешком и передвигаться на автомобилях, так как трение покоя очень мало. В этих случаях посыпают тротуары песком и надевают цепи на колеса автомобилей, чтобы увеличить трение покоя.

Силой трения также пользуются для удержания тел в со­стоянии покоя или для их остановки, если они движутся. Вра­щение колес прекращается с помощью тормозных колодок, тем или иным способом прижимаемых к ободу колеса. Наиболее распространены воздушные тормоза, в которых тормозная ко­лодка прижимается к колесу при помощи сжатого воздуха.

Рассмотрим подробнее движение лошади, тянущей сани. Лошадь ставит ноги и напрягает мускулы таким образом, что в отсутствие сил трения покоя ноги скользили бы назад. При этом возникают силы трения покоя, направленные вперед. На сани же, которые лошадь тянет вперед через постромки с силой, со стороны земли действует сила трения скольжения, направленная назад. Чтобы лошадь и сани получили ускорение, необходимо, чтобы сила трения копыт лошади о поверхность дороги, была больше, чем сила трения, действующая на сани. Однако, как бы ни был велик коэффициент трения подков о землю, сила трения покоя не может быть больше той силы, которая должна была вызвать скольжение копыт, т. е. силы мускулов лошади. Поэтому даже тогда, когда ноги лошади не скользят, все же она иногда не может сдвинуть с места тяжелые сани. При движении (ког­да началось скольжение) сила трения несколько уменьшается; поэтому часто достаточно только помочь лошади сдвинуть сани с места, чтобы потом она могла их везти.

4. Результаты экспериментов

Цель: выяснить зависимость силы трения скольжения от следующих факторов:

От нагрузки;

От площади соприкосновения трущихся поверхностей;

От трущихся материалов (при сухих поверхностях).

Оборудование: динамометр лабораторный с жесткостью пружины 40 Н/м; динамометр круглый демонстрационный (пре­дел - 12Н); деревянные бруски - 2 штуки; набор грузов; дере­вянная дощечка; кусок металлического листа; плоский чугун­ный брусок; лед; резина.

Результаты экспериментов

1. Зависимость силы трения скольжения от нагрузки.

m, (г)

1120

FTP(H)

2. Зависимость силы трения от площади соприкосновения трущихся поверхностей.

S (см2)

FTP(H)

0,35

0,35

0,37

3. Зависимость силы трения от размеров неровностей тру­щихся поверхностей: дерево по дереву (различные способы об­работки поверхностей).

1 лакированное

2 деревянное

3 тканевое

0 , 9Н

1 , 4Н

При исследовании силы трения от материалов трущихся поверхностей мы используем один брусок массой 120 г и разные контактные поверхности. Используем формулу:

Мы рассчитывали коэффициенты трения скольжения для следующих материалов:

№ п/п

Трущиеся материалы (при сухих поверхностях)

Коэффициент трения (при движении)

Дерево по дереву (в среднем)

0,28

Дерево по дереву (вдоль волокон)

0,07

Дерево по металлу

0,39

Дерево по чугуну

0,47

Дерево по льду

0,033

5. Конструкторская работа и выводы

Цели: создать демонстрационные эксперименты; объяснить результаты наблюдаемых явлений.

Опыты по трению

Изучив литературу, мы отобрали несколько опытов, которые решили осуществить сами. Мы продумали эксперименты, и попытались объяснить результаты наших экспериментов. В качестве приборов и инструментов мы взяли:, деревянную линейку, ножи, наждачную бумагу, точильный круг.

Опыт №1

Цилиндрический ящик диаметром 20см и высотой 7см наполнен песком. В песок зарыта легкая фигурка с грузом на ногах, а на его поверхность положен металлический шарик. При встряхивании ящика фигурка высовывается из песка, а шарик тонет в нем. При встряхивании песка ослабляются силы трения между песчинками, он становится удобоподвижным и приобретает свойства жидкости. Поэтому тяжелые тела «тонут» в песке, а легкие «всплывают».

Опыт 2 Точка ножей в мастерских. Обработка поверхностей деталей с помощью наждачной бумаги. Явления основаны на раскалывании зазубрин между соприкасающимися поверхностями.

Опыт №3 При многократном разгибании и сгибании проволоки место изгиба нагревается. Это происходит за счет трения между отдельными слоями металла.

Также при натирании монеты о горизонтальную поверхность, монета нагревается.

Результатами этих опытов можно объяснить многие явления.

Например, случай в мастерских. Во время работы за станком у меня произошло задымление между трущимися поверхностями подвижных частей станка. Это объясняется явлением трения между соприкасающимися поверхностями. Для предотвращения данного явления необходимо было смазать трущиеся поверхности и уменьшить тем самым силу трения.

6. Заключение

Мы выяснили, что человек издавна использует знания о яв­лении трения, полученные опытным путем. Начиная с XV - XVI веков, знания об этом явлении становятся научными: ставятся опыты по определению зависимостей силы трения от многих факторов, выясняются закономерности.

Теперь мы точно знаем, от чего зависит сила трения, а что не влияет на нее. Если говорить более конкретно, то сила трения зависит: от нагрузки или массы тела; от рода соприкасающихся поверхностей; от скорости относительного движения тел; от размера неровностей или шероховатостей поверхностей. А вот от площади соприкосновения она не зависит.

Теперь мы можем объяснить все наблюдаемые в практике закономерности строением вещества, силой взаимодействия между молекулами.

Мы провели серию экспериментов, проделали примерно такие же опыты, как и ученые, и получили примерно такие же результаты. Получилось, что экспериментально мы подтвердили все утверждения, высказанные нами.

Нами была создана серия экспериментов, помогающих по­нять и объяснить некоторые «трудные» наблюдения.

Но, наверное, самое главное - мы поняли, как здорово до­бывать знания самим, а потом делиться ими с другими.

Список использованной литературы.

1. Элементарный учебник физики:Учебное пособие. В 3-хт. /Под ред. . Т.1 Механика. Молекулярная физика. М.:Наука, 1985.

2. , Проказа механики и техники: Кн. для учащихся. – М.: Просвещение, 1993.

3. Бытько, ч.1 и 2. Механика. Молекулярная физика и теплота. М.: Высшая школа, 1972.

4. Энциклопедия для детей. Том 16. Физика Ч.1 Биография физики. Путешествие в глубь материи. Механическая картина мира/Глав. Ред. . – М.:Аванта+, 2000

· http :// demo . home . nov . ru / favorite . htm

· http://gannalv. *****/tr/

· http://ru. wikipedia. org/wiki/%D0%A2%D1%80%D0%B5%D0%BD%D0%B8%D0%B5

· http://class-fizika. *****/7_tren. htm

· http://www. *****/component/option, com_frontpage/Itemid,1/