Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.


Если работу совершает само тело, его внутренняя энергия уменьшается.

Всего существует три простых (элементарных) вида передачи тепла:

· Теплопроводность

· Конвекция

Конвекция — явление переноса теплоты в жидкостях или газах, или сыпучих средах потоками вещества. Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется снова и снова.

Тепловое излучение или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии.

Внутренняя энергия идеального газа

Исходя из определения идеального газа , в нем отсутствует потенциальная составляющая внутренней энергии (отсутствуют силы взаимодействия молекул, кроме ударного). Таким образом, внутренняя энергия идеального газа представляет собой только кинетическую энергию движения его молекул. Ранее (уравнение 2.10) было показано, что кинетическая энергия поступательного движения молекул газа прямо пропорциональна его абсолютной температуре.

Используя выражение универсальной газовой постоянной (4.6), можно определить величину константы α.

Таким образом, кинетическая энергия поступательного движения одной молекулы идеального газа будет определяться выражением.

В соответствии с кинетической теорией, распределение энергии по степеням свободы равномерное. У поступательного движения 3 степени свободы. Следовательно, на одну степень свободы движения молекулы газа будет приходиться 1/3 ее кинетической энергии.

Для двух, трех и многоатомных молекул газа кроме степеней свободы поступательного движения есть степени свободы вращательного движения молекулы. Для двухатомных молекул газа число степеней свободы вращательного движения равно 2, для трех и многоатомных молекул - 3.

Поскольку распределение энергии движения молекулы по всем степеням свободы равномерное, а число молекул в одном киломоле газа равняется Nμ, внутреннюю энергию одного киломоля идеального газа можно получить, умножив выражение (4.11) на число молекул в одном киломоле и на число степеней свободы движения молекулы данного газа.


где Uμ - внутренняя энергия киломоля газа в Дж/кмоль, i - число степеней свободы движения молекулы газа.

Для 1 - атомного газа i = 3, для 2 - атомного газа i = 5, для 3 - атомного и многоатомного газов i = 6.

Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома для полной цепи. Работа и мощность тока. Закон Джоуля-Ленца.

Среди условий, необходимых для существования электрического тока различают: наличие в среде свободных электрических зарядов и создание в среде электрического поля . Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = qE, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника.

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля. Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы). Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Условия существования электрического тока:

· наличие свободных носителей зарядов

· наличие разности потенциалов. это условия возникновения тока. чтобы ток существовал

· замкнутая цепь

· источник сторонних сил, который поддерживает разность потенциалов.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называют сторонними силами.

Электродвижущая сила.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

Единицей ЭДС, как и напряжения является вольт. Можно говорить об электродвижущей силе на любом участке цепи. Электродвижущая сила гальванического элемента численно равна работе сторонних сил при перемещении единичного положительного заряда внутри элемента от отрицательного его полюса к положительному. Знак ЭДС определяется в зависимости от произвольно выбранного направления обхода того участка цепи, на котором включен данный источник тока.

Закон Ома для полной цепи.

Рассмотрим простейшую полную цепь, состоящую из источника тока и резистора сопротивлением R. Источник тока имеющий ЭДС ε, обладает сопротивлением r, его называют внутренним сопротивлением источника тока. Для получения закона ома для полной цепи используем закон сохранения энергии.

Пусть за время Δt через поперечное сечение проводника пройдет заряд q. Тогда по формуле , работа сторонних сил при перемещении заряда q равна . Из определения силы тока имеем: q = IΔt. Следовательно, .

Благодаря работе внешних сил при прохождении тока в цепи на ее внешнем и внутреннем участках цепи выделяется количество теплоты, по закону Джоуля-Ленца равное:

Согласно закону сохранения энергии A ст = Q, поэтому Отсюда Таким образом, ЭДС источника тока равна сумме падений напряжений на внешнем и внутреннем участках цепи.

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
  • понимание учащимися таких важных понятий как энергия, внутренняя энергия, теплопередача и ее виды: теплопроводность, излучение, конвекция;
  • формирование у учащихся представлений о фундаментальных законах природы на примере закона сохранения энергии.

Задачи:

  • приобретение учащимися знаний о внутренней энергии, способах ее изменения, знакомство с терминами: теплопередача, теплопроводность, излучение;
  • формирование у учащихся умения наблюдать природные явления, проводить экспериментальные исследования, делать выводы;
  • овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, результат эксперимента.

Тип урока: комбинированный.

Демонстрации:

  • превращение механической энергии (на примере движения резинового мячика и маятника Максвелла);
  • превращение механической энергии во внутреннюю (на примере падения свинцового шарика на свинцовую плиту);
  • изменение внутренней энергии по рис 4 и 5 учебника (Перышкин А.В Физика-8), нагревание монеты в пламени свечи и при ее трении о деревянную линейку, нагревание свинца ударами молотка;
  • опыты по рис.6-9 в учебнике (Перышкин А. В. Физика-8);
  • опыты по рис 10,11 в учебнике (Перышкин А. В. Физика-8)
  • наблюдение конвекции в газах на примере наблюдения конвекционных потоков от горящей свечи в проекции на освещенный экран;
  • демонстрация светильников, в которых используется явление конвекции;
  • нагревание воздуха в теплоприемнике излучением;
  • демонстрация поглощательной способности различных веществ.

Ход урока

Примечание:

Материалы, представленные в данной презентации, включают несколько тем, важных для дальнейшего изучения тепловых явлений, рассчитаны на использование на нескольких уроках и при объяснении новой темы, и при обобщающем повторении в 8 классе и при изучении молекулярной физики в 10 классе.

Закрепление полученных знаний по теме целесообразно приводить на примерах задач, которые достаточно представлены в сборниках задач по физике:

  • А.В. Перышкин Сборник задач по физике 7-9 классы, изд. «Экзамен» М., 2013.
  • В.И. Лукашик, Е.В. Иванова Сборник задач по физике 7-9 классы, изд. «Просвещение» АО «Московские учебники», М., 2001.
  • и другие.

Поэтому данная презентация может быть использована частично и (или) полностью на уроке в зависимости от целей и задач данного урока. Например при изучении нового материала.

Объяснение нового материала:

Приступая к формированию понятия внутренней энергии, необходимо предложить учащимся вспомнить, что они знают о механической энергии тел.

Вопросы учащимся:

  1. В каком случае говорят, что тела обладают энергией?
  2. Какие виды механической энергии различают?
  3. Какие тела обладают кинетической энергией и отчего она зависит?
  4. От чего зависит потенциальная энергия тел?
  5. Приведите примеры превращения механической энергии.

(Слайды 2-5)

Слайд 2


Слайд 3


Слайд 4

Слайд 5

В основу формирования понятия внутренней энергии положена идея о кажущемся «нарушении» закона сохранения энергии при соударении свинцового шара о свинцовую плиту.

Опыт №1. Соударение свинцового шара о свинцовую плиту. На основании «нарушения» закона сохранения энергии и исследования состояния свинцового шара после удара, делают вывод о наличии у всех тел энергии, которая называется внутренней энергией (слайд 6-8).

Слайд 6


Слайд 7


Слайд 8

Далее необходимо разъяснить учащимся отличие внутренней энергии от механической энергии тел. Важно сделать вывод о том, что внутренняя энергия тел не зависит от механической энергии тела, а зависит от температуры тела и агрегатного состояния вещества. Другими словами, внутренняя энергия тела определяется скоростью движения частиц, из которых состоит тело и их взаимным расположением.

Следующий этап изучения нового материала – это изучение способов изменения внутренней энергии тела. На опытах можно наглядно продемонстрировать, что изменить внутреннюю энергию тела можно при совершении работы (над телом и самим телом) и при теплопередаче.

Это следующие опыты:

1. Изменение внутренней энергии совершением работы над телом.

Опыт №2. Потереть монетку о деревянную линейку, ладони рук друг о друга. Учащиеся делают вывод: внутренняя энергия тела увеличилась.

Опыт №3. Взять воздушное огниво. При быстром сжатии воздух нагревается столь значительно, что пары эфира, находящиеся в цилиндре под поршнем, воспламеняются. Учащиеся делают вывод: внутренняя энергия тела увеличилась.

2. Изменение внутренней энергии при совершении работы самим телом.

Опыт №4. В толстостенный стеклянный сосуд, закрытый пробкой, накачиваем воздух насосом через специальное отверстие в ней. Через некоторое время пробка вылетит из сосуда. В момент, когда пробка вылетает из сосуда, необходимо обратить внимание учащихся на образование тумана в стеклянном сосуде, что свидетельствует о понижении температуры находящихся в нем воздуха и водяного пара. Учащиеся делают вывод: внутренняя энергия тела уменьшилась.

3. Изменение внутренней энергии путем теплопередачи.

На основе опытов из повседневной жизни (ложка, опущенная в горячий чай нагревается, выключенный горячий утюг в комнате остывает).

На основе всех примеров и опытов делается общий вывод: внутренняя энергия тела может изменяться (увеличиваться или уменьшаться) со временем при теплообмене данного тела с окружающими его телами и при совершении механической работы (слайд 9).

Слайд 9

При изложении механизмов и способов теплопередачи, необходимо обратить внимание учащихся, что теплопередача всегда происходит в определенном направлении: от тела с более высокой температурой к телу с более низкой температурой, что по существу подводить учащихся к представлению о втором законе термодинамики.

Слайд 10

Рассмотрение различных видов теплопередачи начинают с теплопроводности. Для изучения этого явления рассматривают опыт №5 с нагреванием металлического стержня (см учебник Перышкин А.В. Физика-8) На основании результатов опыта учащиеся устанавливают факт передачи теплоты от одной части тела к другой и объясняют его.

Затем вводят понятие о хороших и плохих проводниках тепла. Наглядно демонстрируют на простых опытах №6, №7, №8 , описанных в учебнике (А.В. Перышкин Физика-8) различную теплопроводность веществ и рассматривают использование в технике, быту и природе свойств тел по разному проводить тепло (слайд 11-13).

Слайд 11

Слайд 12

Слайд 13

Изучение явления конвекции начинают с постановки следующего опыта №9: пробирку, наполненную водой нагревают на спиртовке в верхней части пробирки. При этом снизу пробирки вода остается холодной, а в верхней части – кипит. Учащиеся делают вывод о том, что вода обладает плохой теплопроводностью. Но! Вопрос учащимся: Как нагревают воду, например, в чайнике? Почему?

Ответы на эти вопросы получим, если проделаем следующий опыт №10 :будем нагревать снизу на спиртовке колбу с водой, на дне которой помещен кристаллик марганцовки, окрашивающий конвекционные потоки.

Для демонстрации конвекции в газах, можно воспользоваться проектором и наблюдать конвекционные потоки, идущие от горящей свечи в проекции на экране.

В качестве примеров конвекции в природе рассматривают образование дневных и ночных бризов, а в технике – образование тяги в дымоходах, конвекцию в водяном отоплении, водяном охлаждении двигателя внутреннего сгорания (слайд 14-15).

Слайд 14


Слайд 15

Понятие об излучении как одном из способов передачи тепла можно начать с постановки вопроса: «Может ли энергия Солнца передаваться Земле теплопроводностью? Конвекцией?» Учащиеся делают вывод, что не может и, следовательно, существует другой способ передачи тепла.

Продолжить знакомство с излучением можно, поставив опыт №11 по нагреванию теплоприемника, соединенного с жидкостным манометром, и находящимся на некотором удалении сбоку от электрической плитки

Перед учащимися ставится вопрос: вследствие чего же воздух в теплоприемнике нагревается? Ведь теплопроводность и конвекция здесь исключены. Возникает проблемная ситуация, в результате обсуждения которой учащиеся приходят к заключению о том, что в данном случае имеет особый вид передачи – излучение – теплопередача с помощью невидимых лучей.

Далее на опыте №12 выясняют, что тела с различной поверхностью обладают разной способностью поглощать энергию. Для этого используют теплоприемник, у которого одна поверхность блестящая металлическая, другая черная и шершавая.

В заключении объяснения можно привести примеры излучения в природе и технике (слайд 16-17).

Слайд 16


1. Существуют два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладает любое движущееся тело; она прямо пропорциональна массе тела и квадрату его скорости. Потенциальной энергией обладают взаимодействующие между собой тела. Потенциальная энергия тела, взаимодействующего с Землёй, прямо пропорциональна его массе и расстоянию между
ним и поверхностью Земли.

Сумма кинетической и потенциальной энергии тела называется его полной механической энергией . Таким образом, полная механическая энергия зависит от скорости движения тела и от его положения относительно того тела, с которым оно взаимодействует.

Если тело обладает энергией, то оно может совершить работу. При совершении работы энергия тела изменяется. Значение работы равно изменению энергии .

2. Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать воздух (рис. 67), то через какое-то время пробка из банки вылетит и в банке образуется туман.

Это объясняется тем, что в воздухе, находящемся в банке, присутствует водяной пар, образующийся при испарении воды. Появление тумана означает, что пар превратился в воду, т.е. сконденсировался, а это может происходить при понижении температуры. Следовательно, температура воздуха в банке понизилась.

Причина этого следующая. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

3. Внутренней энергией тела называют сумму кинетической энергии движения его молекул и потенциальной энергии их взаимодействия.

Кинетической энергией ​\((E_к) \) ​ молекулы обладают, так как они находятся в движении, а потенциальной энергией \((E_п) \) , поскольку они взаимодействуют.

Внутреннюю энергию обозначают буквой ​\(U \) ​. Единицей внутренней энергии является 1 джоуль (1 Дж).

\[ U=E_к+E_п \]

4. Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутренняя энергия тела не зависит от его движения как целого и от его взаимодействия с другими телами. Так, внутренняя энергия мяча, лежащего на столе и на полу, одинакова, так же как и мяча, неподвижного и катящегося по полу (если, конечно, пренебречь сопротивлением его движению).

Об изменении внутренней энергии можно судить по значению совершённой работы. Кроме того, поскольку внутренняя энергия тела зависит от его температуры, то по изменению температуры тела можно судить об изменении его внутренней энергии.

5. Внутреннюю энергию можно изменить при совершении работы. Так, в описанном опыте внутренняя энергия воздуха и паров воды в банке уменьшалась при совершении ими работы по выталкиванию пробки. Температура воздуха и паров воды при этом понижалась, о чём свидетельствовало появление тумана.

Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В этом случае работа не совершается, однако внутренняя энергия горячей воды уменьшается, о чем и свидетельствует понижение её температуры.

Поскольку вначале температура горячей воды была выше температуры холодной воды, то и внутренняя энергия горячей воды больше. А это значит, что молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи .

Теплопередачей называется способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Часть 1

1. Внутренняя энергия газа в запаянном сосуде постоянного объёма определяется

1) хаотическим движением молекул газа
2) движением всего сосуда с газом
3) взаимодействием сосуда с газом и Земли
4) действием на сосуд с газом внешних сил

2. Внутренняя энергия тела зависит от

A) массы тела
Б) положения тела относительно поверхности Земли
B) скорости движения тела (при отсутствии трения)

Правильный ответ

1) только А
2) только Б
3) только В
4) только Б и В

3. Внутренняя энергия тела не зависит от

A) температуры тела
Б) массы тела
B) положения тела относительно поверхности Земли

Правильный ответ

1) только А
2) только Б
3) только В
4) только А и Б

4. Как изменяется внутренняя энергия тела при его нагревании?

1) увеличивается
2) уменьшается
3) у газов увеличивается, у твёрдых и жидких тел не изменяется
4) у газов не изменяется, у твёрдых и жидких тел увеличивается

5. Внутренняя энергия монеты увеличивается, если её

1) нагреть в горячей воде
2) опустить в воду такой же температуры
3) заставить двигаться с некоторой скоростью
4) поднять над поверхностью Земли

6. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится на полке, висящей на высоте 80 см относительно стола. Внутренняя энергия стакана с водой на столе равна

1) внутренней энергии воды на полке
2) больше внутренней энергии воды на полке
3) меньше внутренней энергии воды на полке
4) равна нулю

7. После того как горячую деталь опустят в холодную воду, внутренняя энергия

1) и детали, и воды будет увеличиваться
2) и детали, и воды будет уменьшаться
3) детали будет уменьшаться, а воды увеличиваться
4) детали будет увеличиваться, а воды уменьшаться

8. Один стакан с водой стоит на столе в комнате, а другой стакан с водой такой же массы и такой же температуры находится в самолете, летящем со скоростью 800 км/ч. Внутренняя энергия воды в самолёте

1) равна внутренней энергии воды в комнате
2) больше внутренней энергии воды в комнате
3) меньше внутренней энергии воды в комнате
4) равна нулю

9. После того как в чашку, стоящую на столе, налили горячую воду, внутренняя энергия

1) чашки и воды увеличилась
2) чашки и воды уменьшилась
3) чашки уменьшилась, а воды увеличилась
4) чашки увеличилась, а воды уменьшилась

10. Температуру тела можно повысить, если

А. Совершить над ним работу.
Б. Сообщить ему некоторое количество теплоты.

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

11. Свинцовый шарик охлаждают в холодильнике. Как при этом меняются внутренняя энергия шарика, его масса и плотность вещества шарика? Для каждой физической величины определите соответствующий характер изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) внутренняя энергия
Б) масса
B) плотность

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

12. В бутыль, плотно закрытую пробкой, закачивают насосом воздух. В какой-то момент пробка вылетает из бутыли. Что при этом происходит с объёмом воздуха, его внутренней энергией и температурой? Для каждой физической величины определите характер её изменения. Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) объём
Б) внутренняя энергия
B) температура

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличивается
2) уменьшается
3) не изменяется

Ответы

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Внутренняя энергия тела не может являться постоянной величиной. Она может изменяться у любого тела. Если повысить температуру тела, то его внутренняя энергия увеличится, т.к. увеличится средняя скорость движения молекул. Таким образом, увеличивается кинетическая энергия молекул тела. И, наоборот, при понижении температуры, внутренняя энергия тела уменьшается.

Можно сделать вывод: внутренняя энергия тела изменяется, если меняется скорость движения молекул. Попытаемся определить, каким методом можно увеличить или уменьшить скорость передвижения молекул. Рассмотрим следующий опыт. Закрепим на подставке латунную трубку с тонкими стенками. Наполним трубку эфиром и закроем его пробкой. Затем обвяжем его веревкой и начнем интенсивно двигать веревкой в разные стороны. Спустя определенное время, эфир закипит, и сила пара вытолкнет пробку. Опыт демонстрирует, что внутренняя энергия вещества (эфира) возросла: ведь он изменил свою температуру, при этом закипев.

Увеличение внутренней энергии произошло за счет совершения работы при натирании трубкой веревкой.

Как мы знаем, нагревание тел может происходить и при ударах, сгибании или разгибании, говоря проще, при деформации. Во всех приведенных примерах, внутренняя энергия тела возрастает.

Таким образом, внутреннюю энергию тела можно увеличить, совершая над телом работу.

Если же работу выполняет само тело, его внутренняя энергия уменьшается.

Рассмотрим еще один опыт.

В стеклянный сосуд, у которого толстые стенки и он закрыт пробкой, накачаем воздух через специально проделанное отверстие в ней.

Спустя некоторое время пробка вылетит из сосуда. В тот момент, когда пробка вылетает из сосуда, мы сможем увидеть образование тумана. Следовательно, его образование обозначает, что воздух в сосуде стал холодным. Сжатый воздух, который находится в сосуде, при выталкивании пробки наружу совершает определенную работу. Данную работу он выполняет за счет своей внутренней энергии, которая при этом сокращается. Делать выводы об уменьшении внутренней энергии можно исходя из охлаждения воздуха в сосуде. Таким образом, внутреннюю энергию тела можно изменять путем совершения определенной работы.

Однако, внутреннюю энергию возможно изменить и иным способом, без совершения работы. Рассмотрим пример, вода в чайнике, который стоит на плите закипает. Воздух, а также другие предметы в помещении нагреваются от радиатора центрального направления. В подобных случаях, внутренняя энергия увеличивается, т.к. увеличивается температура тел. Но работа при этом не совершается. Значит, делаем вывод, изменение внутренней энергии может произойти не из-за совершения определенной работы.

Рассмотрим еще один пример.

В стакан с водой опустим металлическую спицу. Кинетическая энергия молекул горячей воды, больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. Таким образом, энергия молекул воды будет определенным образом уменьшаться, тем временем как энергия частиц металла будет повышаться. Температуры воды понизится, а температуры спицы не спеша, будет увеличиваться. В дальнейшем, разница между температурой спицы и воды исчезнет. За счет этого опыта мы увидели изменение внутренней энергии различных тел. Делаем вывод: внутренняя энергия различных тел изменяется за счет теплопередачи.

Процесс преобразования внутренней энергии без совершения определенной работы над телом или самим телом называется теплопередачей.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.