Ясно, что каждое событие обладает той или иной степенью возможности своего наступления (своей реализации). Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называется вероятностью события.

Вероятность события – есть численная мера степени объективной возможности наступления этого события.

Рассмотрим стохастический эксперимент и случайное событие А, наблюдаемое в этом эксперименте. Повторим этот эксперимент n раз и пусть m(A) – число экспериментов, в которых событие А произошло.

Отношение (1.1)

называется относительной частотой события А в проведенной серии экспериментов.

Легко убедиться в справедливости свойств:

если А и В несовместны (АВ= ), то ν(А+В) = ν(А) + ν(В) (1.2)

Относительная частота определяется только после проведения серии экспериментов и, вообще говоря, может меняться от серии к серии. Однако опыт показывает, что во многих случаях при увеличении числа опытов относительная частота приближается к некоторому числу. Этот факт устойчивости относительной частоты неоднократно проверялся и может считаться экспериментально установленным.

Пример 1.19. . Если бросить одну монету, никто не сможет предсказать, какой стороной она упадет кверху. Но если бросить две тонны монет, то каждый скажет, что примерно одна тонна упадет кверху гербом, то есть относительная частота выпадения герба примерно равна 0,5.

Если при увеличении числа опытов относительная частота события ν(А) стремится к некоторому фиксированному числу, то говорят, что событие А статистически устойчиво , а это число называют вероятностью события А.

Вероятностью события А называется некоторое фиксированное число Р(А), к которому стремится относительная частота ν(А) этого события при увеличении числа опытов, то есть,

Это определение называют статистическим определением вероятности .

Рассмотрим некий стохастический эксперимент и пусть пространство его элементарных событий состоит из конечного или бесконечного (но счетного) множества элементарных событий ω 1 , ω 2 , …, ω i , … . предположим, что каждому элементарному событию ω i прописан некоторое число - р i , характеризующее степень возможности появления данного элементарного события и удовлетворяющее следующим свойствам:

Такое число p i называется вероятностью элементарного события ω i .

Пусть теперь А- случайное событие, наблюдаемое в этом опыте, и ему соответствует некоторое множество

В такой постановке вероятностью события А называют сумму вероятностей элементарных событий, благоприятствующих А (входящих в соответствующее множество А):


(1.4)

Введенная таким образом вероятность обладает теми же свойствами, что и относительная частота, а именно:

И если АВ= (А и В несовместны),

то P(А+В) = P(А) + P(В)

Действительно, согласно (1.4)

В последнем соотношении мы воспользовались тем, что ни одно элементарное событие не может благоприятствовать одновременно двум несовместным событиям.

Особо отметим, что теория вероятностей не указывает способов определения р i , их надо искать из соображений практического характера или получать из соответствующего статистического эксперимента.

В качестве примера рассмотрим классическую схему теории вероятностей. Для этого рассмотрим стохастический эксперимент, пространство элементарных событий которого состоит из конечного (n) числа элементов. Предположим дополнительно, что все эти элементарные события равновозможны, то есть вероятности элементарных событий равны p(ω i)=p i =p. Отсюда следует, что

Пример 1.20 . При бросании симметричной монеты выпадение герба и «решки» равновозможны, их вероятности равны 0,5.

Пример 1.21 . При бросании симметричного кубика все грани равновозможны, их вероятности равны 1/6.

Пусть теперь событию А благоприятствует m элементарных событий, их обычно называют исходами, благоприятствующими событию А . Тогда

Получили классическое определение вероятности : вероятность Р(А) события А равна отношению числа исходов, благоприятствующих событию А, к общему числу исходов

Пример 1.22 . В урне лежит m белых шаров и n черных. Чему равна вероятность вытащить белый шар?

Решение . Всего элементарных событий m+n. Они все равновероятны. Благоприятствующих событию А из них m. Следовательно, .

Из определения вероятности вытекают следующие ее свойства:

Свойство 1 . Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует собы­тию. В этом случае т=п, следовательно,

P(A)=m/n=n/n=1. (1.6)

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае т = 0, следовательно, P(A)=m/n=0/n=0. (1.7)

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испы­тания. То есть, 0≤m≤n, значит, 0≤m/n≤1, следовательно, вероятность любого события удовлетворяет двойному неравенству 0≤P(A) 1. (1.8)

Сопоставляя определения вероятности (1.5) и относительной частоты (1.1), заключаем: определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически . Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Однако, вычисление вероятности требует наличия предварительной информации о количестве или вероятностях благоприятствующих данному событию элементарных исходов. В случае отсутствия такой предварительной информации для определения вероятности прибегают к эмпирическим данным, то есть, по результатам стохастического эксперимента определяют относительную частоту события.

Пример 1.23 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей r (А) = 3/80.

Пример 1.24 . По цели.произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели. r (А) =19/24.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа. Оказалось, что это постоянное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной частотой и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 1.25 . По данным шведской статистики, относительная частота рождения девочек за 1935 г. по месяцам характеризуется сле­дующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0.471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473

Относительная частота колеблется около числа 0,481, которое можно принять за приближеннее значение вероятности рождения девочек.

Заметим, что статистические данные различных стран дают примерно то же значение относительной частоты.

Пример 1.26. Многократно проводились опыты бросания монеты, в которых подсчитывали число появление «герба». Результаты нескольких опытов приведены в таблице.

Знать, как оценить вероятность того или иного события на основе коэффициентов, крайне важно для выбора правильной ставки. Если вы не понимаете, как перевести букмекерский коэффициент в вероятность, то никогда не сможете определить, как соотносится букмекерский коэффициент с реальными шансами того, что событие состоится. Следует понимать, если вероятность события по версии букмекеров ниже, чем вероятность этого же события по вашей собственной версии, ставка на это событие будет ценной. Сравнить коэффициенты на разные события можно на сайте Odds.ru .

1.1. Типы коэффициентов

Букмекерские конторы, как правило, предлагают три типа коэффициентов – десятичный, дробный и американский. Разберем каждую из разновидностей.

1.2. Десятичные коэффициенты

Десятичные коэффициенты при умножении на размер ставки позволяют рассчитать всю сумму, которую вы получите на руки в случае выигрыша. К примеру, если вы поставили 1 доллар на коэффициент 1,80, в случае выигрыша вы получите 1 доллар 80 центов (1 доллар – возвращенная сумма ставки, 0,80 – выигрыш по ставке, он же ваша чистая прибыль).

То есть вероятность исхода, по версии букмекеров, составляет 55%.

1.3. Дробные коэффициенты

Дробные коэффициенты – наиболее традиционный вид коэффициентов. В числителе показана потенциальная сумма чистого выигрыша. В знаменателе – сумма ставки, которую нужно сделать, чтобы этот самый выигрыш получить. К примеру, коэффициент 7/2 означает, что для того, чтобы получить чистый выигрыш в размере 7 долларов, вам необходимо поставить 2 доллара.

Для того чтобы рассчитать вероятность события на основе десятичного коэффициента, следует провести простые вычисления – знаменатель разделить на сумму числителя и знаменателя. Для вышеобозначенного коэффициента 7/2 расчет будет таким:

2 / (7+2) = 2 / 9 = 0,22

То есть вероятность исхода, по версии букмекеров, составляет 22%.

1.4. Американские коэффициенты

Данный вид коэффициентов популярен в Северной Америке. На первый взгляд, они кажутся довольно сложными и непонятными, но не стоит пугаться. Понимание американских коэффициентов может вам пригодиться, например, при игре в американских казино, для понимания котировок, демонстрируемых в североамериканских спортивных трансляциях. Разберем, как оценить вероятность исхода на основе американских коэффициентов.

В первую очередь надо понимать, что американские коэффициенты бывают положительными и отрицательными. Отрицательный американский коэффициент всегда идет в формате, к примеру, «-150». Это означает, что для того, чтобы получить 100 долларов чистой прибыли (выигрыш), необходимо поставить 150 долларов.

Положительный американский коэффициент рассчитывается наоборот. К примеру, у нас есть коэффициент «+120». Это означает, что для того, чтобы получить 120 долларов чистой прибыли (выигрыш), вам необходимо поставить 100 долларов.

Расчет вероятности на основе отрицательных американских коэффициентов делается по следующей формуле:

(-(отрицательный американский коэффициент)) / ((-(отрицательный американский коэффициент)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

То есть вероятность события, на которое дается отрицательный американский коэффициент «-150», составляет 60%.

Теперь рассмотрим аналогичные вычисления для положительного американского коэффициента. Вероятность в этом случае рассчитывается по следующей формуле:

100 / (положительный американский коэффициент + 100)

100 / (120 + 100) = 100 / 220 = 0.45

То есть вероятность события, на которое дается положительный американский коэффициент «+120», составляет 45%.

1.5. Как переводить коэффициенты из одного формата в другой?

Умение переводить коэффициенты из одного формата в другой может впоследствии сослужить вам хорошую службу. Как ни странно, до сих пор есть конторы, в которых коэффициенты не конвертируются и показаны лишь в одном, непривычном для нас формате. Рассмотрим на примерах, как это делать. Но для начала нам надо научиться вычислять вероятность исхода на основе данного нам коэффициента.

1.6. Как на основе вероятности рассчитать десятичный коэффициент?

Здесь все очень просто. Необходимо 100 разделить на вероятность события в процентном отношении. То есть, если предполагаемая вероятность события составляет 60%, вам надо:

При предполагаемой вероятности события в 60% десятичный коэффициент будет составлять 1,66.

1.7. Как на основе вероятности рассчитать дробный коэффициент?

В данном случае необходимо 100 разделить на вероятность события и от полученного результата отнять единицу. К примеру, вероятность события составляет 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

То есть мы получаем дробный коэффициент 1,5/1 или, для удобства счета, – 3/2.

1.8. Как на основе вероятного исхода рассчитать американский коэффициент?

Здесь многое будет зависеть от вероятности события – будет ли она более 50% или менее. Если вероятность события более 50%, то расчет будет производиться по такой формуле:

— ((вероятность) / (100 — вероятность)) * 100

Например, если вероятность события составляет 80%, то:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

При предполагаемой вероятности события в 80% мы получили отрицательный американский коэффициент «-400».

Если вероятность события менее 50 процентов, то формула будет следующей:

((100 — вероятность) / вероятность) * 100

Например, если вероятность события составляет 40%, то:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

При предполагаемой вероятности события в 40% мы получили положительный американский коэффициент «+150».

Эти вычисления помогут вам лучше понять концепцию ставок и коэффициентов, научиться оценивать истинную стоимость той или иной ставки.

Фактически формулы (1) и (2) это краткая запись условной вероятности на основе таблицы сопряженности признаков. Вернемся к примеру, рассмотренному (рис. 1). Предположим, что нам стало известно, будто некая семья собирается купить широкоэкранный телевизор. Какова вероятность того, что эта семья действительно купит такой телевизор?

Рис. 1. Поведение покупателей широкоэкранных телевизоров

В данном случае нам необходимо вычислить условную вероятность Р (покупка совершена | покупка планировалась). Поскольку нам известно, что семья планирует покупку, выборочное пространство состоит не из всех 1000 семей, а только из тех, которые планируют покупку широкоэкранного телевизора. Из 250 таких семей 200 действительно купили этот телевизор. Следовательно, вероятность того, что семья действительно купит широкоэкранный телевизор, если она это запланировала, можно вычислить по следующей формуле:

Р (покупка совершена | покупка планировалась) = количество семей, планировавших и купивших широкоэкранный телевизор / количество семей, планировавших купить широкоэкранный телевизор = 200 / 250 = 0,8

Этот же результат дает формула (2):

где событие А заключается в том, что семья планирует покупку широкоформатного телевизора, а событие В - в том, что она его действительно купит. Подставляя в формулу реальные данные, получаем:

Дерево решений

На рис. 1 семьи разделены на четыре категории: планировавшие покупку широкоэкранного телевизора и не планировавшие, а также купившие такой телевизор и не купившие. Аналогичную классификацию можно выполнить с помощью дерева решений (рис. 2). Дерево, изображенное на рис. 2, имеет две ветви, соответствующие семьям, которые планировали приобрести широкоэкранный телевизор, и семьям, которые не делали этого. Каждая из этих ветвей разделяется на две дополнительные ветви, соответствующие семьям, купившим и не купившим широкоэкранный телевизор. Вероятности, записанные на концах двух основных ветвей, являются безусловными вероятностями событий А и А’ . Вероятности, записанные на концах четырех дополнительных ветвей, являются условными вероятностями каждой комбинации событий А и В . Условные вероятности вычисляются путем деления совместной вероятности событий на соответствующую безусловную вероятность каждого из них.

Рис. 2. Дерево решений

Например, чтобы вычислить вероятность того, что семья купит широкоэкранный телевизор, если она запланировала сделать это, следует определить вероятность события покупка запланирована и совершена , а затем поделить его на вероятность события покупка запланирована . Перемещаясь по дереву решения, изображенному на рис. 2, получаем следующий (аналогичный предыдущему) ответ:

Статистическая независимость

В примере с покупкой широкоэкранного телевизора вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор при условии, что она планировала это сделать, равна 200/250 = 0,8. Напомним, что безусловная вероятность того, что случайно выбранная семья приобрела широкоэкранный телевизор, равна 300/1000 = 0,3. Отсюда следует очень важный вывод. Априорная информация о том, что семья планировала покупку, влияет на вероятность самой покупки. Иначе говоря, эти два события зависят друг от друга. В противоположность этому примеру, существуют статистически независимые события, вероятности которых не зависят друг от друга. Статистическая независимость выражается тождеством: Р(А|В) = Р(А) , где Р(А|В) - вероятность события А при условии, что произошло событие В , Р(А) - безусловная вероятность события А.

Обратите внимание на то, что события А и В Р(А|В) = Р(А) . Если в таблице сопряженности признаков, имеющей размер 2×2, это условие выполняется хотя бы для одной комбинации событий А и В , оно будет справедливым и для любой другой комбинации. В нашем примере события покупка запланирована и покупка совершена не являются статистически независимыми, поскольку информация об одном событии влияет на вероятность другого.

Рассмотрим пример, в котором показано, как проверить статистическую независимость двух событий. Спросим у 300 семей, купивших широкоформатный телевизор, довольны ли они своей покупкой (рис. 3). Определите, связаны ли между собой степень удовлетворенности покупкой и тип телевизора.

Рис. 3. Данные, характеризующие степень удовлетворенности покупателей широкоэкранных телевизоров

Судя по этим данным,

В то же время,

Р (покупатель удовлетворен) = 240 / 300 = 0,80

Следовательно, вероятность того, что покупатель удовлетворен покупкой, и того, что семья купила HDTV-телевизор, равны между собой, и эти события являются статистически независимыми, поскольку никак не связаны между собой.

Правило умножения вероятностей

Формула для вычисления условной вероятности позволяет определить вероятность совместного события А и В . Разрешив формулу (1)

относительно совместной вероятности Р(А и В) , получаем общее, правило умножения вероятностей. Вероятность события А и В равна вероятности события А при условии, что наступило событие В В :

(3) Р(А и В) = Р(А|В) * Р(В)

Рассмотрим в качестве примера 80 семей, купивших широкоэкранный HDTV-телевизор (рис. 3). В таблице указано, что 64 семьи удовлетворены покупкой и 16 - нет. Предположим, что среди них случайным образом выбираются две семьи. Определите вероятность, что оба покупателя окажутся довольными. Используя формулу (3), получаем:

Р(А и В) = Р(А|В) * Р(В)

где событие А заключается в том, что вторая семья удовлетворена своей покупкой, а событие В - в том, что первая семья удовлетворена своей покупкой. Вероятность того, что первая семья удовлетворена своей покупкой, равна 64/80. Однако вероятность того, что вторая семья также удовлетворена своей покупкой, зависит от ответа первой семьи. Если первая семья после опроса не возвращается в выборку (выбор без возвращения), количество респондентов снижается до 79. Если первая семья оказалась удовлетворенной своей покупкой, вероятность того, что вторая семья также будет довольна, равна 63/79, поскольку в выборке осталось только 63 семьи, удовлетворенные своим приобретением. Таким образом, подставляя в формулу (3) конкретные данные, получим следующий ответ:

Р(А и В) = (63/79)(64/80) = 0,638.

Следовательно, вероятность того, что обе семьи довольны своими покупками, равна 63,8%.

Предположим, что после опроса первая семья возвращается в выборку. Определите вероятность того, что обе семьи окажутся довольными своей покупкой. В этом случае вероятности того, что обе семьи удовлетворены своей покупкой одинаковы, и равны 64/80. Следовательно, Р(А и В) = (64/80)(64/80) = 0,64. Таким образом, вероятность того, что обе семьи довольны своими покупками, равна 64,0%. Этот пример показывает, что выбор второй семьи не зависит от выбора первой. Таким образом, заменяя в формуле (3) условную вероятность Р(А|В) вероятностью Р(А) , мы получаем формулу умножения вероятностей независимых событий.

Правило умножения вероятностей независимых событий. Если события А и В являются статистически независимыми, вероятность события А и В равна вероятности события А , умноженной на вероятность события В .

(4) Р(А и В) = Р(А)Р(В)

Если это правило выполняется для событий А и В , значит, они являются статистически независимыми. Таким образом, существуют два способа определить статистическую независимость двух событий:

  1. События А и В являются статистически независимыми друг от друга тогда и только тогда, когда Р(А|В) = Р(А) .
  2. События А и B являются статистически независимыми друг от друга тогда и только тогда, когда Р(А и В) = Р(А)Р(В) .

Если в таблице сопряженности признаков, имеющей размер 2×2, одно из этих условий выполняется хотя бы для одной комбинации событий А и B , оно будет справедливым и для любой другой комбинации.

Безусловная вероятность элементарного события

(5) Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2) + … + P(A|B k)Р(B k)

где события B 1 , B 2 , … B k являются взаимоисключающими и исчерпывающими.

Проиллюстрируем применение этой формулы на примере рис.1. Используя формулу (5), получаем:

Р(А) = P(A|B 1)Р(B 1) + P(A|B 2)Р(B 2)

где Р(А) - вероятность того, что покупка планировалась, Р(В 1) - вероятность того, что покупка совершена, Р(В 2) - вероятность того, что покупка не совершена.

ТЕОРЕМА БАЙЕСА

Условная вероятность события учитывает информацию о том, что произошло некое другое событие. Этот подход можно использовать как для уточнения вероятности с учетом вновь поступившей информации, так и для вычисления вероятности, что наблюдаемый эффект является следствием некоей конкретной причины. Процедура уточнения этих вероятностей называется теоремой Байеса. Впервые она была разработана Томасом Байесом в 18 веке.

Предположим, что компания, упомянутая выше, исследует рынок сбыта новой модели телевизора. В прошлом 40% телевизоров, созданных компанией, пользовались успехом, а 60% моделей признания не получили. Прежде чем объявить о выпуске новой модели, специалисты по маркетингу тщательно исследуют рынок и фиксируют спрос. В прошлом успех 80% моделей, получивших признание, прогнозировался заранее, в то же время 30% благоприятных прогнозов оказались неверными. Для новой модели отдел маркетинга дал благоприятный прогноз. Какова вероятность того, что новая модель телевизора будет пользоваться спросом?

Теорему Байеса можно вывести из определений условной вероятности (1) и (2). Чтобы вычислить вероятность Р(В|А), возьмем формулу (2):

и подставим вместо Р(А и В) значение из формулы (3):

Р(А и В) = Р(А|В) * Р(В)

Подставляя вместо Р(А) формулу (5), получаем теорему Байеса:

где события B 1 , В 2 , … В k являются взаимоисключающими и исчерпывающими.

Введем следующие обозначения: событие S - телевизор пользуется спросом , событие S’ - телевизор не пользуется спросом , событие F - благоприятный прогноз , событие F’ - неблагоприятный прогноз . Допустим, что P(S) = 0,4, P(S’) = 0,6, P(F|S) = 0,8, P(F|S’) = 0,3. Применяя теорему Байеса получаем:

Вероятность спроса на новую модель телевизора при условии благоприятного прогноза равна 0,64. Таким образом, вероятность отсутствия спроса при условии благоприятного прогноза равна 1–0,64=0,36. Процесс вычислений представлен на рис. 4.

Рис. 4. (а) Вычисления по формуле Байеса для оценки вероятности спроса телевизоров; (б) Дерево решения при исследовании спроса на новую модель телевизора

Рассмотрим пример применения теоремы Байеса для медицинской диагностики. Вероятность того, что человек страдает от определенного заболевания, равна 0,03. Медицинский тест позволяет проверить, так ли это. Если человек действительно болен, вероятность точного диагноза (утверждающего, что человек болен, когда он действительно болен) равна 0,9. Если человек здоров, вероятность ложноположительного диагноза (утверждающего, что человек болен, когда он здоров) равна 0,02. Допустим, что медицинский тест дал положительный результат. Какова вероятность того, что человек действительно болен? Какова вероятность точного диагноза?

Введем следующие обозначения: событие D - человек болен , событие D’ - человек здоров , событие Т - диагноз положительный , событие Т’ - диагноз отрицательный . Из условия задачи следует, что Р(D) = 0,03, P(D’) = 0,97, Р(T|D) = 0,90, P(T|D’) = 0,02. Применяя формулу (6), получаем:

Вероятность того, что при положительном диагнозе человек действительно болен, равна 0,582 (см. также рис. 5). Обратите внимание на то, что знаменатель формулы Байеса равен вероятности положительного диагноза, т.е. 0,0464.

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Вероятность наступления события в некотором испытании равна отношению , где:

Общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

Количество элементарных исходов, благоприятствующих событию .

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

Извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30-ти шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: - из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
- вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность. Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

Из урны будет извлечён красный шар;
- из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию - 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

На практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
- вероятность того, то из урны будет извлечён белый шар;
- вероятность того, то из урны будет извлечён красный шар;
- вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?


Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них - ноль, а другая - нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль - это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр - ноль, а другая цифра - нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:

01, 03, 05, 07, 09

10, 30, 50, 70, 90

И подсчитываем их - всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
- вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин - код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр - то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже - большее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;

б) не более четырёх очков;

в) от 3-х до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где - цифра, выпавшая на 1-м кубике, - цифра, выпавшая на 2-м кубике.

Например:

На первом кубике выпало 3 очка, на втором - 5 очков, сумма очков: 3 + 5 = 8;
- на первом кубике выпало 6 очков, на втором - 1 очко, сумма очков: 6 + 1 = 7;
- на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую - две «шестёрки».

а) Рассмотрим событие: - при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
- искомая вероятность.

б) Рассмотрим событие: - выпадет не более 4-х очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия - подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
- вероятность того, что выпадет не более 4-х очков.

в) Рассмотрим событие: - выпадет от 3-х до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : - выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
- вероятность того, что выпадет меньше трёх или больше 9-ти очков.

Особо щепетильные люди могут перечислить все 29 пар, выполнив тем самым проверку.

Ответ :

В следующей задаче повторим таблицу умножения:

Задача 6

Найти вероятность того, что при броске двух игральных костей произведение очков:

а) будет равно семи;

б) окажется не менее 20-ти;

в) будет чётным.

Краткое решение и ответ в конце урока.

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах;

б) двое выйдут на одном этаже;

в) все выйдут на одном этаже.

Решение : вычислим общее количество исходов: способами может выйти из лифта 1-й пассажир и способами - 2-й пассажир и способами - третий пассажир. По правилу умножения комбинаций: возможных исходов. То есть, каждый этаж выхода 1-го человека может комбинироваться с каждым этажом выхода 2-го человека и с каждым этажом выхода 3-го человека.

Второй способ основан на размещениях с повторениями :
- кому как понятнее.

а) Рассмотрим событие: - пассажиры выйдут на разных этажах. Вычислим количество благоприятствующих исходов:
способами могут выйти 3 пассажира на разных этажах. Рассуждения по формуле проведите самостоятельно.

По классическому определению:

в) Рассмотрим событие: - пассажиры выйдут на одном этаже. Данному событию благоприятствуют исходов и по классическому определению, соответствующая вероятность: .

Заходим с чёрного хода:

б) Рассмотрим событие: - два человека выйдут на одном этаже (и, соответственно, третий - на другом) .

События образуют полную группу (считаем, что в лифте никто не уснёт и лифт не застрянет , а значит, .

В результате, искомая вероятность:

Таким образом, теорема о сложении вероятностей событий, образующих полную группу , может быть не только удобной, но и стать самой настоящей палочкой-выручалочкой!

Ответ :

Когда получаются большие дроби, то хорошим тоном будет указать их приближенные десятичные значения. Обычно округляют до 2-3-4-х знаков после запятой.

Поскольку события пунктов «а», «бэ», «вэ» образуют полную группу, то есть смысл выполнить контрольную проверку, причём, лучше с приближенными значениями:

Что и требовалось проверить.

Иногда по причине погрешности округлений может получиться 0,9999 либо 1,0001, в этом случае одно из приближенных значений следуют «подогнать» так, чтобы в сумме нарисовалась «чистая» единица.

Самостоятельно:

Задача 8

Подбрасывается 10 монет. Найти вероятность того, что:

а) на всех монетах выпадет орёл;

б) на 9 монетах выпадет орёл, а на одной - решка;

в) орёл выпадет на половине монет.

Задача 9

На семиместную скамейку случайным образом рассаживается 7 человек. Какова вероятность того, что два определённых человека окажутся рядом?

Решение : с общим количеством исходов проблем не возникает:
способами могут рассесться 7 человек на скамейке.

Но вот как подсчитать количество благоприятствующих исходов? Тривиальные формулы не подходят и единственный путь - это логические рассуждения. Сначала рассмотрим ситуацию, когда Саша и Маша оказались рядом на левом краю скамейки:

Очевидно, что порядок имеет значение: слева может сидеть Саша, справа Маша и наоборот. Но это ещё не всё - для каждого из этих двух случаев остальные люди могут рассесться на свободных местах способами. Выражаясь комбинаторно, Сашу и Машу можно переставить на соседних местах способами и для каждой такой перестановки других людей можно переставить способами.

Таким образом, по правилу умножения комбинаций, выходит благоприятствующих исходов.

Но и это ещё не всё! Перечисленные факты справедливы для каждой пары соседних мест:

Интересно отметить, что если скамейку «скруглить» (соединяя левое и правое место) , то образуется дополнительная, седьмая пара соседних мест. Но не будем отвлекаться. Согласно тому же принципу умножения комбинаций, получаем окончательное количество благоприятствующих исходов:

По классическому определению:
- вероятность того, что два определённых человека окажутся рядом.

Ответ :

Задача 10

На шахматную доску из 64 клеток ставят наудачу две ладьи белого и чёрного цвета. С какой вероятностью они не будут «бить» друг друга?

Справка : шахматная доска имеет размер клеток; черная и белая ладьи «бьют» друг друга, когда располагаются на одной горизонтали или на одной вертикали

Обязательно выполните схематический чертёж доски, а ещё лучше, если неподалёку есть шахматы. Одно дело рассуждения на бумаге, и совсем другое - когда расставляешь фигуры собственными руками.

Задача 11

Какова вероятность того, что в четырех сданных картах будет один туз и один король?

Вычислим общее количество исходов. Сколькими способами можно извлечь 4 карты из колоды? Наверное, все поняли, что речь идёт о количестве сочетаний :
способами можно выбрать 4 карты из колоды.

Теперь считаем благоприятствующие исходы. По условию, в выборке из 4-х карт должен быть один туз, один король и, о чём не сказано открытым текстом, - две другие карты :

Способами можно извлечь одного туза;
способами можно выбрать одного короля.

Исключаем из рассмотрения тузов и королей: 36 - 4 - 4 = 28

способами можно извлечь две другие карты.

По правилу умножения комбинаций:
способами можно извлечь искомую комбинацию карт (1-го туза и 1-го короля и две другие карты).

Прокомментирую комбинационный смысл записи другим способом:
каждый туз комбинируется с каждым королем и с каждой возможной парой других карт.

По классическому определению:
- вероятность того, что среди четырех сданных карт будет один туз и один король.

Если хватает времени и терпения, максимально сокращайте большие дроби.

Ответ :

Более простая задача для самостоятельного решения:

Задача 12

В ящике находится 15 качественных и 5 бракованных деталей. Наудачу извлекаются 2 детали.

Найти вероятность того, что:

а) обе детали будут качественными;

б) одна деталь будет качественной, а одна - бракованной;

в) обе детали бракованны.

События перечисленных пунктов образуют полную группу, поэтому проверка здесь напрашивается сама собой. Краткое решение и ответ в конце урока. А вообще, всё самое интересное только начинается!

Задача 13

Студент знает ответы на 25 экзаменационных вопросов из 60-ти. Какова вероятность сдать экзамен, если для этого необходимо ответить не менее чем на 2 из 3-х вопросов?

Решение : итак, расклад таков: всего 60 вопросов, среди которых 25 «хороших» и, соответственно, 60 - 25 = 35 «плохих». Ситуация шаткая и не в пользу студента. Давайте узнаем, насколько хороши его шансы:

способами можно выбрать 3 вопроса из 60-ти (общее количество исходов) .

Для того чтобы сдать экзамен, нужно ответить на 2 или 3 вопроса. Считаем благоприятствующие комбинации:

Способами можно выбрать 2 «хороших» вопроса и один «плохой»;

способами можно выбрать 3 «хороших» вопроса.

По правилу сложения комбинаций :
способами можно выбрать благоприятствующую для сдачи экзамена комбинацию 3-х вопросов (без разницы с двумя или тремя «хорошими» вопросами) .

По классическому определению:

Ответ :

Задача 14

Игроку в покер сдаётся 5 карт. Найти вероятность того, что:

а) среди этих карт будет пара десяток и пара валетов;
б) игроку будет сдан флеш (5 карт одной масти);
в) игроку будет сдано каре (4 карты одного номинала).

Какую из перечисленных комбинаций вероятнее всего получить?

! Внимание! Если в условии задан подобный вопрос, то на него необходимо дать ответ.
Справка : в покер традиционно играют 52-х карточной колодой, которая содержит карты 4-х мастей номиналом от «двоек» до тузов.

Покер - игра самая что ни на есть математическая (кто играет, тот знает), в которой можно обладать заметным преимуществом перед менее квалифицированными соперниками.

Решения и ответы :

Задача 2: Решение : 30 - 5 = 25 холодильников не имеют дефекта.

- вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4-х мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):

7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558

Благоприятствующий исход один (правильный пин-код).

Таким образом, по классическому определению:
- вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2-х кубиках.

а) Рассмотрим событие: - при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов,
, т.е. это событие является невозможным.

б) Рассмотрим событие: - при броске двух игральных костей произведение очков окажется не менее 20-ти. Данному событию благоприятствуют следующие исходы:

Итого: 8

По классическому определению:

- искомая вероятность.

в) Рассмотрим противоположные события:

- произведение очков будет чётным;

- произведение очков будет нечётным.

Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.

По классическому определению вероятности:

Противоположные события образуют полную группу, поэтому:

- искомая вероятность.

Ответ :

Задача 8: Решение способами могут упасть 2 монеты.
Другой путь: способами может упасть 1-ая монета и способами может упасть 2-ая монета и и способами может упасть 10-ая монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: - на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: - на 9 монетах выпадет орёл, а на одной - решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: - орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Задача 10: Решение : вычислим общее количество исходов:
способами можно расставить двух ладей на доске.
Другой вариант оформления: способами можно выбрать две клетки шахматной доски и способами поставить белую и чёрную ладью в каждом из 2016 случаев. Таким образом, общее число исходов: .

Теперь подсчитаем исходы, в которых ладьи «бьют» друг друга. Рассмотрим 1-ую горизонталь. Очевидно, что фигуры можно расставить на ней произвольным образом, например, так:

Кроме того, ладей можно переставить. Придаём рассуждениям числовую форму: способами можно выбрать две клетки и способами переставить ладей в каждом из 28 случаев. Всего: возможных расположений фигур на горизонтали.
Короткая версия оформления: способами можно разместить белую и чёрную ладью на 1-й горизонтали.

Проведённые рассуждения справедливы для каждой горизонтали, поэтому количество комбинаций следует умножить на восемь: . Кроме того, аналогичная история справедлива для любой из восьми вертикалей. Вычислим итоговое количество расстановок, в которых фигуры «бьют» друг друга:

Тогда в оставшихся вариантах расстановки ладьи не будут «бить» друг друга:
4032 - 896 = 3136

По классическому определению вероятности:
- вероятность того, что наугад поставленные на доску белая и чёрная ладья не будут «бить» друг друга.

Ответ :

Задача 12: Решение : всего: 15 + 5 = 20 деталей в ящике. Вычислим общее число исходов:
способами можно извлечь 2 детали из ящика.
а) Рассмотрим событие: - обе извлечённые детали будут качественными.
способами можно извлечь 2 качественные детали.
По классическому определению вероятности:
б) Рассмотрим событие: - одна деталь будет качественной, а одна - бракованной.
способами можно извлечь 1 качественную деталь и 1 бракованную.
По классическому определению:
в) Рассмотрим событие: - обе извлечённые детали бракованны.
способами можно извлечь 2 бракованные детали.
По классическому определению:
Проверка : вычислим сумму вероятностей событий, образующих полную группу: , что и требовалось проверить.
Ответ :

А сейчас возьмём в руки уже знакомое и безотказное орудие учёбы - игральный кубик с полной группой событий , которые состоят в том, что при его броске выпадут 1, 2, 3, 4, 5 и 6 очков соответственно.

Рассмотрим событие - в результате броска игральной кости выпадет не менее пяти очков. Данное событие состоит в двух несовместных исходах: (выпадет 5 или 6 очков)
- вероятность того, что в результате броска игральной кости выпадет не менее пяти очков.

Рассмотрим событие , состоящее в том, что выпадет не более 4-х очков и найдем его вероятность. По теореме сложения вероятностей несовместных событий:

Возможно, некоторые читатели ещё не до конца осознали суть несовместности. Вдумаемся ещё раз: студент не может ответить на 2 вопроса из 3-х и в то же самое время ответить на все 3 вопроса. Таким образом, события и - несовместны.

Теперь, пользуясь классическим определением , найдём их вероятности:

Факт успешной сдачи экзамена выражается суммой (ответ на 2 вопроса из 3-х или на все вопросы) . По теореме сложения вероятностей несовместных событий:
- вероятность того, что студент сдаст экзамен.

Этот способ решения совершенно равноценен, выбирайте, какой больше нравится.

Задача 1

Магазин получил продукцию в ящиках с четырех оптовых складов: четыре с 1-го, пять со 2-го, семь с 3-го и четыре с 4-го. Случайным образом выбран ящик для продажи. Какова вероятность того, что это будет ящик с первого или третьего склада.

Решение : всего получено магазином: 4 + 5 + 7 + 4 = 20 ящиков.

В данной задаче удобнее воспользоваться «быстрым» способом оформления без расписывания событий большими латинскими буквами. По классическому определению:
- вероятность того, что для продажи будет выбран ящик с 1-го склада;
- вероятность того, что для продажи будет выбран ящик с 3-го склада.

По теореме сложения несовместных событий:
- вероятность того, что для продажи будет выбран ящик с первого или третьего склада.

Ответ : 0,55

Безусловно, задача разрешима и чисто через классическое определение вероятности путём непосредственного подсчёта кол-ва благоприятствующих исходов (4 + 7 = 11), но рассмотренный способ ничем не хуже. И даже чётче.

Задача 2

В коробке 10 красных и 6 синих пуговиц. Наудачу извлекаются две пуговицы. Какова вероятность того, что они будут одноцветными?

Аналогично - здесь можно использовать комбинаторное правило суммы , но мало ли … вдруг кто-то его запамятовал. Тогда на помощь придёт теорема сложения вероятностей несовместных событий!