Изобретение может быть использовано в производстве бумаги, пластмасс и красок. Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде включает предоставление карбоната кальция; предоставление от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5; предоставление газообразного CO 2 ; предоставление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. Далее проводят контактирование карбоната кальция с, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, с указанным газообразным CO 2 и с, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. При этом водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет значение pK a , составляющее более чем 2,5, и анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли. Изобретение позволяет регулировать размер частиц карбоната кальция, повысить его удельную поверхность и выход. 4 н. и 19 з.п. ф-лы, 7 табл., 7 пр.

Изобретение относится к экономичному способу получения карбоната кальция с подвергнутой реакционной обработке поверхностью. Кроме того, настоящее изобретение относится к карбонату кальция с подвергнутой реакционной обработке поверхностью, имеющему повышенную удельную поверхность по БЭТ, и к применению способа регулирования удельной поверхности по БЭТ.

На практике карбонат кальция используют в огромных количествах в промышленном производстве бумаги, краски, резины и пластмассы для различных целей, включая покрытия, наполнители, разбавители и пигменты для производства бумаги, а также водные лакокрасочные материалы, и для очистки воды, в частности, в качестве средства для удаления неорганических материалов, в том числе тяжелых металлов и/или фармацевтических отходов, включая полициклические соединения, холестерин и/или разрушающие эндокринную систему соединения (EDC).

В отношении препятствия агрегированию частиц карбоната кальция и повышения сродства данных частиц к веществу, к которому добавляют данные частицы, например, в качестве наполнителя или флокулянта, физические и химические свойства поверхностей указанных частиц карбоната кальция изменяют путем обработки карбоната кальция жирной кислотой или натриевой солью жирной кислоты, смоляной кислоты или другими кислотами.

В технике предложено несколько подходов к улучшению химических и физических свойств карбоната кальция. Например, патент США № 4219590 описывает способ улучшения карбоната кальция введением частиц карбоната кальция в контактную реакцию с кислым газом, способным реагировать с карбонатом кальция, в целях высокой однородности размеров частиц карбоната кальция и, в то же время, покрытия поверхности частиц карбоната кальция кальциевой солью кислоты кислого газа. Патент США № 6666953 B1 относится к пигменту, наполнителю или минералу, содержащему природный карбонат кальция, обработанный одним или более источниками ионов H 3 O + и газообразным CO 2 , что позволяет уменьшать плотность бумаги при постоянной удельной поверхности без потери физических свойств, когда его используют в качестве пигмента или покровного наполнителя для указанной бумаги. WO 99/02608 A1 описывает способ получения имеющей высокое содержание твердых частиц суспензии кислотоустойчивого осажденного карбоната кальция, в котором содержащую твердые частицы суспензию обрабатывают химической добавкой, в том числе алюминатом натрия, чтобы придавать кислотоустойчивость карбонату кальция.

Кроме того, патенты США № № 5584923, 5647902, 5711799 и № № WO 97/08247 A1 и WO 98/20079 A1, соответственно, описывают карбонат кальция, который является кислотоустойчивым, что позволяет использовать его в качестве материала наполнителя в производстве нейтральной и слабокислой бумаги, и способ получения данного кислотоустойчивого карбоната кальция.

Кроме того, WO 2005/121257 A2 описывает способ получения сухого минерального пигмента, отличающегося тем, что он содержит продукт, полученный на месте использования многократной реакцией карбоната кальция и продукта или продуктов реакции указанного карбоната с газообразным CO 2 , полученным на месте использования и/или из внешнего источника; и, по меньшей мере, с одним соединением формулы R-X. WO 2004/083316 A1 относится к минеральным пигментам, содержащим продукт, полученный на месте использования двойной и/или многократной реакцией между карбонатом кальция и продуктом или продуктами реакции указанного карбоната с одним или более умеренно сильным или сильными донорами ионов H 3 O + , и продукт или продукты реакции указанного карбоната с газообразным CO 2 , полученным на месте использования и/или поступающим из внешнего источника, и, по меньшей мере, один силикат алюминия, и/или, по меньшей мере, один синтетический диоксид кремния, и/или, по меньшей мере, один силикат кальция, и/или, по меньшей мере, один силикат одновалентного металла, в том числе силикат натрия, и/или силикат калия, и/или силикат лития, предпочтительно, в том числе силикат натрия, и/или, по меньшей мере, один гидроксид алюминия, и/или, по меньшей мере, один алюминат натрия и/или калия, которые используют в производстве бумаги, в том числе в качестве наполнителя основной массы и/или покрытия бумаги.

Патент США № 5043017 относится к карбонату кальция, которому придана кислотоустойчивость путем добавления к тонкоизмельченному карбонату кальция одного из образующих хелатные комплексы кальция реагентов и сопряженных оснований, включая гексаметафосфат натрия, с последующим добавлением кислоты, в том числе фосфорной кислоты.

Однако в предшествующем уровне техники, по-видимому, не описаны экономичные способы получения и регулирования имеющих высокую удельную поверхность материалов и способы регулирования размера частиц материалов, позволяющие создавать определенные материалы на основе карбоната кальция в желательных целях. В частности, в способах получения имеющих высокую удельную поверхность материалов в предшествующем уровне техники требуется использование больших количеств и концентраций кислот от средней до высокой силы (имеющих значение pK a , менее чем или равное 2,5), чтобы получить желательный материал, имеющий высокую удельную поверхность по БЭТ. Кроме того, для использования таких кислот от средней до высокой силы необходимо соблюдение строгих требований техники безопасности, чтобы свести к минимуму опасность для работников. Кроме того, использование больших количеств и концентраций указанных кислот от средней до высокой силы также приводит к значительному и дорогостоящему потреблению химических реагентов и воды.

Таким образом, было бы желательно иметь в распоряжении способ, который обеспечивает получение карбоната кальция с подвергнутой реакционной обработке поверхностью и предоставляет возможность регулирования определенных параметров, в том числе удельной поверхности по БЭТ и размера частиц карбоната кальция.

Соответственно, задача настоящего изобретения заключается в том, чтобы предложить экономичный способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью, в котором удельную поверхность по БЭТ карбоната кальция можно контролировать или регулировать. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ получения карбоната кальция, в котором увеличивается удельная поверхность по БЭТ частиц карбоната кальция. Еще одна задача настоящего изобретения заключается в том, чтобы предложить способ, в котором уменьшается требуемое количество кислоты от средней до высокой силы для данной удельной поверхности по БЭТ карбоната кальция по сравнению с материалом, полученным способом предшествующего уровня техники с использованием только кислот от средней до высокой силы. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ, в котором удельная поверхность по БЭТ карбоната кальция увеличивается для данного количества кислоты от средней до высокой силы по сравнению с материалом, полученным способом предшествующего уровня техники с использованием только кислот от средней до высокой силы. Следующая задача настоящего изобретения заключается в том, чтобы предложить способ, в котором размер частиц карбоната кальция можно контролировать или регулировать. Еще одна задача настоящего изобретения заключается в том, чтобы предложить способ, в котором можно получать с высоким выходом карбонат кальция с подвергнутой реакционной обработке поверхностью.

Настоящее изобретение предназначено для достижения данных и других задач предложением способа получения карбоната кальция с подвергнутой реакционной обработке поверхностью, согласно описанию настоящего изобретения и определению его формулы.

Согласно одному аспекту настоящей заявки, разработан способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде, где способ включает следующие стадии:

b) предоставление от 5 до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, причем анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли;

e) контактирование указанного карбоната кальция с указанной, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 согласно стадии c) и с указанной растворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d);

Авторы настоящего изобретения неожиданно обнаружили, что регулирование определенных параметров в процессе получения определенным далее способом и особенно регулирование момента введения и количества слабой кислоты в реакционную систему является ключевым фактором образования карбоната кальция с подвергнутой реакционной обработке поверхностью, имеющего особые свойства, например, повышенную удельную поверхность по БЭТ и/или размер частиц, по сравнению со способом предшествующего уровня техники, использующим только кислоты от средней до высокой силы.

В целях настоящей заявки термин «водонерастворимые кальциевые соли» определяет материалы, которые при смешивании с деионизированной водой и фильтровании через фильтр, у которого размер пор составляет 0,2 мкм, при 20°C, чтобы отделить жидкий фильтрат, позволяют получить не более чем 0,1 г твердого материала после испарения 100 г указанного жидкого фильтрата при 95-100°C. Термин «растворимые (или солюбилизированные) материалы» определяет материалы, позволяющие получить более чем 0,1 г твердого материала после испарения 100 г указанного жидкого фильтрата при 95-100°C.

В соответствии с настоящим изобретением, термин «кислота» определяет кислоту по теории Бренстеда-Лоури (Bronsted-Lowry), иными словами, источник ионов H 3 O + . Термин «анион кислоты» определяет депротонированную форму кислоты Бренстеда-Лоури, т.е. сопряженное основание кислоты. Термин «соль кислоты» определяет источник ионов H 3 O + , который, по меньшей мере, частично нейтрализован неводородным электроположительным элементом. Термин «соль» определяет электрически нейтральное ионное соединение, образованное из анионов и неводородных катионов. Термин «соль» может включать безводную форму, а также формы, содержащие кристаллизационную воду (гидраты). Термин «частично кристаллическая соль» определяет соль, которая при исследовании методом рентгенофазового анализа (РФА) представляет практически дискретную дифрактограмму.

Термин «неполимерная органическая и/или неорганическая слабая кислота» в целях настоящей заявки определяет неорганическое или органическое соединение, содержащее менее чем десять повторяющихся структурных звеньев, соединенных ковалентными химическими связями. Термин «кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты» определяет электрически нейтральное ионное соединение, образованное из анионов, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и катионов, причем данная соль содержит, по меньшей мере, один атом водорода.

Термин «суспензия» в значении настоящего изобретения представляет собой суспензию, которая включает нерастворимые твердые вещества, воду и необязательно дополнительные добавки, обычно содержит большие количества твердых веществ, является более вязкой и, как правило, имеет более высокую плотность, чем не содержащая твердых веществ жидкость, из которой она получена.

В значении настоящего изобретения термин «карбонат кальция с подвергнутой реакционной обработке поверхностью» представляет собой материал, включающий карбонат кальция и нерастворимые, предпочтительно, по меньшей мере, частично кристаллические, кальциевые соли с анионами указанных кислот, согласно указанным выше стадиям b) и d). В предпочтительном варианте осуществления нерастворимая кальциевая соль распространяется от поверхности, по меньшей мере, части карбоната кальция. Ионы кальция, образующие указанную, по меньшей мере, частично кристаллическую кальциевую соль с указанным анионом, образуются, главным образом, из исходного материала на основе карбоната кальция.

Термин «удельная поверхность по БЭТ» (УП) в значении настоящего изобретения определяет удельную поверхность, измеренную способом, описанным в приведенном ниже разделе примеров.

В соответствии с настоящим изобретением, карбонат кальция включает, как правило, тонкодисперсный (или природный) карбонат кальция (ТКК) и/или осажденный карбонат кальция (ОКК), который также известен как синтетический карбонат кальция.

Термин «тонкодисперсный карбонат кальция» в значении настоящего изобретения определяет карбонат кальция, полученный из природных источников, включая мрамор, мел или известняк, и подвергнутый обработке, в том числе измельчению, просеиванию и/или фракционированию в мокром и/или сухом состоянии, например, с помощью циклона.

Термин «осажденный карбонат кальция» в значении настоящего изобретения определяет синтезированный материал, как правило, полученный осаждением в результате реакции диоксида углерода и извести в водной среде или осаждением из водного раствора, содержащего источники ионов кальция и карбоната. Кроме того, ОКК может также представлять собой продукт взаимодействия солей кальция и карбонатов, например, хлорида кальция и карбоната натрия в водной среде.

Настоящее изобретение также относится к карбонату кальция с подвергнутой реакционной обработке поверхностью, у которого удельная поверхность (УП) по БЭТ, измеренная способом, описанным в приведенном ниже разделе примеров, составляет более чем 50 м 2 /г, предпочтительнее более чем 60 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г.

Кроме того, настоящее изобретение относится к использованию способа по изобретению для контроля или регулирования свойств и параметров карбоната кальция с подвергнутой реакционной обработке поверхностью, включая удельную поверхность по БЭТ.

Согласно одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, выбрана из группы, состоящей из сильных кислот, у которых значение pK a составляет не более нуля при 25°C, и кислот средней силы, у которых значение pK a составляет от нуля до 2,5 включительно при 25°C.

Согласно другому предпочтительному варианту осуществления способа по изобретению, кислота средней силы выбрана из группы, состоящей из H 3 PO 4 , щавелевой кислоты и их смесей.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, представляет собой H 3 PO 4 , предпочтительно H 3 PO 4 в концентрации от 20 до 40 об.%.

Согласно одному предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль и предпочтительнее менее чем 500 г/моль.

Согласно другому предпочтительному варианту осуществления способа по изобретению, указанная, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из борной кислоты, лимонной кислоты, дигидроцитрата натрия, дигидроцитрата калия, гидроцитрата натрия, гидроцитрата калия, дигидробората натрия, дигидробората калия, гидробората натрия, гидробората калия и их смесей.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, указанную, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, составляющем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1 мас.% до 10 мас.% до наиболее предпочтительно от 1 мас.% до 5 мас.%, в расчете на массу карбоната кальция.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и затем, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция одновременно вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 5% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 10% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 20% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 30% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 50% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно еще одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 80% от полного количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Согласно другому предпочтительному варианту осуществления способа по изобретению, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде, по меньшей мере, одного источника ионов H 3 O + , и от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, составляет, по меньшей мере, один анион кислоты, где соответствующая кислота, по меньшей мере, одного аниона кислоты имеет значение pK a , составляющее менее чем или равное 2,5, и указанный анион кислоты способен образовывать водонерастворимые кальциевые соли.

Согласно одному предпочтительному варианту осуществления способа по изобретению, с карбонатом кальция затем вступает в контакт соединение, выбранное из группы, состоящей из силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей.

Согласно другому предпочтительному варианту осуществления способа по изобретению, карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, имеет удельную поверхность по БЭТ, измеряемую согласно способу измерения, представленному далее в разделе примеров, которая составляет, по меньшей мере, 20 м 2 /г, предпочтительно, по меньшей мере, 30 м 2 /г, предпочтительнее, по меньшей мере, 40 м 2 /г, еще предпочтительнее, по меньшей мере, 50 м 2 /г, еще предпочтительнее, по меньшей мере, 60 м 2 /г, еще предпочтительнее, по меньшей мере, 70 м 2 /г и наиболее предпочтительно, по меньшей мере, 80 м 2 /г.

Согласно одному предпочтительному варианту осуществления настоящего изобретения, продукт, полученный способом по изобретению, т.е. водную суспензию сушат после стадии e), чтобы получить предпочтительно сухой или твердый продукт.

Стадия a): получение карбоната кальция, включающее водный процесс

Согласно стадии a) способа настоящего изобретения, получают карбонат кальция.

Предпочтительно, карбонат кальция выбирают из тонкодисперсного (или природного) карбоната кальция (ТКК) и/или осажденного карбоната кальция (ОКК), который также известен как синтетический карбонат кальция.

ТКК представляет собой встречающуюся в природе форму карбоната кальция, который добывают из осадочных горных пород, включая известняк или мел, или из метаморфических мраморных пород. ТКК представляет собой почти исключительно полиморфную модификацию кальцита, которая является тригонально-ромбоэдрической и самой устойчивой из полиморфных модификаций карбоната кальция.

Предпочтительно природный карбонат кальция выбирают из группы, включающей мрамор, мел, кальцит, доломит, известняк и их смеси.

Напротив, полиморфные модификации карбоната кальция типа ОКК часто включают, помимо кальцита, менее устойчивые полиморфные модификации типа арагонита, который содержит орторомбические кристаллы в форме иголок, и типа фатерита, который содержит гексагональные кристаллы и является еще менее устойчивым, чем арагонит. Различные формы ОКК можно идентифицировать по их характеристическим пикам на рентгеновской порошкограмме, полученной методом РФА.

Синтез ОКК наиболее часто осуществляют путем синтетической реакции осаждения, которая включает стадию контактирования диоксида углерода с раствором гидроксида кальция, причем последний наиболее часто получают при образовании водной суспензии оксида кальция, также известного как негашеная известь, и его суспензии, обычно называют термином «известковое молоко». В зависимости от условий реакции, данный ОКК можно получать в различных формах, включая как устойчивые, так и неустойчивые полиморфные модификации. Фактически ОКК часто представляет собой термодинамически неустойчивый материал на основе карбоната кальция.

При упоминании в контексте настоящего изобретения ОКК следует понимать как синтетические продукты на основе карбоната кальция, которые получают введением диоксида углерода в суспензию гидроксида кальция, которую в технике часто называют известковой суспензией или известковым молоком, когда ее получают взаимодействием частиц тонкоизмельченного оксида кальция с водой.

Предпочтительный синтетический карбонат кальция представляет собой осажденный карбонат кальция, включающий минералогические кристаллические формы арагонита, фатерита или кальцита или их смеси.

В предпочтительном варианте осуществления карбонат кальция измельчают перед процессом производства карбоната кальция с подвергнутой реакционной обработке поверхностью. Эту стадию измельчения можно осуществлять, используя любое традиционное измельчающее устройство, в том числе мельницу, которое известно специалистам.

В предпочтительном варианте осуществления карбонат кальция согласно стадии a) имеет средневзвешенный диаметр частиц, составляющий от 0,01 мкм до 10 мкм и предпочтительнее от 0,5 мкм до 2 мкм, который измеряют согласно способу измерения, представленному ниже в разделе примеров.

В предпочтительном способе приготовления водной суспензии карбонат кальция, в том числе тонкоизмельченный (в том числе путем помола) или нет, суспендируют в воде и таким образом получают его в виде суспензии.

В данном предпочтительном варианте осуществления указанная суспензия предпочтительно имеет значение pH, составляющее менее чем 11, предпочтительно менее чем 10,5, которое измеряют согласно способу измерения, описанному в приведенном ниже разделе примеров.

Предпочтительно водная суспензия карбоната кальция имеет содержание твердых веществ, которое составляет более чем или равно 10 мас.% и предпочтительнее составляет от 10 мас.% до 80 мас.%, в расчете на массу суспензии. Заявитель отмечает, что в случае очень высокого содержания твердых частиц необходимо иметь достаточное количество воды для проведения реакций после контактирования согласно стадии e). Водная суспензия карбоната кальция имеет содержание твердых веществ, которое составляет предпочтительнее от 16 мас.% до 60 мас.% и наиболее предпочтительно от 16 мас.% до 40 мас.%, в расчете на массу суспензии.

Стадия b): получение, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5

Согласно стадии b) способа настоящего изобретения, используют от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли. Указанные нерастворимые соответствующие кальциевые соли могут, помимо указанного аниона кислоты, включать ионы OH - и/или кристаллизационную воду.

Ионы H 3 O + , образуемые, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, служат для частичного растворения частиц карбоната кальция с образованием ионов кальция для последующего осаждения нерастворимой, по меньшей мере, частично кристаллической кальциевой соли с соответствующим анионом на поверхности карбоната кальция.

Предпочтительно кислота, которую добавляют в водную суспензию, содержащую карбонат кальция, имеет значение pK a при 25°C, которое составляет 2,5 или менее. Для кислот средней силы, включая H 3 PO 4 , щавелевую кислоту или их смеси, может наблюдаться значение pK a от 0 до 2,5 при 25°C. Эту одну или более кислот от средней до высокой силы можно добавлять к суспензии в виде концентрированного раствора или разбавленного раствора.

В одном предпочтительном варианте осуществления настоящего изобретения H 3 PO 4 используют в качестве, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5. Особенно предпочтительно использовать H 3 PO 4 в концентрации, составляющей, по меньшей мере, 10 об.%, предпочтительнее, по меньшей мере, 20 об.% и наиболее предпочтительно, по меньшей мере, 30 об.%. В другом предпочтительном варианте осуществления предпочтительно использовать H 3 PO 4 в концентрации, составляющей от 20% до 40 об.%.

В одном предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде:

(i) по меньшей мере, одного источника ионов H 3 O + , у которого значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водорастворимую кальциевую соль, и

Указанный, по меньшей мере, один источник ионов H 3 O + согласно п. (i) предпочтительно выбирают из группы, состоящей из азотной кислоты, серной кислоты, соляной кислоты, H 2 SO 3 , HSO 4 - или их смесей.

В особенно предпочтительном варианте осуществления указанный, по меньшей мере, один анион по п. (ii) добавляют в количестве, соответствующем количеству от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция.

В данном случае указанный, по меньшей мере, один источник ионов H 3 O + и, по меньшей мере, один анион предпочтительно используют раздельно, предпочтительно таким образом, что, по меньшей мере, один источник ионов H 3 O + по п. (i) вступает в контакт с карбонатом кальция до и/или во время контакта карбоната кальция с анионом по п. (ii).

Катион водорастворимой соли или кислой соли по п. (ii) предпочтительно выбирают из группы, состоящей из лития, натрия, калия, рубидия и их смесей. В одном предпочтительном варианте осуществления соль указанного, по меньшей мере, одного аниона по п. (ii) выбрана из группы, состоящей из сульфата натрия (Na 2 SO 4), гидросульфата натрия (NaHSO 4), сульфита натрия (Na 2 SO 3), фосфата натрия (Na 3 PO 4), гидрофосфата натрия (Na 2 HPO 4), дигидрофосфата натрия (NaH 2 PO 4), оксалата натрия (Na 2 C 2 O 4), гидрооксалата натрия (NaHC 2 O 4) и их смесей. Соль, по меньшей мере, одного аниона кислоты предпочтительно представляет собой фосфат натрия (Na 3-x H x PO 4 , где x=2, 1 или 0). Такие соли в значении настоящего изобретения следует понимать как включающие соли в безводной форме, а также в формах, содержащих кристаллизационную воду (гидрат).

По меньшей мере, один анион в виде соли по п. (ii) можно добавлять в водную суспензию, включающую карбонат кальция в любой соответствующей твердой форме, например, в форме гранул или порошка. В качестве альтернативы или в качестве дополнения, по меньшей мере, один анион в виде соли можно добавлять в водную суспензию, включающую карбонат кальция в виде концентрированного раствора или более разбавленного раствора.

В одном предпочтительном варианте осуществления настоящего изобретения, по меньшей мере, одну кислоту, у которой значение pKa составляет менее чем или равно 2,5, добавляют непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, к водной суспензии, включающей карбонат кальция. В особенно предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют в течение периода времени, составляющего 15 мин или менее, к водной суспензии, включающей карбонат кальция.

В другом предпочтительном варианте осуществления, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют однократно к водной суспензии, включающей карбонат кальция.

Указанную кислоту, согласно стадии b), можно добавлять в виде растворимой нейтральной или кислой соли, или в виде кислоты, при том условии, что ее растворяют до и/или во время стадии e).

В предпочтительном варианте осуществления указанную, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, добавляют в количестве, составляющем от 5 до 50 мас.%, предпочтительно от 10 до 30 мас.%, в расчете на массу указанного карбоната кальция.

После добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, к суспензии, значение pH суспензии, которое измеряют согласно способу измерения, приведенному ниже в разделе примеров, может временно уменьшаться до уровня ниже 6,0.

Стадия c): получение газообразного CO 2

Согласно стадии c) способа, предложенного в настоящем изобретении, используют газообразный CO 2 .

При контакте карбоната кальция с кислотой, у которой значение pK a составляет менее чем или равно 2,5, требуемый диоксид углерода можно получать на месте использования из карбоната. В качестве альтернативы или в качестве дополнения, газообразный диоксид углерода можно подавать из внешнего источника.

Обработку кислотой и обработку газообразным диоксидом углерода можно осуществлять одновременно, что происходит автоматически, когда используют сильную кислоту. Можно также осуществлять сначала обработку кислотой по изобретению, например, кислотой средней силы, у которой значение pK a составляет от 0 до 2,5, в том числе H 2 SO 3 , HSO 4 - , H 3 PO 4 , щавелевой кислотой, с последующей обработкой газообразным диоксидом углерода, поступающим из внешнего источника.

В том случае, если используют газообразный диоксид углерода, концентрация газообразного диоксида углерода в водной суспензии во время стадии e), в расчете на объем, является такой, что соотношение объема суспензии и объема газообразного CO 2 составляет от 1:0,05 до 1:20, предпочтительнее от 1:0,05 до 1:5. В другом предпочтительном варианте осуществления указанное соотношение объема суспензии и объема газообразного CO 2 , которое составляет от 1:0,05 до 1:20, предпочтительнее от 1:0,05 до 1:5, поддерживают во время осуществления способа согласно настоящему изобретению.

Стадия d): получение, по меньшей мере, одной кислоты, у которой значение pK a составляет более чем 2,5

Согласно стадии d) способа, предложенного в настоящем изобретении, используют, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, причем указанная слабая кислота имеет значение pK a , составляющее более чем 2,5, и анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли.

По меньшей мере, у одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, которую добавляют к водной суспензии, включающей карбонат кальция, значение pK a при 25°C составляет 2,5 или более. Предпочтительно у указанной слабой кислоты, добавленной к водной суспензии, содержащей карбонат кальция, значение pK a при 25°C составляет 3,0 или более. Одну или более растворимых неполимерных органических и/или неорганических слабых кислот можно добавлять к водной суспензии в виде концентрированного раствора или разбавленного раствора.

В предпочтительном варианте осуществления, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль, предпочтительнее менее чем 500 г/моль.

По меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота, которую добавляют к водной суспензии, предпочтительно, выбрана из группы, состоящей из лимонной кислоты, борной кислоты или их смесей.

В качестве альтернативы или в качестве дополнения, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту можно добавлять к водной суспензии в виде кислой соли. Термин «кислая соль» в значении настоящей заявки определяет электрически нейтральное ионное соединение, образованное из анионов кислот, включая, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту, и катионов, причем соль содержит, по меньшей мере, один атом водорода. Катион указанной соли предпочтительно выбран из катионов щелочных металлов, предпочтительно лития, натрия, калия, рубидия и их смесей.

В одном предпочтительном варианте осуществления, кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из дигидроцитрата натрия и/или калия и/или лития, гидроцитрата натрия и/или калия и/или лития, дигидробората натрия и/или калия и/или лития, гидробората натрия и/или калия и/или лития и их смесей. Соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты предпочтительно представляет собой гидроцитрат натрия (Na 2 C 6 H 6 O 7).

В предпочтительном варианте осуществления указанная, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, соответствующем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1,5 мас.% до 10 мас.% и наиболее предпочтительно от 2 мас.% до 5 мас.%, в расчете на массу указанного карбоната кальция.

Массовое соотношение, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, в суспензии предпочтительно составляет от 1:100 до 100:1, предпочтительнее от 1:75 до 75:1, еще предпочтительнее от 1:50 до 50:1, еще предпочтительнее от 1:50 до 1:1 и наиболее предпочтительно от 1:12 до 1:3.

После обработки диоксидом углерода и обработки, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, значение pH водной суспензии, измеренное при 20°C, обычно может достигать уровня, составляющего более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5. Другими словами, получают карбонат кальция с подвергнутой реакционной обработке поверхностью в виде водной суспензии, у которой значение pH составляет более чем 6,0, предпочтительно более чем 6,5, предпочтительнее более чем 7,0, еще предпочтительнее более чем 7,5. Если водную суспензию оставить до достижения равновесия, ее значение pH обычно составляет более чем 7.

Значение pH, составляющее более чем 6,0, можно обеспечить без добавления основания, когда перемешивание водной суспензии продолжают в течение достаточного периода времени, составляющего предпочтительно от 1 часа до 10 часов, предпочтительнее от 1 часа до 5 часов.

В качестве альтернативы, перед достижением состояния равновесия, которое наступает при значении pH, составляющем более чем 7, pH водной суспензии можно увеличивать до значения, превышающего 6, путем добавления основания после обработки диоксидом углерода. Можно использовать любое традиционное основание, в том числе гидроксид натрия или гидроксид калия.

Стадия e): обработка карбоната кальция

Согласно стадии e) способа, предложенного в настоящем изобретении, карбонат кальция вступает в контакт в среде водной суспензии с кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 , согласно стадии c), и с указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d).

Указанный карбонат кальция согласно способу по изобретению вводят в контакт или обрабатывают, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, используемой на стадии b), и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, используемой на стадии d), следующими путями:

путь IA: одновременное контактирование указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), и, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d);

путь IIA: первоначальное контактирование указанного карбоната кальция, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d), и затем, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b);

путь IIIA: первоначальное контактирование указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), причем во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, согласно стадии d).

В том случае, когда, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, одновременно добавляют к карбонату кальция (путь IA), слабую кислоту и/или ее кислую соль можно смешивать или объединять, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, перед добавлением.

Смесь кислот затем добавляют к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Используя путь IA способа по изобретению, можно получить частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Указанным способом можно получать частицы карбоната кальция, у которых удельная поверхность по БЭТ составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 30% больше, чем удельная поверхность по БЭТ, полученная при контакте того же карбоната кальция, используемого на стадии a), одновременно или на отдельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют к суспензии карбоната кальция до контактирования указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5 (путь IIA), слабую кислоту и/или ее кислую соль можно, например, добавлять к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 15 мин или менее, предпочтительно в течение периода времени, составляющего 10 мин или менее, предпочтительнее в течение периода времени, составляющего 5 мин или менее.

После полного добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, добавляют к водной суспензии однократно или непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Используя путь IIA способа по изобретению, можно получить частицы карбоната кальция, имеющие особенно большой средневзвешенный диаметр. Указанным способом можно получать частицы карбоната кальция, имеющие медианный диаметр, который составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 50% больше, чем медианный диаметр частиц, полученных использованием того же карбоната кальция, используемого в пути IA; т.е. обработкой указанного карбоната кальция одновременно смесью, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Все медианные диаметры материалов из карбоната кальция с подвергнутой реакционной обработке поверхностью, указанные в настоящем изобретении, измерены согласно способу измерения, приведенному далее в разделе примеров.

Кроме того, используя путь IIA способа по изобретению, можно получить частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Указанным способом по пути IIA можно получить частицы карбоната кальция, имеющие удельную поверхность по БЭТ, которая составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и еще предпочтительнее, по меньшей мере, на 50% больше, чем удельная поверхность по БЭТ, полученная контактированием того же карбоната кальция, используемого на стадии a), одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют к водной суспензии во время контактирования или обработки указанного карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5 (путь IIIA), по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, можно, например, добавлять к водной суспензии непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 2 ч или менее, предпочтительно в течение периода времени, составляющего 1,5 ч или менее, предпочтительнее в течение периода времени, составляющего 1 ч или менее, и наиболее предпочтительно в течение периода времени, составляющего 30 мин или менее, и в особенно предпочтительном варианте осуществления в течение периода времени, составляющего 15 мин или менее.

Во время добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, предпочтительно через 5%, через 10%, через 20%, через 30%, через 50% или через 80% периода времени, требуемого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, к суспензии карбоната кальция, карбонат кальция может вступать в контакт, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. Специалистам должно быть понятно, что, например, 5% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, практически соответствует добавлению 5% полного количества добавляемой указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, так как кислоту согласно настоящему изобретению предпочтительно добавляют при такой же скорости (отношении количества и времени).

Указанную слабую кислоту и/или ее кислую соль можно, например, добавлять к водной суспензии непрерывно при практически одинаковой скорости (отношении количества и времени) в течение периода времени, составляющего 15 мин или менее, предпочтительно в течение периода времени, составляющего 10 мин или менее, предпочтительнее в течение периода времени, составляющего 5 мин или менее.

Когда используют путь IIIA способа по изобретению, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты можно добавлять приблизительно в начале процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5. Например, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты можно добавлять через 5% или через 10% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5. Используя путь IIIA, можно получить частицы карбоната кальция, имеющие повышенный средневзвешенный диаметр. Указанным способом можно получать частицы карбоната кальция, имеющие медианный диаметр, который составляет, по меньшей мере, на 5% больше, предпочтительнее, по меньшей мере, на 10% больше и наиболее предпочтительно, по меньшей мере, на 20% больше, чем медианный диаметр частиц, полученных контактированием того же карбоната кальция, используемого на стадии a), с газообразным диоксидом углерода и, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты в конце процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, т.е., например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5.

Соответственно, можно получить частицы карбоната кальция, имеющие пониженный медианный диаметр, используя путь IIIA способа по изобретению, если, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют приблизительно в конце процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5 (и практически соответствующего добавлению 80% полного количества указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5).

Кроме того, используя путь III способа по изобретению, можно также получать частицы карбоната кальция, имеющие повышенную удельную поверхность по БЭТ. Данным способом можно получать частицы карбоната кальция, у которых удельная поверхность по БЭТ составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 15% больше и еще предпочтительнее, по меньшей мере, 20% больше, чем удельная поверхность по БЭТ частиц, полученных контактированием того же карбоната кальция, который использовали на стадии a), по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты приблизительно во время окончания процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, т.е., например, через 80% периода времени, необходимого для непрерывного добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5.

Соответственно, можно селективно контролировать или регулировать определенные параметры или свойства карбоната кальция, в том числе удельную поверхность по БЭТ и медианный диаметр, используя путь IIIA способа по изобретению. Добавление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты при окончании процесса добавления указанной кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, к дисперсии карбоната кальция может привести к образованию частиц карбоната кальция, имеющих сниженную или уменьшенную удельную поверхность по БЭТ и уменьшенный средневзвешенный диаметр, в то время как добавление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты в начале процесса добавления кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, например, после добавления 5 мас.% кислоты (кислот) со значением pK a , составляющим менее чем или равным 2,5, может привести к образованию частиц карбоната кальция, имеющих повышенную удельную поверхность по БЭТ и повышенный или увеличенный средневзвешенный диаметр.

В предпочтительном варианте осуществления стадию e) осуществляют при температурах выше комнатной температуры, предпочтительнее выше 50°C и еще предпочтительнее выше 60°C.

В предпочтительном варианте осуществления суспензию перемешивают таким образом, чтобы обеспечивать практически ламинарный поток.

В необязательном варианте осуществления стадия e) проходит в присутствии, по меньшей мере, одного соединения, выбранного из группы, состоящей из силиката одновалентного металла, в том числе силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей. Соль одновалентного металла предпочтительно представляет собой силикат натрия.

Согласно следующему варианту осуществления настоящего изобретения, стадия e) проходит в присутствии инертного газа, который барботируют через суспензию.

Стадии обработки кислотами и/или стадию обработки диоксидом углерода можно осуществлять однократно или повторять несколько раз, если это целесообразно.

В предпочтительном варианте осуществления настоящего изобретения полученная суспензия, включающая карбонат кальция с подвергнутой реакционной обработке поверхностью, имеет содержание твердых частиц, которое измеряют согласно способу измерения, описанным ниже в разделе примеров, составляющее до 25 мас.%, предпочтительно от 5% до 20 мас.%.

В предпочтительном варианте осуществления водную фазу полученной суспензии карбоната кальция с подвергнутой реакционной обработке поверхностью можно заменять деионизированной водой. В более предпочтительном варианте осуществления водную фазу указанной суспензии карбоната кальция с подвергнутой реакционной обработке поверхностью собирают и возвращают в технологический процесс согласно настоящему изобретению в качестве способа обеспечения всех или части солюбилизированных ионов кальция. Это представляет особый интерес, когда в способе согласно настоящему изобретению используют непрерывный процесс.

Полученную суспензию карбоната кальция с подвергнутой реакционной обработке поверхностью можно концентрировать, необязательно до точки получения в качестве продукта карбоната кальция с подвергнутой реакционной обработке поверхностью продукта. Если описанную выше водную суспензию сушат, полученный твердый (т.е. сухой или содержащий такое малое количество воды, которое не позволяет находиться в виде текучей среды) карбонат кальция с подвергнутой реакционной обработке поверхностью может существовать в виде гранул или порошка. В случае сухого продукта, этот продукт можно дополнительно обрабатывать жирными кислотами. В случае сухого продукта, этот продукт можно дополнительно промывать водой.

Таким образом, получают суспензию карбоната кальция с подвергнутой реакционной обработке поверхностью, в которой указанный карбонат кальция с подвергнутой реакционной обработке поверхностью включает нерастворимую, по меньшей мере, частично кристаллическую кальциевую соль с анионом, являющимся производным, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и/или, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты, которая предпочтительно занимает, по меньшей мере, часть поверхности карбоната кальция, используемого на стадии a).

Данный карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ, которая составляет, по меньшей мере, 5% больше, чем удельная поверхность по БЭТ, полученная после контактирования того же карбоната кальция, используемого на стадии a), одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

В предпочтительном варианте осуществления полученный карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ, которая составляет, по меньшей мере, на 10% больше, предпочтительнее, по меньшей мере, на 20% больше и наиболее предпочтительно, по меньшей мере, на 50% больше, чем удельная поверхность по БЭТ карбоната кальция, полученного контактированием того же карбоната кальция, одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

Карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, может, кроме того, иметь удельную поверхность по БЭТ, которая равняется удельной поверхности по БЭТ, полученной контактированием того же карбоната кальция, одновременно или на раздельных стадиях, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты. В данном случае требуемое количество, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, уменьшается, по меньшей мере, на 5 мас.%, предпочтительнее, по меньшей мере, на 10 мас.%, еще предпочтительнее, по меньшей мере, на 15 мас.% и наиболее предпочтительно, по меньшей мере, на 20 мас.%, в расчете на массу указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

В предпочтительном варианте осуществления карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом по изобретению, имеет удельную поверхность, составляющую более чем 20 м 2 /г, например, от 20 м 2 /г до 200 м 2 /г, предпочтительно более чем 30 м 2 /г, например, от 30 м 2 /г до 150 м 2 /г, предпочтительнее более чем 40 м 2 /г, еще предпочтительнее более чем 50 м 2 /г, еще предпочтительнее более чем 60 м 2 /г, еще предпочтительнее более чем 70 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г, при измерении с использованием азота и метода БЭТ способом, который описан ниже в разделе примеров.

Кроме того, предпочтительно, чтобы природный или синтетический карбонат кальция с подвергнутой реакционной обработке поверхностью имел средневзвешенный диаметр зерен, составляющий от 0,1 мкм до 50 мкм, предпочтительно от 1 мкм до 25 мкм, предпочтительнее от 3 мкм до 15 мкм и наиболее предпочтительно от 5 мкм до 12 мкм, который измеряют согласно способу измерения, приведенному ниже в разделе примеров.

В предпочтительном варианте осуществления карбонат кальция с подвергнутой реакционной обработке поверхностью имеет удельную поверхность по БЭТ в интервале от 20 м 2 /г до 150 м 2 /г или 30 м 2 /г до 200 м 2 /г и средневзвешенный диаметр зерен в интервале от 0,1 мкм до 50 мкм.

Карбонат кальция с подвергнутой реакционной обработке поверхностью по изобретению или суспензию указанного карбоната кальция с подвергнутой реакционной обработке поверхностью можно использовать (в виде суспензии или в виде сухих продуктов) для производства бумаги, тонкой бумаги, пластмасс, красок, или в качестве агента контролируемого высвобождения или обработки воды.

Карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный способом согласно настоящему изобретению, предпочтительно вводят в контакт с подлежащей очистке водой, включая, например, промышленные сточные воды, питьевую воду, воды городской канализации, сточные воды от пивоваренных заводов или воду в бумажной промышленности, любыми традиционными средствами, которые известны специалистам.

Карбонат кальция с подвергнутой реакционной обработке поверхностью можно добавлять в виде водной суспензии, например, суспензии, которая описана выше. В качестве альтернативы, его можно добавлять в подлежащую очистке воду в любой соответствующей твердой форме, например, в виде гранул или порошка, или в виде брикетов.

Вода может содержать органические примеси, например, образующиеся от отходов деятельности человека, органические материалы, почву, поверхностно-активные вещества, а также неорганические примеси, в частности, примеси тяжелых металлов, в том числе содержащих железо или марганец соединений. Вредные компоненты, которые можно удалить из воды способом очистки согласно настоящему изобретению, также включают микроорганизмы, в том числе бактерии, грибы, археи или протисты.

Следующие примеры предназначены для иллюстрации настоящего изобретения без ограничения его объема:

Примеры

Способы измерений

Следующие способы измерений использованы для оценки параметров, приведенных в примерах и пунктах формулы изобретения.

Удельная поверхность (УП) материала

Удельную поверхность измеряли способом БЭТ согласно стандарту ISO 9277, используя азот, после выдерживания образца при температуре 250°C в течение периода, составляющего 30 минут. Перед указанными измерениями образец фильтровали на воронке Бюхнера (Büchner), промывали деионизированной водой и сушили ночь при 90-100°C в печи. После этого сухой осадок тщательно измельчали в ступке, и полученный порошок помещали на рычажные весы со шкалой, проградуированной в процентах влажности, при 130°C до достижения постоянной массы.

Распределение частиц по размеру (массовая процентная доля частиц с диаметром, меньшим X) и средневзвешенный диаметр зерен (d 50 ) порошка карбоната кальция с подвергнутой реакционной обработке поверхностью (т.е. исходного материала на основе карбоната кальция)

Средневзвешенный диаметр зерен и распределение массы по диаметру зерен порошка, в том числе карбоната кальция, определяли, используя седиментационный способ, т.е. анализ поведения при осаждении в поле силы тяжести. Измерения проводили с помощью седиграфа Sedigraph 5120.

Данный способ и прибор известны специалистам и обычно используются для определения размера зерен наполнителей и пигментов. Измерение осуществляли в водном растворе 0,1 мас.% Na 4 P 2 O 7 . Образцы диспергировали, используя высокоскоростной смеситель и ультразвук.

Медианный диаметр зерен (d 50 ) материала на основе карбоната кальция с подвергнутой реакционной обработке поверхностью

Медианный диаметр зерен карбоната кальция с подвергнутой реакционной обработке поверхностью материала определяли, используя лазерную дифракционную систему Malvern Mastersizer 2000.

Рентгенофазовый анализ (РФА)

Кристаллографические структуры материалов определяли на основе аналитического метода РФА, используя дифрактометр Brucker AXS:D8 Advance, сканирование в интервале углов 2 от 2 до 70° при скорости сканирования 0,5 сек/шаг и шагом 2 =0,01°. Анализ полученных дифрактограмм осуществляли на основе базы данных PDF 2 эталонных дифрактограмм, издаваемой Международным центром дифракционных данных.

Значение pH водной суспензии

Значение pH водной суспензии измеряли, используя стандартный измеритель pH при температуре около 25°C.

Пример 1

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу по настоящему изобретению в сравнении с контактированием того же карбоната кальция, по меньшей мере, с одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, и газообразным CO 2 , но без добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и контактированием того же карбоната кальция, по меньшей мере, с одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и газообразным CO 2 , но без добавления, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

a. Суспензия карбоната кальция V1 (предшествующий уровень техники)

Суспензию карбоната кальция V1 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

b. Суспензия карбоната кальция V2

Суспензию карбоната кальция V2 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После окончания добавления лимонной кислоты, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

c. Суспензия карбоната кальция V3

Суспензию карбоната кальция V3 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После этого добавления суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 1 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ и скорости кратковременной абсорбции:

Таблица 1

Пример 2

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где изменяется концентрация, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V4

Суспензию карбоната кальция V4 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 30 мас.% в расчете на массу карбоната кальция и приблизительно 3 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V5

Суспензию карбоната кальция V5 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 20 мас.% в расчете на массу карбоната кальция и приблизительно 2 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

c. Суспензия карбоната кальция V6

Суспензию карбоната кальция V6 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 2 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 2

Пример 3

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где изменялась концентрация, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V7

Суспензию карбоната кальция V7 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 50% времени, предназначенного для добавления H 3 PO 4 (7,5 мин), лимонную кислоту в количестве, соответствующем 1 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V8

Суспензию карбоната кальция V8 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 3 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 3

Пример 4

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 30%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V9

Суспензию карбоната кальция V9 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. Когда завершалось добавление лимонной кислоты, H 3 PO 4 в количестве, соответствующем 30 мас.% в расчете на массу карбоната кальция и приблизительно 3 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 4 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 4

Пример 5

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V10

Суспензию карбоната кальция V10 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, смешанного с лимонной кислотой в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V11

Суспензию карбоната кальция V11 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 5 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 5

Пример 6

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 10%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V12

Суспензию карбоната кальция V12 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 50% времени, предназначенного для добавления H 3 PO 4 (7,5 мин), лимонную кислоту в количестве, соответствующем 2,5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V13

Суспензию карбоната кальция V13 приготовляли добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 6 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 6

Пример 7

Следующий иллюстративный пример настоящего изобретения включает контактирование карбоната кальция согласно способу настоящего изобретения, где карбонат кальция вступает в контакт с 10%, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, и изменяется момент времени добавления, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

1. Приготовление суспензий карбоната кальция

a. Суспензия карбоната кальция V14

Суспензию карбоната кальция V14 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 80% времени, предназначенного для добавления H 3 PO 4 (12 мин), лимонную кислоту в количестве, соответствующем 2,5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

b. Суспензия карбоната кальция V15

Суспензию карбоната кальция V15 получали добавлением воды и 250 г мела в 5-литровый реактор из нержавеющей стали, таким образом, чтобы полученная водная суспензия имела содержание твердых веществ, составляющее 10% в расчете на сухую массу. Затем температуру данной суспензии повышали и поддерживали при 70°C, используя горячий масляный термостат Julabo.

При перемешивании в таком режиме, что устанавливался практически ламинарный поток, H 3 PO 4 в количестве, соответствующем 10 мас.% в расчете на массу карбоната кальция и приблизительно 1 10 -3 моль H 3 PO 4 на 1 г карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция в течение периода времени, составляющего 15 минут. После истечения 15% времени, предназначенного для добавления H 3 PO 4 (2 мин), лимонную кислоту в количестве, соответствующем 5 мас.% в расчете на массу карбоната кальция, добавляли с помощью перистальтического насоса к суспензии карбоната кальция. После завершения введения кислот суспензию продолжали перемешивать в течение еще 5 минут, используя мешалку пропеллерного типа.

Полученную суспензию оставляли осаждаться в течение ночи перед фильтрованием и сушкой полученного продукта. У данного сухого продукта измеряли конечную удельную поверхность по БЭТ.

Следующая таблица 7 представляет полученные суспензии карбоната кальция и соответствующие величины удельной поверхности (УП) по БЭТ:

Таблица 7

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью в водной среде, который включает следующие стадии:

a) предоставление карбоната кальция;

B) предоставление от 5 мас.% до 50 мас.%, в расчете на массу карбоната кальция, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли;

c) предоставление газообразного CO 2 ;

d) предоставление, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и/или кислой соли указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты; и

e) контактирование указанного карбоната кальция с указанной, по меньшей мере, одной кислотой, у которой значение pK a составляет менее чем или равно 2,5, согласно стадии b), с указанным газообразным CO 2 , согласно стадии c), и с указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислотой и/или кислой солью указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты согласно стадии d);

Где, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота имеет значение pK a , составляющее более чем 2,5, и где анион соответствующей кислоты способен образовывать водонерастворимые кальциевые соли.

2. Способ по п.1, в котором, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, выбрана из группы, состоящей из сильных кислот, у которых значение pK a составляет менее чем или равно нулю при 25°C, и кислот средней силы, у которых значение pK a составляет между нулем и 2,5 при 25°C.

3. Способ по п.2, в котором кислота средней силы выбрана из группы, состоящей из H 3 PO 4 , щавелевой кислоты и их смесей.

4. Способ по любому из пп.1-3, в котором, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, представляет собой H 3 PO 4 , предпочтительно H 3 PO 4 в концентрации от 20% до 40 об.%.

5. Способ по любому из пп.1-3, в котором, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты имеет молекулярную массу, составляющую менее чем 1000 г/моль, предпочтительно менее чем 750 г/моль и предпочтительнее менее чем 500 г/моль.

6. Способ по любому из пп.1-3, в котором указанная, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты выбрана из группы, состоящей из борной кислоты, лимонной кислоты, дигидроцитрата натрия, дигидроцитрата калия, гидроцитрата натрия, гидроцитрата калия, дигидробората натрия, дигидробората калия, гидробората натрия, гидробората калия и их смесей.

7. Способ по любому из пп.1-3, в котором указанную, по меньшей мере, одну водорастворимую неполимерную органическую и/или неорганическую слабую кислоту и/или кислую соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты добавляют в количестве, составляющем от 0,1 мас.% до 20 мас.%, предпочтительно от 1 мас.% до 15 мас.%, предпочтительнее от 1 мас.% до 10 мас.% и наиболее предпочтительно от 1 мас.% до 5 мас.%, в расчете на массу карбоната кальция.

8. Способ по любому из пп.1-3, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и затем, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5.

9. Способ по любому из пп.1-3, в котором с карбонатом кальция одновременно вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты и, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5.

10. Способ по любому из пп.1-3, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и во время ее добавления с карбонатом кальция также вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

11. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 5% от общего количества, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

12. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 10% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

13. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 20% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

14. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 30% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

15. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 50% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

16. Способ по п.10, в котором с карбонатом кальция сначала вступает в контакт, по меньшей мере, одна кислота, у которой значение pK a составляет менее чем или равно 2,5, и после добавления 80% от общего количества указанной, по меньшей мере, одной кислоты, у которой значение pK a составляет менее чем или равно 2,5, с карбонатом кальция вступает в контакт, по меньшей мере, одна водорастворимая неполимерная органическая и/или неорганическая слабая кислота и/или кислая соль указанной, по меньшей мере, одной водорастворимой неполимерной органической и/или неорганической слабой кислоты.

17. Способ по любому из пп.1-3, в котором, по меньшей мере, одну кислоту, у которой значение pK a составляет менее чем или равно 2,5, используют в виде:

(i) по меньшей мере, одного источника ионов H 3 O + , у которого значение pK a составляет менее чем или равное 2,5, где анион соответствующей кислоты способен образовывать водорастворимую кальциевую соль, и

(ii) по меньшей мере, одного аниона, используемого в виде водорастворимой соли или кислой соли, где соответствующая кислота данного, по меньшей мере, одного аниона имеет значение pK a , составляющее менее чем или равное 2,5, и где указанный анион способен образовывать водонерастворимые кальциевые соли.

18. Способ по п.1, в котором с карбонатом кальция затем вступает в контакт соединение, выбранное из группы, состоящей из силиката натрия, силиката калия, силиката лития, силиката алюминия, синтетического диоксида кремния, силиката кальция, гидроксида алюминия, алюмината натрия, алюмината калия и их смесей.

19. Способ по любому из пп.1-3, в котором карбонат кальция с подвергнутой реакционной обработке поверхностью, полученный данным способом, имеет удельную поверхность по БЭТ, составляющую, по меньшей мере, 20 м 2 /г, предпочтительно, по меньшей мере, 30 м 2 /г, предпочтительнее, по меньшей мере, 40 м 2 /г, еще предпочтительнее, по меньшей мере, 50 м 2 /г, еще предпочтительнее, по меньшей мере, 60 м 2 /г, еще предпочтительнее, по меньшей мере, 70 м 2 /г и наиболее предпочтительно, по меньшей мере, 80 м 2 /г.

20. Способ по любому из пп.1-3, в котором водную суспензию, полученную после стадии е), сушат.

21. Карбонат кальция с подвергнутой реакционной обработке поверхностью в соответствии со способом по любому из пп.1-19, имеющий удельную поверхность по БЭТ, составляющую более чем 50 м 2 /г, предпочтительнее более чем 60 м 2 /г и наиболее предпочтительно более чем 80 м 2 /г.

22. Применение способа по любому из пп.1-19 для регулирования удельной поверхности по БЭТ карбоната кальция с подвергнутой реакционной обработке поверхностью.

23. Применение карбоната кальция с подвергнутой реакционной обработке поверхностью, получаемого способом по любому из пп.1-20, для производства бумаги, тонкой бумаги, пластмасс, красок или в качестве агента контролируемого высвобождения или обработки воды.

Министерство образования и науки Краснодарского края
государственное бюджетное профессиональное образовательное учреждение Краснодарского края
"Кропоткинский техникум технологий и железнодорожного транспорта"

Методическая разработка урока
«Приготовление первых блюд»

Разработала
преподаватель английского языка
Волошина Наталья Ивановна

Кропоткин, 2015

Тема урока: Приготовление первых блюд
Цели урока:

Образовательная:
научить составлять технологические карты первых блюд;
научиться строить диалог, монологические высказывания, задавать вопросы и отвечать на них;
научить применять в разговорной речи новые лексические единицы по теме;
уметь применять полученные знания на практике.

Развивающая:
развить у обучающихся познавательный и профессиональный интерес к технологиям приготовления первых блюд;
содействовать формированию познавательного интереса к выбранной профессии;
развивать познавательную, творческую активность, развивать память, логическое мышление, воображение.

Воспитательная:
воспитывать чувство уверенности в себе, творческого подхода к выполнению задания, интереса и стремления к познанию профессии;
воспитание культуры труда;
воспитывать умение работать в коллективе (в парах, подгруппах, индивидуально).
Задача урока: обобщить и систематизировать ЗУН по изученной теме.

Тип урока: интегрированный.

Методические приёмы: опережающее обучение;
работа с презентацией;
работа с дидактическим материалом;
частично – поисковый;
репродуктивный;
объяснительно – иллюстративный.

Методическое обеспечение: персональный компьютер, мультимедийный поектор, дидактический материал.

Межпредметные связи: «Английский язык», « Технология», «Товароведение пищевых продуктов», «Физиология питания, санитария и гигиена».

Педагогические технологии: технология сотрудничества, ИКТ, технология развивающего обучения, здоровьесберегающие технологии, проблемное обучение.

Используемая литература:
Анфимов Н.А., Татарская Л.Л. «Кулинария»., М.: Издательский центр «Академия» 2005.
Сборник рецептур люд и кулинарных изделий., М.: Издательский центр «Академия» 2005.
Качурина Т.А. «Кулинария» рабочая тетрадь., М.: Издательский центр «Академия» 2008.
Интернет ресурсы:
[ Cкачайте файл, чтобы посмотреть ссылку ]; [ Cкачайте файл, чтобы посмотреть ссылку ]

Заключительное слово преподавателя. Slide -13
Teacher:
- You"ve learned a lot of about cooking the first courses. I hope that this knowledge will be useful to you in your future profession and working. Our lesson is over. Thank you for the good work.
Goodbye.

Application – 1
«Cooking the first courses»

The students’ answers:
Student 1:
Borsch is the Ukrainian national dish. Soup is prepared on the bone broth , mushroom broth, vegetarian .
Traditional lunch in the Ukraine started with the borsch. It so happened that on the table, but bread and lard with garlic, mistress [
·m
·str
·s] and there was nothing to put, but if it was borsch - consider that the dinner was very good.

Student -2:
Pickle is a soup with pickles. One hundred years ago, the pickle was not called soup, it was... a pie.
In the books of N. Gogol can be found: "pickle - chicken pot pie, buckwheat [
·b
·kwi
·t] cereal [
·s
·
·r
·
·l], in the filling is added to the brine , chopped eggs".
The main word "brine," that is, a solution of salt, or liquid [
·l
·kw
·d] generated [
·
·en
·re
·t] during pickling cucumbers or pickled cabbage. The word "pickle" is a native Russian. Pickle - dish vintage [
·v
·nt
·
·], only it was called before "Kala". It was cooked with eggs, meat, chicken, kidney [
·k
·dn
·], and not only on cucumber brine, but lemon water and served with cakes and pies.

Student 3:
" Shchee is the meat soup, not the usual prohibitively
bad meat soup, and wonderful Russian dish with fat from various [
·v
·
·r
·
·s] meats, eggs, sour cream and herbs . In fact, it seems to me, impossible to eat anything after shcheer» , - Knut Hamsun (Norwegian writer)

Application – 2
«Cooking the first courses»

Technology card
"Ukrainian borsch"

Product name
Gross weight
Net weight

Beetroot
150
120

Cabbage fresh or pickled
100
80

Potatoes
213
160

Carrots
50
40

Onion
36
30

Tomato puree [
·pj
·
·re
·]
30
30

Garlic
4
3

Vegetable oil
20
20

Wheat flour
6
6

Shpik
10,4
10

Sugar
10
10

Vinegar 3% [
·v
·n
·g
·]
10
10

Sweet pepper
27
20

Broth
700
700

Output
-
1000

Application - 3
«Cooking the first courses»

Physical exercises.

One, two - take a cabbage. Один, два - возьми капусту.
Three, four – quickly trim . Три, четыре - почисть её.
Five, six - finely cut. Пять, шесть- нашинкуй.
Seven, eight - put it into the pan. Семь, восемь - в кастрюлю бросим. Nine, ten – му soup is ready. Девять, десять – мой суп готов.
Do it again.

Application - 4
«Cooking the first courses»

Match the English proverbs with Russian equivalents.

1) The appetite comes with eating.
a) О вкусах не спорят.

2) After dinner sleep a while, after supper walk a mile.
b) Яблоко в день и не знай врачей.

3) An apple a day keeps the doctor away.
c) Аппетит приходит во время еды.

4) Don’t live to eat, but eat to live.
d) После обеда поспи немного, после ужина прогуляйся с милю.

5) Tastes differ.
e) Не жить, чтобы есть, а есть, чтобы жить.

Application - 5
«Cooking the first courses»
Technology card
«Solyanka»

Product name
Gross weight
Net weight

Technology card
"Soup kharcho"

Product name
Gross weight
Net weight

Application -5
«Cooking the first courses»

Technology card
"Pickle Leningrad"

Product name
Gross weight
Net weight

Technology card
« Okroshka»

Product name
Gross weight
Net weight

Application -5
«Cooking the first courses»

The standard answers
Technology card
"Pickle Leningrad"

Product name
Gross weight
Net weight

Potatoes
200
150

Rice
15
15

Carrots
25
20

Parsley (root),
7
5

Onion
12
10

Pickles
35
30

Tomato puree
15
15

Butter
10
10

The broth
350
350

Products: rice, potatoes, carrots, butter, parsley (root), the broth, onion, pickles, tomato puree.

Technology card
« Okroshka»

Product name
Gross weight
Net weight

Beef
109
80

Bread kvass
250
350

Green onion
27
30

Cucumbers
75
60

Potatoes
68
50

Radishes
5
5

Prepared mustard
2
2

Sour cream
15
15

Products: sour cream, sugar, cucumbers, beef, potatoes, bread kvass, eggs, prepared mustard, green onion, radishes.

Application -5
«Cooking the first courses»

The standard answers

Technology card
«Solyanka»

Product name
Gross weight
Net weight

Beef
55
40

Boiled ham
25
20

Sausages
22
20

Kidney beef
60
50

Onion
50
40

Pickles
50
30

Potatoes
80
60

Tomato puree
25
25

Butter
12
12

The broth
350
350

Sour cream
30
30

Products: butter, beef, pickles, sour cream, boiled ham, the broth, potatoes, kidney beef, tomato puree, onion, sausages.
Technology card
"Soup kharcho"

Product name
Gross weight
Net weight

Rice
36
35

Onion
50
40

Butter
20
20

Tomato puree
15
15

The spicy sauce
15
15

Garlic
4
3

Parsley (green)
20
15

Spices
1
1

Products: tomato puree, parsley (green), rice, butter, spices, onion, the spicy sauce, garlic.

Application - 6
«Cooking the first courses»

Divide the words into three columns
Potatoes, beef, bread kvass, rice, beets, fresh cabbage, carrots, green onions, cucumbers, parsley (root), vegetable oil, onion, eggs, cucumbers, tomato puree.
borsch
pickle
okroshka

картофель - potatoes
говядина - beef
свекла - beets
крупа рисовая - rice
квас хлебный - bread kvass
капуста свежая - cabbage fresh
морковь - carrots
лук зелёный - green onion
петрушка (корень) - parsley (root)
огурцы свежие - cucumbers
масло растительное - vegetable oil
лук репчатый - onion
томатное пюре - tomato puree
огурцы соленые - pickles
яйца - eggs

The standard answers

borsch
pickle
okroshka

potatoes
potatoes
beef

beetroot
rice
bread kvass

cabbage fresh
carrots
green onion

carrots
parsley (root)
cucumbers

vegetable oil
onion
potatoes

Tomato puree
pickles
eggs

Application - 7
«Cooking the first courses»

The dialogue -1.
- How are you? I haven"t seen for ages.
- I am OK.
- I want my mother to make a surprise to prepare the potato soup with meatballs. You study at the «Cook» faculty [
·fжk
·lt
·] help me, please. What products need I buy?
- You need buy the following: minced meat , potatoes, onions,....
- When the broth comes to a boil, how long does it need to boil?
-10 minutes.
Thanks I go for groceries [
·gr
·
·s
·r
·].
- Good - bye.
- Good – bye.

The dialogue - 2.
-Hello.
- Hi.
- How did you spend your summer vacation?
- Very well. I was at my grandma.
- What were you treated?
- My grandmother excellent cooks a country cabbage soup.
- Wow! What dish is this?
- Shchee is a national Russian dish.
- What made is it?
- It is prepared from fresh sauerkraut [
·sa
·
·kra
·t] квашеная капуста, sorrel [
·s
·r
·l] щавель and spinach [
·sp
·n
·
·], and sometimes from young nettles .
- Is it tasty?
- Yes, of course. Come to me and I"ll treat you its
- Bye.
- Bye.

13 PAGE \* MERGEFORMAT 141915

МИНИСТЕРСТВО ОБРАЗОВ МОСКОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКОЙ ОБЛАСТИ

«КРАСНОГОРСКИЙ КОЛЛЕДЖ» ИСТРИНСКИЙ ФИЛИАЛ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

ПО ДИСЦИПЛИНЕ «ХИМИЯ»

для специальностей среднего профессионального образования:

естественнонаучного профиля:

260807.01 Повар, кондитер.

Составитель: Миронова М. Н., преподаватель химии

2013

итель дире

Введение ……………..…………………………………………………… 4

Раздел 1. Общая и неорганическая химия

Лабораторная работа № 1

..……………………….…………………… ..6

Лабораторная работа № 2

Сравнение свойств простых веществ, оксидов и гидроксидов элементов III периода ………………………………………… ………………………8

Лабораторная работа№ 3

Ознакомление с образцами пластмасс, волокон, каучуков, минералов и горных пород. Проверка пластмасс на электрическую проводимость, горючесть, отношение к растворам кислот, щелочей и окислителей. Сравнение свойств термореактивных и термопластичных пластмасс. Получение нитей из капроновой или лавсановой смолы. Обнаружение хлора в поливинилхлориде …………….. ……………………… 10

Лабораторная работа №4

Приготовление суспензии карбоната кальция в воде. Получение эмульсии моторного масла. Получение золя крахмала………. 12

Лабораторная работа № 5

Реакции, идущие с образованием осадка, газа или воды……………… .. 14

Лабораторная работа№ 6

Приготовление растворов различных видов концентрации………….

Раздел 2. Органическая химия

Лабораторная работа № 7

Изготовление моделей молекул алканов и галогеналканов ………..

Лабораторная работа № 8

Обнаружение воды, сажи, углекислого газа в продуктах горения свечи. .

Лабораторная работа № 9

Изучение растворимости спиртов в воде…………………..

Лабораторная работа № 10

Растворимость жиров в воде и органических растворителях. Сравнение моющих свойств хозяйственного мыла и СМС в жесткой воде…………………………………………………………………..15

Правила техники безопасности ………………………………… 42

Оказание первой медицинской помощи ………………………… 43

Список литературы ………………………………………………… 44

Введение

В данных методических указаниях описаны методики выполнения лабораторных работ по общей и органической химии, дано краткое теоретическое введение к каждой теме, которое при самостоятельной подготовке поможет студентам выполнить эти работы. В приложении к указаниям приведены справочные таблицы, правила техники безопасности и мероприятия по оказанию первой помощи. Методические указания выполнены в соответствии с рабочей программой составленой на основе государственного образовательного стандарта среднего (полного) общего образования по химии (базовый уровень). В ней предусмотрено 13 часов на проведение практических и лабораторных занятий.

Пособие поможет студентам совершенствовать практические умения и закрепить теоретические знания по дисциплине «Химия».

Пособие состоит из двух частей: первая посвящена лабораторным работам по общей и неорганической химии; вторая – по органической химии.

Описаны методики выполнения лабораторных работ, приведены контрольные вопросы, фиксирующие внимание студентов на наиболее важные этапы изучаемого материала. Контрольные вопросы составлены на основе личностно-ориентированного подхода в обучении.

В процессе выполнения лабораторных работ студенты должны наблюдать за ходом эксперимента, отмечать все его особенности (изменение цвета, тепловые эффекты, выпадение осадка, образование газообразных веществ). Результаты наблюдений записывают в тетради для лабораторных работ, поддерживаясь определенной последовательности:

Дата выполнения, название лабораторной работы;

Цель работы;

Краткие теоретические сведения, касающиеся данной работы;

Зарисовка схемы установки (выполняется карандашом);

Результаты опытов должны быть внесены в таблицу;

Выводы.

В приложении к пособию приведены справочные таблицы, правила техники безопасности и мероприятия по оказанию первой помощи.

Для оформления отчета о работе удобно использовать табличную форму.

«Ход опыта» записывается кратко, вместо словесного описания последовательности действий используется рисунок. Обязательно указываются условия осуществления химических реакций.

В графе «Наблюдения» рисунок или схема поясняются следующими обозначениями:

Образование осадка: ↓ Указывается цвет осадка и его характер (мучнистый, творожистый, студенистый); - выделение газообразного вещества: Указывается цвет газа, запах, плотность.

В графе «Уравнения реакций» учащиеся могут выражать только сущность реакций ионного обмена, т.е. записывать только сокращенные ионные уравнения реакций. Для окислительно-восстановительных реакций записываются молекулярное уравнение реакции, выражается ее сущность методом электронного баланса или электронно-ионным методом. Указываются названия процессов и функции веществ.

Особого внимания требует заполнение графы «Вывод». Вывод должен соответствовать условию задачи, быть полным и обоснованным.

Лабораторная работа 1

Тема: Изготовление моделей молекул некоторых органических и неорганических веществ

Цель: Развитие навыков пространственного изображения молекул кислорода, воды, углекислого газа,метана, этана, этена, этина, бензола.

Задача: Закрепление знаний по теме Способы существования химических элементов «».

Оборудование: шаростержневые модели, транспортир. Учебное пособие Габриелян О.С. «Химия»

Теоретические основы

Все 3 о

В молекулах алкенов углеродные атомы находятся в состоянии гибридизации sp 2 о

В молекулах алкинов о

В молекуле бензола C 6 H 6 о . Состояние гибридизации sp 2 . В молекуле образуется

Например: Метан (СH 4 3 , значит угол связи 109,28 о о .

Выполнение работы

4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , C 6 H 6 .

Контрольные вопросы

7. Дайте понятие σ и π связи ?

Лабораторная работа 2

Тема: Сравнение свойств простых веществ, оксидов и гидроксидов элементов III периода.

Цель : Изучить свойства оксидов и гидроксидов элементов III периода.

Задачи: установление закономерности в изменении свойств оксидов и гидроксидов элементов III периода, сформировать понятие об амфотерности.

Оборудование: таблицы «Периодическая система химических элементов Д.И Менделеева», «Растворимость кислот и оснований в воде», «Относительная электроотрицательность элементов. Демонстрационный штатив с пробирками, капельница.

Химреактивы: Гидроксиды элементов III периода, индикаторы, соляная кислота, раствор хлорида алюминия.

Теоретические основы

Проецируем на экран вопросы, на которые учащиеся должны ответить:

Что такое ионная связь? Приведите примеры веществ с ионной связью.

Что такое ковалентная связь? Назовите два вида ковалентной связи. Приведите примеры.

Как вы понимаете термин «Относительная электроотрицательность элементов»? Электроотрицательность какого элемента условно принята за единицу?

Как изменяется электроотрицательность элементов в периодах с увеличением порядковых номеров элементов, в А – подгруппах?

Свяжите понятия «Электроотрицательность» и «Химическая связь».

Как изменяются размеры атомов в периодах с увеличением порядковых номеров элементов?

После повторения предлагаю учащимся составить формулы оксидов элементов III периода и определить вид химической связи в каждом случае:

Отдельным учащимся заранее предложена работа на компьютерах по составлению электронных формул оксидов с ионной и ковалентной связью.

Na2+ 2- Mg2+ 2-

ионная связь ионная связь

ковалентная полярная связь ковалентная полярная связь

После проекции этих формул на экран предлагаю учащимся определить характер данных оксидов: (оксиды натрия и магния – основные по характеру, оксиды фосфора (V) и хлора (VII) – кислотные).

Формулируем вывод по данной части работы: основные оксиды – ионные соединения, кислотные оксиды – ковалентные.

Используя опорный конспект (приложение 1), предлагаю учащимся охарактеризовать свойства основных и кислотных оксидов, выполнив упражнение:

1) MgO + HCl → 2) SO3 + NaOH→

3) Na2O + H2O→ 4) P2O5+H2O→

Акцентирую внимание учащихся на то, что основные оксиды взаимодействуют с кислотами, кислотные - со щелочами с образованием соли и воды. При взаимодействии основных оксидов элементов I-A и II – А групп образуются гидроксиды - щелочи. При взаимодействии кислотных оксидов с водой образуются гидроксиды – кислоты.

Что же такое гидроксид? (Это продукт соединения оксида с водой)

Однако не все гидроксиды можно получить реакцией оксида с водой. Например,

SiO2+ H2O ≠ реакция не идет

Al2O3+ H2O ≠ реакция не идет

Гидроксид кремния (кремниевую кислоту) и гидроксид алюминия получают другими способами. Об этом мы поговорим несколько позже.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

По таблице «Растворимость кислот, оснований и солей в воде» определяем растворимость гидроксидов в воде.

С помощью каких веществ можно доказать принадлежность гидроксида к основаниям или кислотам?

Учащиеся вспоминают, что для этого есть индикаторы.

Предлагаю испытать раствором лакмуса каждый из предложенных гидроксидов:

NaOH Mg(OH)2 H3PO4 H2SO4

По ходу проведения опытов учащиеся комментируют их и делают вывод, что в растворах гидроксидов металлов фиолетовый лакмус изменяет окраску в синий цвет, а в растворах кислот – в красный. Составляем уравнение электролитической диссоциации щелочи и кислоты.

NaOH ↔ Na++OH- (образуется гидроксид –ион, изменяющий окраску лакмуса в синий цвет)

H2SO4+H2O↔H3O++HSO4- (образуется ион оксония, т.е. гидратированный протон Н+(Н2О), изменяющий окраску лакмуса в красный цвет).

Подумайте, почему я не предложила испытать индикатором гидроксиды кремния и алюминия? (Они не растворимы в воде).

Предлагаю продолжить работу со схемой, отметив характер гидроксидов их растворимость в воде.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

В процессе беседы устанавливаем закономерность изменения свойств гидроксидов:

Какое основание сильнее NaOH или Mg(OH)2

Сравните силу кислот как электролитов. Назовите самую слабую из них и самую сильную.

Отметьте на схеме, как изменяются основные и кислотные свойства гидроксидов с увеличением порядковых элементов III периода

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

основание Нерастворимые вещества растворимые кислоты

Основные свойства ослабевают -> кислотные свойства усиливаются ->

III этап. Постановка учебной проблемы.

Почему основные свойства гидроксидов элементов III периода ослабевают, а кислотные – усиливаются?

Попытаемся найти ответ на этот вопрос, используя знания об относительной электроотрицательности элементов, видах химической связи и сравнивая размеры атомов (ионов).

Проецируем на экран электронные формулы гидроксидов элементов III периода (приложение 2).

Путем фронтальной беседы по вопросам, приведенным ниже, устанавливаем, почему гидроксид натрия обладает большим основным характером, чем гидроксид магния.

Из каких частиц состоят эти вещества? (Из катионов металла и гидроксид-анионов)

Какая связь образуется между ионами? (ионная).

Составьте уравнение реакции диссоциации гидроксида натрия.

Почему химическая связь разрывается между натрием и кислородом?

Кислород – сильноэлектроотрицательный элемент, он оттягивает электронную плотность связи с натрием на себя, атом натрия превращается в ион. Кроме того, ион натрия имеет большой размер следовательно, длина связи натрия с кислородом большая, поэтому связь слабая. Этим объясняется хорошая растворимость гидроксида натрия и распад электролита на ионы с освобождение гидроксид-аниона.

Сравните размеры ионов натрия и магния, а также величины из зарядов.

Учащиеся дают ответ, что размер иона натрия больше, а величина заряда иона натрия меньше, чем у иона магния.

Подумайте, в каком случае будет прочнее связь: между катионом натрия и гидроксид-анионом, или между катионом магния и гидроксид-анионом? Почему?

Учащиеся находят правильный ответ: между катионом магния и гидроксид-анионом связь более прочная, т.к. заряд катиона магния больше, а размер меньше. Поэтому способность катиона магния удерживать гидроксид-анион больше, т.е. процесс распада его как электролита затруднен по сравнению с гидроксидом натрия. Гидроксид магния более слабое и мене растворимое основание, чем гидроксид натрия.

Что же тогда можно сказать о свойстве гидроксида алюминия? (По причине увеличения заряда катиона алюминия Al3+ и уменьшения его размера отрыв гидроксид-аниона еще более затруднен. Гидроксид алюминия нерастворимое и малодиссоциирующее в воде вещество).

Получение гидроксида алюминия и исследование его свойств.

Предлагаю учащимся получить гидроксид алюминия реакцией ионного обмена. Подбираем вещества, проводим опыт, составляем уравнение реакций:

Al3++3OH- =Al (OH)3↓ (это нерастворимое в воде основание)

Прошу исследовать свойства гидроксида алюминия:

1) В одну пробирку со свежеосажденным гидроксидом алюминия добавляем раствор соляной кислоты – наблюдаем растворение осадка. Составляем уравнения реакций:

Al(OH)3+3HCl= AlCl3+3H2O

Al(OH)3+3H+=Al3++3H2O

Делаем вывод, что гидроксид алюминия проявил себя, как основание.

2) В другую пробирку с гидроксидом алюминия добавляем раствор щелочи – наблюдаем растворение осадка. В этом случае гидроксид алюминия проявил свойства кислоты. Подумайте, как это можно объяснить? Сопоставьте размеры ионов магния и алюминия, величины их зарядов, а также относительные электроотрицательности элементов.

Учащиеся отмечают, что размер катиона алюминия меньше размера катиона магния, а величина заряда и электроотрицательность – больше, чем у магния.

К чему это приводит? (К уменьшению заряда на атоме кислорода гидроксогруппы, и, следовательно, к облегчению отщепления катиона водорода. Вот почему гидроксид алюминия проявляет свойства кислоты).

Учитель. Существует кислотная форма гидроксида алюминия HAlO2 – металюминиевая кислота. Это очень слабая кислота, но она взаимодействует со щелочью с образованием соли и воды:

Таким образом, гидроксид алюминия проявляет как свойства основания, так и свойства кислоты, т. е. является амфолитом или амфотерным соединением (вносим эту информацию в схему).

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

основание Нерастворимые вещества растворимые кислоты

амфотерный

гидроксид

Основные свойства ослабевают -> кислотные свойства усиливаются ->

Учитель. Теперь ответим на вопрос, почему кислотные свойства гидроксидов элементов III периода усиливаются.

Провожу беседу по вопросам:

Как вы считаете, в молекулах кислот связи ковалентные или ионные? (ковалентные полярные).

Почему они полярные? (Соединяются элементы с различной электроотрицательностью).

Сравните значение относительных электроотрицательностей элементов Si, P, S, Cl. Как они изменяются? (увеличиваются). Обратите внимание на значение относительной электроотрицательности элемента кислорода (оно больше, чем у Si, P, S, Cl)

Связь считается боле полярной, если разность значений электротрицательностей соединяющихся элементов больше.

Определите, в какой из кислот степень полярности ковалентной связи атома неметалла с атомом кислорода больше: в кремниевой или в фосфорной?

Учащиеся путем простого подсчета приходят к выводу: что связь атомов кремния и кислорода более полярная.

Учитель. Электронная плотность связи кремния с кислородом сильно смещена к атому кислорода, поэтому он приобретает большой отрицательный заряд. По этой причине атом водорода сильно притягивается к атому кислорода, что делает связь О-Н более прочной. Это препятствует процессу диссоциации. Кремниевая кислота практически не диссоциирует на ионы и в воде нерастворима.

Как изменяется полярность связи Р-О в молекуле фосфорной кислоты?

Учащиеся отвечают, что она уменьшается, т. е. электронная плотность на атоме кислорода становится меньше, прочность связи атомов кислорода и водорода ослабевает.

Как это влияет на свойства фосфорной кислоты?

Учащиеся отвечают, что фосфорная кислота электролит средней силы и в воде растворяется.

Н3РО4+Н2О ↔ Н3О++Н2РО4-

Теперь вы сможете ответить на вопрос, почему серная и хлорная кислоты являются сильными электролитами. Покажите смещение электронной плотности связей на электронных формулах и объясните, почему серная кислота сильнее фосфорной.

Теперь мы ответили на вопрос, почему кислотные свойства гидроксидов элементов III периода усиливаются.

Такая же закономерность в изменении свойств характерна и для оксидов

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

Основные оксиды амфотерный

гидроксид кислотные оксиды

Обсужденные закономерности наблюдаются во всех периодах периодической системы химических элементов:

При переходе от элемента к элементу слева направо по периоду свойства их оксидов и гидроксидов закономерно меняются от основных через амфотерные к кислотным.

Лабораторная работа 3

Тема: Ознакомление с коллекциями образцов пластмасс и волокон.

Цель: Ознакомление на основе коллекционного материала с образцами пластмасс и волокон.

Задача: Закрепить знания по теме «Полимеры».

Обеспечивающие средства: Коллекции « Пластмассы», «Волокна».

Теоретические основы

Пластмассами называют материалы, изготавливаемые на основе полимеров, способные приобретать при нагревании заданную форму и сохранять ее после охлаждения.

Пластмассы бывают:

Термопластичные полимеры при нагревании размягчаются и в этом состоянии легко изменяют форму. При охлаждении они снова затвердевают и сохраняют приданную форму. При следующем нагревании они снова размягчаются, придают новую форму.

Термореактивные полимеры при нагревании сначала становятся пластичными, но затем утрачивают пластичность, становятся неплавкими и нерастворимыми, так как в них происходит химическое взаимодействие между линейными макромолекулами, образует пространственная структура полимера.

Изготовление волокон и тканей – вторая обширная область народнохозяйственного применения синтетических высокомолекулярных веществ.

Волокна делятся на природные и химические.

Волокна

Природные Химические

Растительного Животного

Искусственные Синтетические

Происхождения

2. Ознакомление с коллекциями образцов пластмасс и волокон.

Рассмотрите коллекции «Пластмассы» и «Волокна» Запишите внешние признаки пластмасс и волокон в таблицу.

Таблица

Физические свойства пластмасс и волокон.

Название

Цвет

Твердость

Эластичность

Хрупкость

Пластмассы

1.Полиэтилен

Волокна

1.Шерсть

Контрольные вопросы

1. Какие вещества называются полимерами?

2. Назовите известные вам полимерные соединения и их область применения.

3. Как классифицируются химические волокна?

4. Назовите известные вам волокна и их область применения.

Сформулируйте вывод по работе.

Тема : Приготовление суспензии карбоната кальция. Получение эмульсии моторного масла. Ознакомление со свойствами дисперсных систем.

Цель: Овладение умениями приготовления дисперсионных систем, навыками определения их свойств и работы с микроскопом.

Задача: Закрепить знания по теме « Строение вещества».

Реактивы и оборудование: Карбонат кальция (мел), моторное масло, вода. Химические стаканы, стеклянные палочки, микроскопы.

Теоретические основы

Дисперсные (раздробленные) системы являются гетерогенными, в отличие от истинных растворов (гомогенных). Они состоят из сплошной непрерывной фазы – дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы – дисперсной фазы .

Обязательным условием существования дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

Дисперсные системы классифицируют:

1. по степени дисперсности;

2. по агрегатному состоянию дисперсной фазы и дисперсионной среды;

3. по интенсивности взаимодействия между ними;

4. по отсутствию или образованию структур в дисперсных системах.

В зависимости от рамеров частиц дисперсной фазы дисперсные системы бывают в виде взвесей и коллоидов.

Взвеси (размер дисперсной фазы более 100нм) ─ эмульсии, суспензии, аэрозоли.

Коллоидные растворы (размер дисперсной фазы от 1 до 100нм) – гели, золи.

Агрегатное состояние дисперсных систем бывает разным и обозначается двумя буквами.

Например: аэрозоль обозначается Г-Ж.

Г – газообразная дисперсионная среда, Ж – жидкая дисперсная фаза.

Выполнение работы

1. Приготовление суспензии мела.

В химический стакан поместите небольшое количество порошка мела и прилейте немного воды. Все тщательно перемешайте . Запишите наблюдения.

Поместите каплю, суспензии на стеклянную пластину и рассмотрите под микроскопом.

Запишите наблюдения.

2. Приготовление эмульсии моторного масла .

В химический стакан поместите небольшое количество моторного масла и прилейте немного воды. Все тщательно перемешайте . Запишите наблюдения.

Поместите каплю, эмульсии на стеклянную пластину и рассмотрите под микроскопом.

Запишите наблюдения.

Сформулируйте вывод о свойствах суспензии и схематически запишите агрегатное состояние дисперсной системы.

Контрольные вопросы

1. Что такое смеси? Какими бывают смеси?

2. Выпишите в один ряд природные смеси, а в другой чистые вещества:

мел, карбонат натрия, песок, известь, оксид кремния, гидроксид натрия, мрамор, гипс, железная руда.

3. Какие смеси называются дисперсными?

4.Что показывает степень дисперсности?

5. Что такое монодисперсная и полидисперсная система?

6.Какие дисперсные системы называются свободнодисперсными и связнодисперсными?

7.Какие агрегатные состояния бывают у дисперсных систем, как называют и схематически записывают такие дисперсные системы?

Ответ на 7 вопрос оформите в виде таблицы:

Название дисперсной системы

Дисперсионная среда

Дисперсная фаза

Обозначение агрегатного состояния

Примеры дисперсных систем

Сформулируйте вывод по работе.

Лабораторная работа 5

Тема: Реакции, идущие с образованием газа, осадка и воды.

Цель: Овладение умениями проведения различных типов химических реакций, с соблюдением правил техники безопасности.

Задача: Закрепление знаний по теме «Химические реакции».

Реактивы и оборудование: Штатив с пробирками, держатель, растворы NaOH , H 2 SO 4 ,CuSO 4 , Na 2 CO 3 , NH 4 Cl, Na 2 SO 4 , ZnSO 4 , BaCl 2 , Na и вода.

Металлы Mg, Zn, Fe; растворы кислот 5% HCl,10% HCl, 20% HCl, H 2 SO 4 ; оксид CuO (II). Штатив с пробирками, держатель, горелка, градусник.

Теоретические основы

Необратимые реакции протекают до конца, если выполняется три условия: выпадает осадок, образуется газообразное вещество и образуется малодиссоциирующее вещество (вода).

Образование осадка.

NaCl + AgNO 3 = AgCl↓ + NaNO 3 молекулярное уравнение

Na + + Cl - + Ag + + NO 3 - = AgCl↓ + Na + + NO 3 - полное ионное уравнение

Ag + + Cl - = AgCl↓ сокращенное ионное уравнение

Образование газообразного вещества.

(NH 4 ) 2 S + 2HCl = 2NH 4 Cl + H 2 S

2NH 4 + + S 2- + 2H + + 2Cl - = 2NH 4 + + 2Cl - + H 2 S

2H + + S 2- = H 2 S

Образование воды.

H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O

2H + + SO 4 2- + 2K + + 2OH - = 2K + + SO 4 2- + 2H 2 O

2H + + 2OH - = 2H 2 O

Выполнение работы.

1.Реакции, идущие с образованием газа

1.1. В пробирку поместите 2 мл раствора соли NH 4 Cl и прилейте такое же количество щелочи NaOH. Пробирку нагрейте до появления запаха аммиака. Запишите наблюдения и химическую реакцию.

1.2. В пробирку поместите 2 мл раствора соли Na 2 CO 3 и прилейте 1 мл раствора

серной кислоты. Запишите наблюдения и химическую реакцию.

1.3. В пробирку поместите 2 мл воды и опустите небольшой кусочек натрия. Запишите наблюдения и химическую реакцию.

2. Реакции, идущие с образованием осадка

2.1. В пробирку поместите 2 мл раствора соли CuSO 4 и прилейте 4мл раствора NaOH.

Запишите наблюдения и химическую реакцию.

2.2. В пробирку поместите 2 мл раствора соли Na 2 SO 4 и прилейте 2 мл раствора BaCl 2 до образования осадка. Запишите наблюдения и химическую реакцию.

3. Реакции, идущие с образованием воды

3.1. В пробирку поместите 2мл раствора H 2 SO 4 и 1 каплю индикатора метилового оранжевого, затем прилейте щелочи NaOH до изменения окраски раствора. Запишите наблюдения и химическую реакцию.

3.2. В пробирку поместите 2мл раствора ZnSO 4 и по капелькам до образования осадка добавьте раствор щелочи NaOH. К полученному осадку прилейте H 2 SO 4 до его растворения. Запишите наблюдения и химическую реакцию.

2. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.

В три пробирки налить растворы: в первую 3мл серной кислоты, во вторую 2мл серной кислоты и 1мл воды, в третью 1мл кислоты и 2мл воды. В каждую пробирку опустить гранулу цинка.

Запишите наблюдения. Сформулируйте зависимость скорости химической реакции от концентрации реагирующих веществ.

Контрольные вопросы

1 уровень

1. При каких условиях возможны необратимые реакции?

2. Возможна ли реакция: HCl + KOH = H 2 O + KCl

2 уровень

1. Запишите типы химических реакций по имеющимся классификациям.

2. Допишите реакцию: ZnCl 2 + NaOH = ? +? . Почему возможна эта необратимая реакция?

3 уровень

1. Запишите типы химических реакций по имеющимся классификациям, проделанных в лабораторной работе.

2. Запишите необратимую реакцию, которая протекает с выделением осадка .

Сформулируйте вывод по работе.

Лабораторная работа 6

Тема: Приготовление раствора заданной концентрации.

Цель: Овладение навыками приготовления растворов определенной концентрации, с соблюдением правил техники безопасности.

Задача: Закрепить знания по теме « Вода. Растворы. Электролитическая диссоциация».

Реактивы и оборудование: Хлорид натрия (NaCl), 60% конценрированная серная кислота, дистиллированная вода, весы, бюксы, мерная колба (100мл).

Теоретические основы

Раствор – гомогенная система, состоящая из растворенного вещества и растворителя.

При решении задач пользуются формулами:

W Р.В. = m Р.В. / m Р-РА.

M р-ра = m Р.В. + m Н2О

m Р-РА – масса раствора, г.

m Р.В. – масса растворенного вещества, г.

m Н2О – масса воды, г.

W Р.В. - массовая доля растворенного вещества.

10% раствор вещества содержит 10г растворенного вещества и 90г воды в 100г раствора.

Например: Определите массовую долю растворенного вещества, если 10 г его содержится в 100 г раствора. Какая масса воды содержится в растворе.

Дано: m Р.В. = 10 г ; m р-ра = 100 г

Найти: W Р.В.; m Н2О

Решение:

1. W Р.В. = ; W Р.В. = = 0,1

2. mн 2 о = m р-ра – mр.в.; mн 2 о = 100 – 10 = 90 г

Ответ: 0,1; 90 г

Выполнение работы

1.Приготовление 2% раствора соли.

Взвесьте в бюксе 2г хлорида натрия и пересыпьте через воронку в колбу на 100мл. Затем в колбу добавьте воды до метки. Полученный раствор имеет 2% концентрацию NaCl в 100г раствора или 0,02 массовую долю NaCl в 100г раствора .

2. Приготовление 100 мл 10% раствора серной кислоты.

Раствор готовят из 60% концентрированного раствора серной кислоты плотностью 1,5 г/мл. Для этого мензуркой отмеряют 11 мл 60% концетрированной серной кислоты и мерным цилиндром 100-11=99 мл воды. Воду выливают в колбу, а затем добавляют из мензурки кислоту. Полученный раствор содержит 0,1 массовую долю H 2 SO 4 .

Контрольные вопросы

1. Что такое растворы?

2.Из чего складывается масса раствора?

3. Как определяется массовая доля растворенного вещества в растворе?

4. Как приготовить10% раствор щелочи NaOH? Какая масса NaOH и воды содержится в таком растворе?

5. Решите задачу

1 уровень

1вариант:

Определите массовую долю растворенного вещества, если 20 г его содержится в 150 г раствора?

2 вариант:

Чему равна масса раствора, если 10г вещества растворили в100г воды?

2 уровень

1 вариант:

Определите массовую долю (%) KOH в растворе, если 40г KOH растворили в воде массой 160г.

2 вариант:

Чему равна масса растворенного вещества, если в200 г раствора массовая доля вещества составляет 0,2.

3 уровень

1 вариант:

К 200 граммам раствора, содержащего 0.3 массовые доли растворенного NaCl, добавили 100 граммов воды. Вычислите массовую долю NaCl в полученном растворе.

2 вариант:

Определите массу воды, которая содержится в растворе массой 300 г с массовой долей растворенного вещества равной 0,5?

Сформулируйте вывод по работе.

Лабораторная работа 7

Тема: Изготовление моделей молекул органических веществ.

Цель: Развитие навыков пространственного изображения молекул метана, этана, этена, этина, бензола.

Задача:

Оборудование: Пластилин, металлические стержни, бумага, клей, заготовки бумажных моделей, транспортир.Учебное пособие Габриелян О.С. «Химия»

Теоретические основы

В предельных углеводородах (алканы) 3 , и образуют одинарные σ – связи. Угол связи составляет 109,28 о . Форма молекул правильный тетраэдр.

В молекулах алкенов углеродные атомы находятся в состоянии гибридизации sp 2 , и образуют двойные связи σ и π – связи. Угол связи σ составляет 120 о , а π – связь распологается перпендикулярно связи σ. Форма молекул правильный треугольник.

В молекулах алкинов углеродные атомы находятся в состоянии гибридизации sp , и образуют тройные связи одну σ и две π – связи. Угол связи σ составляет 180 о , а две π – связи распологаются перпендикулярно друг друга. Форма молекул линейная (плоская).

В молекуле бензола C 6 H 6 шесть атомов углерода связаны σ – связью. Угол связи составляет 120 о . Состояние гибридизации sp 2 . В молекуле образуется

6 π – связь, которая принадлежит шести атомам углерода.

Для пространственного изображения молекул органических веществ важно знать, к какому классу веществ относится соединение, угол связи, форму молекул.

Например: Метан (СH 4 ) относится к классу алканов. Атомы находятся в состоянии гибридизации sp 3 , значит угол связи 109,28 о , форма молекулы тетраэдр, между атомами одинарная σ – связь. Для построения молекулы шаростержневым способом нужно заготовить 4 шара из пластилина. Один шар (атом углерода) большего размера и черного цвета, а три атома (водорода) одинакового размера красного цвета. Соединить шары металическими стержнями под углом 109,28 о .

Полусферическая модель атома изготавливается также только шары соединяются методом вдавливания в друг друга.

Выполнение работы

1. Изготовление моделей молекул органических веществ СH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , C 6 H 6 .

1.1.Изготовление шаростержневых моделей молекул.

Шаростержневые модели изготавливаются из пластилина и металлических стержней. При изготовлении молекул необходимо знать угол связи и ее кратность.

Атом химического элемента представляется в виде шара. Атом углерода в виде шара изготавливается большего размера, чем атомы водорода и из другого цвета пластилина. Химическая связь изображается металлическими стержнями. Угол химической связи измеряется траспортиром.

1.2.Изготовление полусферических моделей

Полусферические модели изготавливаются из пластилина. Сначала заготавливаются шары для атомов углерода и водорода, затем под определенным углом атомы в виде шаров соединяются друг с другом методом вдавливания. Получаются полусферы атомов.

1.3. Заполните таблицу. Зарисуйте молекулы органических веществ.

Контрольные вопросы

1. Какие бывают органические соединения по строению углеводородного скелета?

2. Какие бывают органические соединения по наличию функциональных групп?

3. Какие вещества называются гомологами?

4. Какие бывают пространственные формы молекул органических веществ?

5. Какой процесс называется гибридизацией?

7. Дайте понятие σ и π связи ?

Сформулируйте вывод по работе.

Лабораторная работа 8.

Тема: Обнаружение воды, сажи и углекислого газа в продуктах горения свечи. Качественное определение углерода, водорода и хлора в органических веществах

Цель: научиться определять углерод, водород, хлор в органических соединениях

Задача: Закрепление знаний по теме « Основные понятия органической химии и теория строения органических соединений».

Оборудование: парафин, оксид меди (II), сульфат меди (II), известковая вода, медная проволока , лабораторный штатив (или проборкодержатель), пробирки, пробка с газоотводной трубкой, спиртовка, спички, вата.

Соберите прибор, как показано на рисунке.

Смесь 1 - 2 г оксида меди (П) и 0,2 г парафина хорошо перемешайте и поместите на дно пробирки. Сверху насыпьте еще немного оксида меди (П). В верхнюю часть пробирки введите в виде пробки небольшой кусочек ваты и насыпьте на нее тонкий слой белого порошка безводного сульфата меди (П). Закройте пробирку пробкой с газоотводной трубкой. При этом конец трубки должен почти упираться в комочек ваты с сульфатом меди (П). Нижний конец газоотводной трубки должен быть погружен в пробирку с свежеприготовленным раствором известковой воды (раствор гидроксида кальция) Нагрейте пробирку в течении 2-3 мин. Если пробка плотно закрывает пробирку, то через несколько секунд из газоотводной трубки начнут выходить пузырьки газа. Как только известковая вода помутнеет, пробирку с ней следует удалить (что и продолжать нагревание, пока пары воды не достигнут белого порошка сульфата меди(П) и не вызовут его посинения.

После изменения окраски сульфата меди (П) следует прекратить нагревание.

Наблюдения:

– парафин окисляется в присутствии оксида меди (II). При этом углерод превращается в углекислый газ, а водород – в воду:

С n H 2n+2 + (3n+1) CuO → n CO 2 + (n+1) H 2 O + (3n+1) Cu

– выделяющийся углекислый газ взаимодействует с гидроксидом кальция, что вызывает помутнение известковой воды вследствие образования нерастворимого карбоната кальция:

СО 2 + Cа(OН) 2 → СаCO 3↓ + H 2 O

– сульфат меди (II) приобретает голубую окраску при взаимодействии с водой, в результате чего образуется кристаллогидрат CuSO 4 · 5Н 2 О.

Вывод: по продуктам окисления парафина СО 2 и H 2 O установили, что в его состав входят углерод и водород.

Контрольные вопросы:

1. Почему помутнел раствор известковой воды?

Напишите уравнение реакции, считая условно формулу парафина С 16 Н 34 .

2. Почему белый порошок сульфата меди (П) стал голубым? Напишите уравнение реакции, учитывая, что безводному сульфату меди (П) присоединяется 5 молекул воды.

3.Что произошло с чёрным порошком оксида меди (П).

Сделайте выводы.

Опыт №2. Качественное определение хлора в молекулах галогенопроизводных углеводородов

Для проведения опыта требуется медная проволока длиной около 10 см, загнутая на конце петлей и вставленная другим концом в держатель.

Прокалите петлю проволоки до исчезновения посторонней окраски пламени. Остывшую петлю, покрывшуюся черным налетом оксида меди (П), опустите в пробирку с хлороформом, затем смоченную веществом петлю вновь внесите в пламя горелки. Немедленно появляется характерная зеленовато-голубая окраска пламени, так как образующиеся при сгорании летучие галогениды меди окрашивают пламя горелки.

4. Оформите работу:

Лабораторная работа 9.

Тема:

Цели: познакомиться со свойствами кислородсодержащих органических соединений, которые включают полярную функциональную группу, определяющую их физические и химические свойства; изучить особые свойства многоатомных спиртов; определить роль функциональной группы в формировании физических свойств и химической активности спиртов.

Задачи: Закрепить знания по теме «Спирты».

Оборудование: штатив с пробирками, дистиллированная вода, этанол, глицерин, сульфат меди (II), раствор гидроксида натрия, серной кислоты.

Экспериментальная задача I. Уровень I

Изучение растворимости спиртов в воде.

  1. В три пробирки наливаем по 1 мл этанола и глицерина.
  2. Рассчитываем относительные молекулярные массы спиртов.
  3. Располагаем пробирки в штативе в порядке увеличения относительной молекулярной массы спиртов.
  4. Добавляем в каждую пробирку по 2 мл дистиллированной воды.
  5. Встряхиваем пробирки.
  6. Наблюдаем за растворимостью спиртов, используя для характеристики слова «хорошо», «ограниченно», «плохо».
  7. Результаты сверяем с табличными.
Содержимое пробирок оставляем для выполнения Экспериментальной задачи II.

Тема: Изучение свойств спиртов

Исполнитель

Экспериментальная задача I

Существует два метода приготовления суспензий: дисперсионный и конденсационный.

Техника приготовления суспензий дисперсионным методом предопределяется физико-химическими свойствами лекарственных веществ, входящих в ее состав, которые по отношению к воде разделяют на две группы: гидрофильные и гидрофобные (см.

Рис. 14.1).

Приготовление суспензий гидрофильных веществ не требует введения стабилизаторов, так как на поверхности частиц, имеющих сродство к дисперсионной среде, образуется гидратный (сольватный) слой, обеспечивающий устойчивость системы.


Для получения тонкоизмельчен- ных лекарственных веществ рекомендуется при их растирании применять воду или другую вспомогательную жидкость, которая снижает твердость вещества и способствует процессу диспергирования, доводя размер частиц до 0,1-5 мкм. Это объясняется расклинивающим действием жидкостей, которые, проникая в микротрещины, образующиеся при дроблении вещества, создают расклинивающее действие Рр, которое действует противоположно стягивающему действию вогнутого мениска -

так называемому лапласовскому давлению Рл и значительно больше Рл. Микротрещины расширяются, и происходит дальнейшее измельчение вещества (эффект Ребиндера, рис. 14.2). Чем выше энергия смачивания, тем более выражен расклинивающий эффект, тем лучше диспергируется вещество. Академик Б.В.Дерягин установил, что максимальный эффект диспергирования в присутствии жидкости наблюдается при добавлении 0,4-0,6 мл жидкости на 1 г твердого вещества (40-60%). Гидрофильные лекарственные вещества легче диспергируются в присутствии воды, а гидрофобные - спирта.

Суспензии, в которых частички дисперсной фазы хорошо диспергированы и покрыты сольватными оболочками, состоящими из молекул дисперсионной среды, характеризуются большей агрегативной устойчивостью, ибо образовавшиеся оболочки на поверхности частиц препятствуют их агрегации.

Для получения более тонких и устойчивых водных суспензий гидрофильных набухающих веществ (висмута нитрата основного, цинка оксида, магния оксида, кальция фосфата, карбоната и глицерофосфата, коалина, натрия гидрокарбоната, железа глицерофосфата) наиболее целесообразно использовать прием взмучивания, который является разновидностью дисперсионного метода. Сущность приема заключается в том, что вещество диспергируют сначала в сухом виде, затем - с учетом правила Дерягина. Полученную тонкую пульпу разбавляют примерно в 10 раз водой (раствором), растирают и сливают верхний слой суспензии в склянку для отпуска. Операцию взмучивания повторяют до тех пор, пока все вещество не будет диспергировано и получено в виде тонкой взвеси.

Если диспергированное вещество способно набухать в растворителе, его растирают очень тщательно в сухом виде, так как добавление жидкости понижает и затрудняет диспергирование.

Суспензии могут быть стабилизированы электролитами, создающими в пограничном слое дзета-потенциал определенного знака и величины за счет адсорбции ионов из раствора и диссоциации или гидролиза поверхностного слоя твердой фазы. Однако электролиты, добавленные к суспензии, стабилизируют последние лишь при определенных концентрациях. При превышении концентрации электролита стабилизирующее действие переходит в коагулирующее.

Наиболее сильно проявляют стабилизирующее действие в суспензиях ВМС, которые образуют защитные гидратные слои на поверхности частиц дисперсной фазы или охватывают частицы длинными цепочечноподобными макромолекулами (рис. 14.3).

Устойчивость суспензий с гидрофильными веществами значительно повышается в присутствии вязких веществ (сахарный сироп, фруктовые сиропы). В этом случае вещества тщательно растираются

с небольшим количеством сиропа и полученную пульпу разбавляют оставшимся сиропом, а затем - водой.

Стабилизированные суспензии дозируются более точно.

Для получения устойчивых суспензий гидротротых веществ необходимо введение стабилизаторов, лиофилизирующих (увеличивающих сродство к воде) поверхность частиц и способствующих образованию сольватных оболочек.

В качестве стабилизаторов используют природные или синтетические ВМС: камеди (аравийскую и абрикосовую), белки, желатозу, слизи (алтея, льняного семени, салепа), природные полисахариды и комплексы, метилцеллюлозу, натрий-карбоксиметилцеллюлозу, по- ливинилпирролидон, полиглюкин, твины, спены и другие ПАВ, способные уменьшать поверхностную энергию в системе.

При использовании стабилизаторов целесообразно применять их растворы, с которыми растирают суспендируемое вещество. Не следует использовать излишне большие количества стабилизаторов, значительно увеличивающих вязкость суспензии. Соотношение между твердой фазой суспензии и ВМС зависит от степени гидрофобности и гидрофилизирующих свойств вещества. Количество стабилизатора, необходимое для стабилизации суспензии, определяется преимущественно эмпирически. В общем случае его коли честю не должно превышать количество суспендируемого вещества.

При приготовлении суспензий гидротротых веществ с нерезко выраженными свойствами - бензонафтол, терпингидрат, сульфаниламиды (сульфадимезин, сульфадиметоксин, сульфамонометоксин, салазопиридазин, фталазол, этазол и др.) - на 1 г вещества берут 0,25 г абрикосовой камеди или 0,5 г желатозы, или 1 г 5% раствора метилцеллюлозы, или 0,1 г твина-80. Суспензии сульфаниламидов и антибиотиков часто готовят с применением в качестве стабилизаторов метилцеллюлозы или твина-80.

Одновременно следует учитывать, что твины и спены нельзя использовать в суспензиях салицилатов, производных параоксибен- зойной кислоты, фенола и других веществ, с которыми они несовместимы, а также отрицательное действие концентрированных растворов электролитов на защитные свойства растворов камедей и желатозы.

Для приготовления суспензий гидрофобных веществ с резко выраженными свойствами (камфора, ментол и др.) количество гидрофи- лизирующих веществ увеличивается в 2 раза по отношению к их массе.

Особого подхода требует приготовление суспензии серы, где применение общепринятых стабилизаторов нецелесообразно ввиду уменьшения ее фармакологического действия. В качестве стабилизатора суспензии серы для наружного применения рекомендуется мыло медицинское в количестве 0,1-0,2 г на 1 г серы. Являясь ПАВ, мыло медицинское разрыхляет поры кожи, способствует проникновению серы, что целесообразно при лечении чесотки и других кожных заболеваний. Мыло медицинское в качестве стабилизатора необходимо применять только по согласованию с врачом. Для получения стабильной суспензии серы в сочетании с кислотами, солями щелочно-земельных и тяжелых металлов количество мыла следует увеличить до 0,3-0,4 г на 1 г серы, так как мыло с указанными веществами образует нерастворимые соли.

При приготовлении суспензии с серой в качестве стабилизатора можно использовать также натрий-карбоксицеллюлозу.

Конденсационный метод используют в аптечной практике с целью получения высокодисперсных (тонких) суспензий (мутных микстур) путем:

0 химического взаимодействия веществ, порознь растворимых, но реагирующих при сливании растворов с образованием взвеси. Например, при сливании растворов натрия гидрокарбоната и кальция хлорида образуется тонкая суспензия кальция карбоната;

0 разведения водой или водными растворами солей жидких экстрактов или настоек. В результате значительного понижения концентрации спирта выпадают вещества, нерастворимые в спиртоводных растворах (концентрация спирта менее 20%), с образованием мутных микстур.

Во избежание получения грубодисперсных систем необходимо настойки й экстракты добавлять к разбавленным водным растворам солей, т.е. в конце процесса приготовления микстуры в соответствии с требованиями ГФ.

В мутных микстурах осадки, как правило, образуются достаточно тонкими и хорошо распределяются в жидкой среде при взбалтывании. Но иногда выпавший осадок склонен к агрегации и оседанию или флокуляции, может прилипать к стенкам склянки для отпуска. В таких случаях рекомендуется использовать стабилизатор, который добавляют либо к водной микстуре, либо к настойке или жидкому экстракту, а затем жидкости смешивают.

Во всех случаях, когда в микстуру входят сиропы, слизи или вещества, содержащие слизь, которые могут стабилизировать гидрофобные компоненты суспензии, целесообразно их смешивать с настойками, жидкими экстрактами, нашатырно-анисовыми каплями и т.д., а затем добавлять к водным растворам солей.

Следует отметить, что используют лишь разрешенные к медицинскому применению загустители, ПАВ, корригенты и другие вспомогательные вещества.

Не допускается приготовление суспензий, содержащих ядовитые вещества (ГФ XI).

Все виды суспензий отпускают в склянках из бесцветного стекла (чтобы можно было видеть результаты взбалтывания) с предупредительной этикеткой “Перед употреблением взбалтывать”. Микстуры- суспензии хранят в прохладном, защищенном от света месте.

Приготовление дисперсных систем.

Цель:

  • получить дисперсные системы и исследовать их свойства
  • практически познакомиться со свойствами различных видов дисперсных систем;
  • провести эксперимент, соблюдая правила техники безопасности.

Оборудование и реактивы:

  • дистиллированная вода;
  • вещества и растворы: карбонат кальция, масло, раствор глицерина, мука, желатин
  • фарфоровая чашка;
  • пробирки, штатив.

Теоретическая часть

Чистые вещества в природе встречаются очень редко, чаще всего встречаются смеси. Смеси разных веществ в различных агрегатных состояниях могут образовывать гомогенные(растворы) и гетерогенные(дисперсные) системы.
Дисперсными- называют гетерогенные системы, в которых одно вещество - дисперсная фаза (их может быть несколько) в виде очень мелких частиц равномерно распределено в объеме другого -дисперсионной среде.

Среда и фазы находятся в разных агрегатных состояниях – твердом, жидком и газообразном. По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делятся 2 группы:

  • Грубодисперсные (взвеси) с размерами частиц более 100 нм. Это непрозрачные системы, в которых фаза и среда легко разделяются отстаиванием или фильтрованием. Это- эмульсии, суспензии, аэрозоли.
  • Тонкодисперсные- с размерами частиц от 100 до 1 нм. Фаза и среда в таких системах отстаиванием разделяются с трудом. Это: золи (коллоидные растворы- "клееподобные") и гели (студни).
Коллоидные системы прозрачны и внешне похожи на истинные растворы, но отличаются от последних по образующейся “светящейся дорожке” – конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. При определенных условиях в коллоидном растворе может начаться процесс коагуляции. ^
Коагуляция – явление слипания коллоидных частиц и выпадения их в осадок. При этом коллоидный раствор превращается в суспензию или гель. Гели или студни представляют собой студенистые осадки, образующиеся при коагуляции золей. Со временем структура гелей нарушается (отслаивается) – из них выделяется вода. Это явление синерезиса Различают 8 типов дисперсных систем.(д/с + д/ф)
  • Г+Ж→аэрозоль (туман, облака, карбюраторная смесь бензина с воздухом в ДВС
  • Г+ТВ→аэрозоль(дым, смог, пыль в воздухе)
  • Ж+Г→пена (газированные напитки, взбитые сливки)
  • Ж+Ж→эмульсия (молоко, майонез, плазма крови, лимфа, цитоплазма)
  • Ж+ТВ→золь, суспензия (речной и морской ил, строительные растворы, пасты)
  • ТВ+Г→твердая пена(керамика, пенопласт, поролон, полиуретан, пористый шоколад)
  • ТВ+Ж→гель(желе, желатин, косметические и медицинские мази, помада)
  • ТВ+ТВ→твердый золь (горные породы, цветные стекла)

Ход работы



Опыт Результат
Опыт №1 Приготовление суспензии карбоната кальция в воде. В стеклянную пробирку влить 4-5мл воды и всыпать 1-2 ложечки карбоната кальция. Пробирку закрыть резиновой пробкой и встряхнуть несколько раз. Наблюдения: *Внешний вид и видимость частиц:_______________________ _____________________________ _____________________________ *Способность осаждаться и способность к коагуляции ___________________ ____________________________ ______________________________
Опыт №2 Приготовление эмульсии масла в воде и изучение ее свойств В стеклянную пробирку влить 4-5мл воды и 1-2 мл масла, закрыть резиновой пробкой и встряхнуть несколько раз. Изучить свойства эмульсии. Добавить 2-3 капли глицерина. Наблюдения: *Внешний вид и видимость частиц: ______________________________ ______________________________ _____ *Способность осаждаться и способность к коагуляции __________________________ *Внешний вид после добавления глицерина _____________________ ____________________________
Опыт №3 Приготовление коллоидного раствора и изучение его свойств В стеклянный стакан с горячей водой внести 1-2 ложечки муки (или желатина), тщательно перемешать. Пропустить через раствор луч света фонарика на фоне темной бумаги Наблюдения: *Внешний вид и видимость частиц __________________________ *Способность осаждаться и способность к коагуляции _____________________________ _____________________________ _____________________________ *Наблюдается ли эффект Тиндаля ______________________________ ______________________________

Общий вывод:____


Лабораторная работа№3-4

Испытание растворов кислот индикаторами. Взаимодействие металлов с кислотами. Взаимодействие кислот с оксидами металлов.

Взаимодействие кислот с основаниями. Взаимодействие кислот с солями.

Испытание растворов щелочей индикаторами. Взаимодействие щелочей с солями. Разложение нерастворимых оснований.

Взаимодействие солей с металлами. Взаимодействие солей друг с другом. Гидролиз солей различного типа.

Цель работы:

· изучить свойства сложных неорганических веществ

Приборы и реактивы :

· пробирки, штативы.

· Растворы: HCl, NaOH, K 2 CO 3 , CH 3 COOH, CaO, Fe(OH) 3 , H 2 SO 4 , BaCl 2 , KOH, Ca(OH) 2 , Mg(OH) 2 , CuSO 4 , FeCl 3 , K 2 S, K 3 PO 4 , CaCl 2 , Na 3 PO 4 ,

· гранулы цинка,

· индикаторы.

Теоретическая часть

Гидролиз – это процесс взаимодействия ионов соли с водой, приводящий к образованию слабого электролита. Все соли можно разделить на 4 группы:

  1. Соль образована сильным основанием и сильной кислотой К 2 SО 4 , Na NO 3 ,)– гидролиз не идет, среда нейтральная рН = 7 .
  2. Соль образована слабым основанием и слабой кислотой (MgСО 3 , Al 2 S 3 , Zn(NO 2) 2) - гидролиз протекает практически в нейтральной среде рН ближе к 7 , гидролиз идет по катиону и аниону:
  3. Соль образована сильным основанием и слабой кислотой (например: Na 2 СО 3 , К 2 S, Ва(NO 2) 2, СН 3 СОО Li) -гидролиз протекает в щелочной среде рН >7 , гидролиз идет по аниону.
  4. Соль образована слабым основанием и сильной кислотой (MgSО 4 , AlCL 3 , Zn(NO 3) 2, ..) - гидролиз протекает в кислой среде рН< 7 , гидролиз идет по катиону.


Глубина гидролиза зависит от температуры (чаще всего ее приходится повышать) и концентрации раствора (при разбавлении раствора гидролиз усиливается)

Если продукты гидролиза летучи,или нерастворимы, то он необратим.