Парная регрессия представляет собой регрессию между двумя переменными

-у и х, т.е. модель вида + Е

Где у - результативный признак,т.е зависимая переменная; х - признак-фактор.

Линейная регрессия сводится к нахождению уравнения вида или

Уравнение вида позволяет по заданным значениям фактора x иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х.

Построение линейной регрессии сводится к оценке ее пара­метров а и в.

Оценки параметров линейной регрессии могут быть найдены разными методами.

1.

2.

Параметр b называется коэффициентом регрессии . Его вели­чина показывает

среднее изменение результата с изменением фактора на одну единицу.

Формально а - значение у при х = 0. Если признак-фактор

не имеет и не может иметь нулевого значения, то вышеуказанная

трактовка свободного члена, а не имеет смысла. Параметр, а может

не иметь экономического содержания. Попытки экономически

интерпретировать параметр, а могут привести к абсурду, особенно при а < 0.

Интерпретировать можно лишь знак при параметре а. Если а > 0,

то относительное изменение результата происходит медленнее, чем изменение

проверка качества найденных параметров и всей модели в целом:

-Оценка значимости коэффициента регрессии (b) и коэффициента корреляции

-Оценка значимости всего уравнения регрессии. Коэффициент детерминации

Уравнение регрессии всегда дополняется показателем тесноты связи. При

использовании линейной регрессии в качестве такого показателя выступает

линейный коэффициент корреляции r xy . Существуют разные

модификации формулы линейного коэф­фициента корреляции.

Линейный коэффициент корреляции находится и границах: -1≤.r xy

≤ 1. При этом чем ближе r к 0 тем слабее корреляция и наоборот чем

ближе r к 1 или -1, тем сильнее корреляция, т.е. зависимость х и у близка к

линейной. Если r в точности =1или -1 все точки лежат на одной прямой.

Если коэф. регрессии b>0 то 0 ≤.r xy ≤ 1 и

наоборот при b<0 -1≤.r xy ≤0. Коэф.

корреляции отражает степени линейной зависимости м/у величинами при наличии

ярко выраженной зависимости др. вида.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного

коэффициента корреляции

Называемый коэффициентом детерминации. Коэффициент детермина­ции

характеризует долю дисперсии результативного признака y, объясняемую

регрессией. Соответствующая величина

характеризует долю дисперсии у, вызванную влиянием остальных не учтенных

в модели факторов.

МНК позволяет получить такие оценки параметров а и b, которых

сумма квадратов отклонений фактических значений ре­зультативного признака

(у) от расчетных (теоретических)

ми­нимальна:

Иными словами, из

всего множества линий линия регрессии на графике выбирается так, чтобы сумма

квадратов расстояний по вертикали между точками и этой линией была бы

минималь­ной.

Решается система нормальных уравнений

ОЦЕНКА СУЩЕСТВЕННОСТИ ПАРАМЕТРОВ ЛИНЕЙНОЙ РЕГРЕССИИ.

Оценка значимости уравнения регрессии в целом дается с по­мощью F-критерия

Фишера. При этом выдвигается нулевая ги­потеза, что коэффициент регрессии равен

нулю, т. е. b = 0, и следовательно, фактор х не оказывает

влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии.

Центральное место в нем занимает разложе­ние общей суммы квадратов отклонений

переменной у от средне го значения у на две части -

«объясненную» и «необъясненную»:

Общая сумма квадратов отклонений

Сумма квадратов

отклонения объясненная регрессией

Остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе­ней свободы, т.

е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности nис числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло­нений из п возможных требуется для

образования данной суммы квадратов.

Дисперсия на одну степень свободы D.

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива, то факторная и остаточная дисперсии не

отличаются друг от друга. Для Н 0 необходимо опровержение, чтобы

факторная дисперсия превышала остаточную в несколько раз. Английским

статистиком Снедекором раз­работаны таблицы критических значений F-отношений

при разных уровнях существенности нулевой гипотезы и различном числе степеней

свободы. Табличное значение F-критерия - это максимальная величина отношения

дисперсий, которая может иметь место при случайном их расхождении для данного

уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения

признается достоверным, если о больше табличного. В этом случае нулевая

гипотеза об отсутствии связи признаков отклоняется и делается вывод о

существенности этой связи: F факт > F табл Н 0

отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл

То вероятность нулевой гипотезы выше заданного уровня и она не может быть

отклонена без серьезного риска сделать неправильный вывод о наличии связи. В

этом случае уравнение регрессии считается статистически незначимым. Н о

не отклоняется.


Похожая информация.


Итоговые тесты по эконометрике

1. Оценка значимости параметров уравнения регрессии осуществляется на основе:

А) t - критерия Стьюдента;

б) F -критерия Фишера – Снедекора;

в) средней квадратической ошибки;

г) средней ошибки аппроксимации.

2. Коэффициент регрессии в уравнении , характеризующем связь между объемом реализованной продукции (млн. руб.) и прибылью предприятий автомобильной промышленности за год (млн. руб.) означает, что при увеличении объема реализованной продукции на 1 млн. руб. прибыль увеличивается на:

г) 0,5млн. руб.;

в) 500тыс. руб.;

Г) 1,5 млн. руб.

3. Корреляционное отношение (индекс корреляции) измеряет степень тесноты связи между Х и Y :

а) только при нелинейной форме зависимости;

Б) при любой форме зависимости;

в) только при линейной зависимости.

4. По направлению связи бывают:

а) умеренные;

Б) прямые;

в) прямолинейные.

5. По 17 наблюдениям построено уравнение регрессии:
.
Для проверки значимости уравнения вычислено наблюдаемое значение t - статистики: 3.9. Вывод:

А) Уравнение значимо при a= 0,05;

б) Уравнение незначимо при a = 0,01;

в) Уравнение незначимо при a = 0,05.

6. Каковы последствия нарушения допущения МНК «математическое ожидание регрессионных остатков равно нулю»?

А) Смещенные оценки коэффициентов регрессии;

б) Эффективные, но несостоятельные оценки коэффициентов регрессии;

в) Неэффективные оценки коэффициентов регрессии;

г) Несостоятельные оценки коэффициентов регрессии.

7. Какое из следующих утверждений верно в случае гетероскедастичности остатков?

А) Выводы по t и F- статистикам являются ненадежными;

г) Оценки параметров уравнения регрессии являются смещенными.

8. На чем основан тест ранговой корреляции Спирмена?

А) На использовании t – статистики;

в) На использовании ;

9. На чем основан тест Уайта?

б) На использовании F– статистики;

В) На использовании ;

г) На графическом анализе остатков.

10. Каким методом можно воспользоваться для устранения автокорреляции?

11. Как называется нарушение допущения о постоянстве дисперсии остатков?

а) Мультиколлинеарность;

б) Автокорреляция;

В) Гетероскедастичность;

г) Гомоскедастичность.

12. Фиктивные переменные вводятся в:

а) только в линейные модели;

б) только во множественную нелинейную регрессию;

в) только в нелинейные модели;

Г) как в линейные, так и в нелинейные модели, приводимые к линейному виду.

13. Если в матрице парных коэффициентов корреляции встречаются
, то это свидетельствует:

А) О наличии мультиколлинеарности;

б) Об отсутствии мультиколлинеарности;

в) О наличии автокорреляции;

г) Об отсутствии гетероскедастичности.

14. С помощью какой меры невозможно избавиться от мультиколлинеарности?

а) Увеличение объема выборки;

Г) Преобразование случайной составляющей.

15. Если
и ранг матрицы А меньше (К-1) то уравнение:

а) сверхиденцифицировано;

Б) неидентифицировано;

в) точно идентифицировано.

16.Уравнение регрессии имеет вид:

А)
;

б)
;

в)
.

17.В чем состоит проблема идентификации модели?

А) получение однозначно определенных параметров модели, заданной системой одновременных уравнений;

б) выбор и реализация методов статистического оценивания неизвестных параметров модели по исходным статистическим данным;

в) проверка адекватности модели.

18. Какой метод применяется для оценивания параметров сверхиденцифицированного уравнения?

В) ДМНК, КМНК;

19. Если качественная переменная имеет k альтернативных значений, то при моделировании используются:

А) (k-1) фиктивная переменная;

б) kфиктивных переменных;

в) (k+1) фиктивная переменная.

20. Анализ тесноты и направления связей двух признаков осуществляется на основе:

А) парного коэффициента корреляции;

б) коэффициента детерминации;

в) множественного коэффициента корреляции.

21. В линейном уравнении x = а 0 +a 1 х коэффициент регрессии показывает:

а) тесноту связи;

б) долю дисперсии "Y", зависимую от "X";

В) на сколько в среднем изменится "Y" при изменении "X" на одну единицу;

г) ошибку коэффициента корреляции.

22. Какой показатель используется для определения части вариации, обусловленной изменением величины изучаемого фактора?

а) коэффициент вариации;

б) коэффициент корреляции;

В) коэффициент детерминации;

г) коэффициент эластичности.

23. Коэффициент эластичности показывает:

А) на сколько % изменится значение y при изменении x на 1 %;

б) на сколько единиц своего измерения изменится значение yпри измененииxна 1 %;

в) на сколько % изменится значение yпри измененииxна ед. своего измерения.

24. Какие методы можно применить для обнаружения гетероскедастичности ?

А) Тест Голфелда-Квандта;

Б) Тест ранговой корреляции Спирмена;

в) Тест Дарбина- Уотсона.

25. На чем основан тест Голфельда -Квандта

а) На использовании t– статистики;

Б) На использовании F – статистики;

в) На использовании ;

г) На графическом анализе остатков.

26. С помощью каких методов нельзя устранить автокорреляцию остатков?

а) Обобщенным методом наименьших квадратов;

Б) Взвешенным методом наименьших квадратов;

В) Методом максимального правдоподобия;

Г) Двухшаговым методом наименьших квадратов.

27. Как называется нарушение допущения о независимости остатков?

а) Мультиколлинеарность;

Б) Автокорреляция;

в) Гетероскедастичность;

г) Гомоскедастичность.

28. Каким методом можно воспользоваться для устранения гетероскедастичности?

А) Обобщенным методом наименьших квадратов;

б) Взвешенным методом наименьших квадратов;

в) Методом максимального правдоподобия;

г) Двухшаговым методом наименьших квадратов.

30. Если по t -критерию большинство коэффициентов регрессии статистически значимы, а модель в целом по F - критерию незначима то это может свидетельствовать о:

а) Мультиколлинеарности;

Б) Об автокорреляции остатков;

в) О гетероскедастичности остатков;

г) Такой вариант невозможен.

31. Возможно ли с помощью преобразования переменных избавиться от мультиколлинеарности?

а) Эта мера эффективна только при увеличении объема выборки;

32. С помощью какого метода можно найти оценки параметра уравнения линейной регрессии:

А) методом наименьшего квадрата;

б) корреляционно-регрессионного анализа;

в) дисперсионного анализа.

33. Построено множественное линейное уравнение регрессии с фиктивными переменными. Для проверки значимости отдельных коэффициентов используется распределение:

а) Нормальное;

б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

34. Если
и ранг матрицы А больше (К-1) то уравнение:

А) сверхиденцифицировано;

б) неидентифицировано;

в) точно идентифицировано.

35. Для оценивания параметров точно идентифицируемой системы уравнений применяется:

а) ДМНК, КМНК;

б) ДМНК, МНК, КМНК;

36. Критерий Чоу основывается на применении:

А) F - статистики;

б) t - статистики;

в) критерии Дарбина –Уотсона.

37. Фиктивные переменные могут принимать значения:

г) любые значения.

39. По 20 наблюдениям построено уравнение регрессии:
.
Для проверки значимости уравнения вычислено значение статистики: 4.2. Выводы:

а) Уравнение значимо при a=0.05;

б) Уравнение незначимо при a=0.05;

в) Уравнение незначимо при a=0.01.

40. Какое из следующих утверждений не верно в случае гетероскедастичности остатков?

а) Выводы по tиF- статистикам являются ненадежными;

б) Гетероскедастичность проявляется через низкое значение статистики Дарбина-Уотсона;

в) При гетероскедастичности оценки остаются эффективными;

г) Оценки являются смещенными.

41. Тест Чоу основан на сравнении:

А) дисперсий;

б) коэффициентов детерминации;

в) математических ожиданий;

г) средних.

42. Если в тесте Чоу
то считается:

А) что разбиение на подынтервалы целесообразно с точки зрения улучшения качества модели;

б) модель является статистически незначимой;

в) модель является статистически значимой;

г) что нет смысла разбивать выборку на части.

43. Фиктивные переменные являются переменными:

а) качественными;

б) случайными;

В) количественными;

г) логическими.

44. Какой из перечисленных методов не может быть применен для обнаружения автокорреляции?

а) Метод рядов;

б) критерий Дарбина-Уотсона;

в) тест ранговой корреляции Спирмена;

Г) тест Уайта.

45. Простейшая структурная форма модели имеет вид:

А)

б)

в)

г)
.

46. С помощью каких мер возможно избавиться от мультиколлинеарности?

а) Увеличение объема выборки;

б) Исключения переменных высококоррелированных с остальными;

в) Изменение спецификации модели;

г) Преобразование случайной составляющей.

47. Если
и ранг матрицы А равен (К-1) то уравнение:

а) сверхиденцифицировано;

б) неидентифицировано;

В) точно идентифицировано;

48. Модель считается идентифицированной, если:

а) среди уравнений модели есть хотя бы одно нормальное;

Б) каждое уравнение системы идентифицируемо;

в) среди уравнений модели есть хотя бы одно неидентифицированное;

г) среди уравнений модели есть хотя бы одно сверхидентифицированное.

49. Какой метод применяется для оценивания параметров неиденцифицированного уравнения?

а) ДМНК, КМНК;

б) ДМНК, МНК;

В) параметры такого уравнения нельзя оценить.

50. На стыке каких областей знаний возникла эконометрика:

А) экономическая теория; экономическая и математическая статистика;

б) экономическая теория, математическая статистика и теория вероятности;

в) экономическая и математическая статистика, теория вероятности.

51. В множественном линейном уравнении регрессии строятся доверительные интервалы для коэффициентов регрессии с помощью распределения:

а) Нормального;

Б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

52. По 16 наблюдениям построено парное линейное уравнение регрессии. Для проверки значимости коэффициента регрессии вычислено t на6л =2.5.

а) Коэффициент незначим при a=0.05;

б) Коэффициент значим при a=0.05;

в) Коэффициент значим при a=0.01.

53. Известно, что между величинами X и Y существует положительная связь. В каких пределах находится парный коэффициент корреляции?

а) от -1 до 0;

б) от 0 до 1;

В) от –1 до 1.

54. Множественный коэффициент корреляции равен 0.9. Какой процент дисперсии результативного признака объясняется влиянием всех факторных признаков?

55. Какой из перечисленных методов не может быть применен для обнаружения гетероскедастичности ?

А) Тест Голфелда-Квандта;

б) Тест ранговой корреляции Спирмена;

в) метод рядов.

56. Приведенная форма модели представляет собой:

а) систему нелинейных функций экзогенных переменных от эндогенных;

Б) систему линейных функций эндогенных переменных от экзогенных;

в) систему линейных функций экзогенных переменных от эндогенных;

г) систему нормальных уравнений.

57. В каких пределах меняется частный коэффициент корреляции вычисленный по рекуретным формулам?

а) от - до +;

б) от 0 до 1;

в) от 0 до + ;

Г) от –1 до +1.

58. В каких пределах меняется частный коэффициент корреляции вычисленный через коэффициент детерминации?

а) от - до +;

Б) от 0 до 1;

в) от 0 до + ;

г) от –1 до +1.

59. Экзогенные переменные:

а) зависимые переменные;

Б) независимые переменные;

61. При добавлении в уравнение регрессии еще одного объясняющего фактора множественный коэффициент корреляции:

а) уменьшится;

б) возрастет;

в) сохранит свое значение.

62. Построено гиперболическое уравнение регрессии: Y = a + b / X . Для проверки значимости уравнения используется распределение:

а) Нормальное;

Б) Стьюдента;

в) Пирсона;

г) Фишера-Снедекора.

63. Для каких видов систем параметры отдельных эконометрических уравнений могут быть найдены с помощью традиционного метода наименьших квадратов?

а) система нормальных уравнений;

Б) система независимых уравнений;

В) система рекурсивных уравнений;

Г) система взаимозависимых уравнений.

64. Эндогенные переменные:

А) зависимые переменные;

б) независимые переменные;

в) датированные предыдущими моментами времени.

65. В каких пределах меняется коэффициент детерминации?

а) от 0 до +;

б) от -до +;

В) от 0 до +1;

г) от -l до +1.

66. Построено множественное линейное уравнение регрессии. Для проверки значимости отдельных коэффициентов используется распределение:

а) Нормальное;

б) Стьюдента;

в) Пирсона;

Г) Фишера-Снедекора.

67. При добавлении в уравнение регрессии еще одного объясняющего фактора коэффициент детерминации:

а) уменьшится;

Б) возрастет;

в) сохранит свое значение;

г) не уменьшится.

68. Суть метода наименьших квадратов заключается в том, что:

А) оценка определяется из условия минимизации суммы квадратов отклонений выборочных данных от определяемой оценки;

б) оценка определяется из условия минимизации суммы отклонений выборочных данных от определяемой оценки;

в) оценка определяется из условия минимизации суммы квадратов отклонений выборочной средней от выборочной дисперсии.

69. К какому классу нелинейных регрессий относится парабола:

73. К какому классу нелинейных регрессий относится экспоненциальная кривая:

74. К какому классу нелинейных регрессий относится функция вида ŷ
:

А) регрессии, нелинейные относительно включенных в анализ переменных, но линейных по оцениваемым параметрам;

б) нелинейные регрессии по оцениваемым параметрам.

78. К какому классу нелинейных регрессий относится функция вида ŷ
:

а) регрессии, нелинейные относительно включенных в анализ переменных, но линейных по оцениваемым параметрам;

Б) нелинейные регрессии по оцениваемым параметрам.

79. В уравнении регрессии в форме гиперболы ŷ
если величина
b >0 , то:

А) при увеличении факторного признака х значения результативного признака у замедленно уменьшаются, и при х→∞ средняя величина у будет равна а;

б) то значение результативного признака у возрастает с замедленным ростом при увеличении факторного признака х , и при х→∞

81. Коэффициент эластичности определяется по формуле

А) Линейной функции;

б) Параболы;

в) Гиперболы;

г) Показательной кривой;

д) Степенной.

82. Коэффициент эластичности определяется по формуле
для модели регрессии в форме:

а) Линейной функции;

Б) Параболы;

в) Гиперболы;

г) Показательной кривой;

д) Степенной.

86. Уравнение
называется:

А) линейным трендом;

б) параболическим трендом;

в) гиперболическим трендом;

г) экспоненциальным трендом.

89. Уравнение
называется:

а) линейным трендом;

б) параболическим трендом;

в) гиперболическим трендом;

Г) экспоненциальным трендом.

90. Система виды называется:

А) системой независимых уравнений;

б) системой рекурсивных уравнений;

в) системой взаимозависимых (совместных, одновременных) уравнений.

93. Эконометрику можно определить как:

А) это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией;

Б) наука об экономических измерениях;

В) статистический анализ экономических данных.

94. К задачам эконометрики можно отнести:

А) прогноз экономических и социально-экономических показателей, характеризующих состояние и развитие анализируемой системы;

Б) имитация возможных сценариев социально-экономического развития системы для выявления того, как планируемые изменения тех или иных поддающихся управлению параметров скажутся на выходных характеристиках;

в) проверка гипотез по статистическим данным.

95. По характеру различают связи:

А) функциональные и корреляционные;

б) функциональные, криволинейные и прямолинейные;

в) корреляционные и обратные;

г) статистические и прямые.

96. При прямой связи с увеличением факторного признака:

а) результативный признак уменьшается;

б) результативный признак не изменяется;

В) результативный признак увеличивается.

97. Какие методы используются для выявления наличия, характера и направления связи в статистике?

а) средних величин;

Б) сравнения параллельных рядов;

В) метод аналитической группировки;

г) относительных величин;

Д) графический метод.

98. Какой метод используется для выявления формы воздействия одних факторов на другие?

а) корреляционный анализ;

Б) регрессионный анализ;

в) индексный анализ;

г) дисперсионный анализ.

99. Какой метод используется для количественной оценки силы воздействия одних факторов на другие:

А) корреляционный анализ;

б) регрессионный анализ;

в) метод средних величин;

г) дисперсионный анализ.

100. Какие показатели по своей величине существуют в пределах от минус до плюс единицы:

а) коэффициент детерминации;

б) корреляционной отношение;

В) линейный коэффициент корреляции.

101. Коэффициент регрессии при однофакторной модели показывает:

А) на сколько единиц изменяется функция при изменении аргумента на одну единицу;

б) на сколько процентов изменяется функция на одну единицу изменения аргумента.

102. Коэффициент эластичности показывает:

а) на сколько процентов изменяется функция с изменением аргумента на одну единицу своего измерения;

Б) на сколько процентов изменяется функция с изменением аргумента на 1%;

в) на сколько единиц своего измерения изменяется функция с изменением аргумента на 1%.

105. Величина индекса корреляции, равная 0,087, свидетельствует:

А) о слабой их зависимости;

б) о сильной взаимосвязи;

в) об ошибках в вычислениях.

107. Величина парного коэффициента корреляции, равная 1,12, свидетельствует:

а) о слабой их зависимости;

б) о сильной взаимосвязи;

В) об ошибках в вычислениях.

109. Какие из приведенных чисел могут быть значениями парного коэффициента корреляции:

111. Какие из приведенных чисел могут быть значениями множественного коэффициента корреляции:

115. Отметьте правильную форму линейного уравнения регрессии:

а) ŷ
;

б) ŷ
;

в) ŷ
;

Г) ŷ
.

ТЕМА 4. СТАТИСТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ СВЯЗЕЙ

Уравнение регрессии - этоаналитическое представление корреляционной зависимости. Уравнение регрессии описывает гипотетическую функциональную зависимость между условным средним значением результативного признака и значением признака – фактора (факторов), т.е. основную тенденцию зависимости.

Парная корреляционная зависимость описывается уравнением парной регрессии, множественная корреляционная зависимость – уравнением множественной регрессии.

Признак-результат в уравнении регрессии – это зависимая переменная (отклик, объясняемая переменная), а признак-фактор – независимая переменная (аргумент, объясняющая переменная).

Простейшим видом уравнения регрессии является уравнение парной линейной зависимости:

где y – зависимая переменная (признак-результат); x – независимая переменная (признак-фактор); и – параметры уравнения регрессии; - ошибка оценивания.

В качестве уравнения регрессии могут быть использованы различные математические функции. Частое практическое применение находят уравнения линейной зависимости, параболы, гиперболы, степной функции и др.

Как правило, анализ начинается с оценки линейной зависимости, поскольку результаты легко поддаются содержательной интерпретации. Выбор типа уравнения связи – достаточно ответственный этап анализа. В «докомпьютерную» эпоху эта процедура была сопряжена с определенными сложностями и требовала от аналитика знания свойств математических функций. В настоящее время на базе специализированных программ можно оперативно построить множество уравнений связи и на основе формальных критериев осуществить выбор лучшей модели (однако математическая грамотность аналитика не утратила своей актуальности).

Гипотезу о типе корреляционной зависимости можно выдвинуть по результатам построения поля корреляции (см. лекцию 6). Исходя из характера расположения точек на графике (координаты точек соответствуют значениям зависимой и независимой переменных), выявляется тенденция связи между признаками (показателями). Если линия регрессии проходит через все точки поля корреляции, то эта свидетельствует о функциональной связи. В практике социально-экономических исследований такую картину наблюдать не приходится, поскольку присутствует статистическая (корреляционная) зависимость. В условиях корреляционной зависимости при нанесении линии регрессии на диаграмму рассеивания наблюдается отклонение точек поля корреляции от линии регрессии, что демонстрирует, так называемые, остатки или ошибки оценивания (см. рисунок 7.1).

Наличие ошибки уравнения связано с тем, что:

§ не все факторы, влияющие на результат, учитываются в уравнении регрессии;

§ может быть неверно выбранаформа связи - уравнение регрессии;

§ не все факторы включены в уравнение.

Построить уравнение регрессии – означает рассчитать значения его параметров. Уравнение регрессии строится на основе фактических значений анализируемых признаков. Расчет параметров, как правило, выполняется с использованием метода наименьших квадратов (МНК).

Суть МНК состоит в том, что удается получить такие значения параметров уравнения, при которых минимизируется сумма квадратов отклонений теоретических значений признака-результата (рассчитанных на основе уравнения регрессии), от фактических его значений:

,

где - фактическое значение признака-результата у i-й единицы совокупности; - значение признака-результата у i-й единицы совокупности, полученное по уравнению регрессии ().

Т.о., решается задача на экстремум, то есть необходимо найти, при каких значениях параметров, функция S достигает минимума.

Проводя дифференцирование, приравнивая частные производные нулю:



, (7.3)

, (7.4)

где - среднее произведение значений фактора и результата; - среднее значение признака - фактора; - среднее значение признака -результата; - дисперсия признака-фактора.

Параметр в уравнении регрессии характеризует угол наклона линии регрессии на графике. Этот параметр называют коэффициентом регрессии и его величина характеризует, на сколько единиц своего измерения изменится признак-результат при изменении признака-фактора на единицу своего измерения. Знак при коэффициенте регрессии отражает направленность зависимости (прямая или обратная) и совпадает со знаком коэффициента корреляции (в условиях парной зависимости).

В рамках рассматриваемого примера, в программе STATISTICA рассчитаны параметры уравнения регрессии, описывающего зависимость между уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, см. таблицу 7.1.

Таблица 7.1 - Расчет и оценка параметров уравнения, описывающего зависимостьмежду уровнем среднедушевых денежных доходов населения и величиной валового регионального продукта на душу населения в регионах России, 2013 г.

В графе "В" таблицы содержатся значения параметров уравнения парной регрессии, следовательно, можно записать: = 13406,89 + 22,82 x.Данное уравнение описывает тенденцию связи между анализируемыми характеристиками. Параметр - это коэффициент регрессии. В данном случае он равен 22,82 и характеризует следующее: при увеличении ВРП на душу населения на 1 тыс.рублей среднедушевые денежные доходы в среднем возрастают (на что указывает знак "+") на 22,28 руб.

Параметр уравнения регрессии в социально-экономических исследованиях, как правило, содержательно не интерпретируется. Формально он отражает величину признака - результата при условии, что признак - фактор равен нулю. Параметр характеризует расположение линии регрессии на графике, см. рисунок 7.1.

Рисунок 7.1 - Поле корреляции и линия регрессии, отражающие зависимость уровня среднедушевых денежных доходов населения в регионах России и величины ВРП на душу населения

Значение параметра соответствует точке пересечения линии регрессии с осью Y, при X=0.

Построение уравнения регрессии сопровождается оценкой статистической значимости уравнения в целом и его параметров. Необходимость таких процедур связана с ограниченным объемом данных, что может препятствовать действию закона больших чисел и, следовательно, выявлению истинной тенденции во взаимосвязи анализируемых показателей. Кроме того, любую исследуемую совокупность можно рассматривать как выборку из генеральной совокупности, а характеристики, полученные в ходе анализа, как оценку генеральных параметров.

Оценка статистической значимости параметров и уравнения в целом – это обоснование возможности использования построенной модели связи для принятия управленческих решений и прогнозирования (моделирования).

Статистическая значимость уравнения регрессии в целом оценивается с использованием F-критерия Фишера , который представляет собой отношение факторной и остаточных дисперсий, рассчитанных на одну степень свободы:

где - факторная дисперсия признака - результата; k – число степеней свободы факторной дисперсии (число факторов в уравнении регрессии); - среднее значение зависимой переменной; - теоретическое (полученной по уравнению регрессии) значение зависимой переменной у i – й единицы совокупности; - остаточная дисперсии признака - результата; n – объем совокупности; n-k-1 – число степеней свободы остаточной дисперсии.

Величина F-критерия Фишера, согласно формуле, характеризует соотношение между факторной и остаточной дисперсиями зависимой переменной, демонстрируя, по существу, во сколько раз величина объясненной части вариации превышает необъясненную.

F-критерий Фишера табулирован, входом в таблицу является число степеней свободы факторной и остаточной дисперсий. Сравнение расчетного значения критерия с табличным (критическим) позволяет ответить на вопрос: статистически значима ли та часть вариации признака-результата, которую удается объяснить факторами, включенными в уравнение данного вида. Если , то уравнение регрессии признается статистически значимым и, соответственно, статистически значим и коэффициент детерминации. В противном случае (), уравнение – статистически незначимо, т.е. вариация учтенных в уравнении факторов не объясняет статистически значимой части вариации признака-результата, либо не верно выбрано уравнение связи.

Оценка статистической значимости параметров уравнения осуществляется на основе t-статистики , которая рассчитывается как отношение модуля параметров уравнения регрессии к их стандартным ошибкам ():

, где ; (7.6)

, где ; (7.7)

где - стандартные отклонения признака - фактора и признака - результата; - коэффициент детерминации.

В специализированных статистических программах расчет параметров всегда сопровождается расчетом значений их стандартных (среднеквадратических) ошибок и t-статистики (см. таблицу 7.1). Расчетное значение t-статистики сравнивается с табличным, если объем изучаемой совокупности менее 30 единиц (безусловно малая выборка), следует обратиться к таблице t- распределения Стьюдента, если объем совокупности большой, следует воспользоваться таблицей нормального распределения (интеграла вероятностей Лапласа). Параметр уравнения признается статистически значимым, если.

Оценка параметров на основе t-статистики, по существу, является проверкой нулевой гипотезы о равенстве генеральных параметров нулю (H 0: =0; H 0: =0;), то есть о статистически не значимой величине параметров уравнения регрессии. Уровень значимости гипотезы, как правило, принимается: = 0,05. Если расчетный уровень значимости меньше 0,05 , то нулевая гипотеза отвергается и принимается альтернативная - о статистической значимости параметра.

Продолжим рассмотрение примера. В таблице 7.1 в графе «B» приведены значения параметров, в графе Std.Err.ofB - величины стандартных ошибок параметров (), в графе t(77 – число степеней свободы) рассчитаны значения t - статистики с учетом числа степеней свободы. Для оценки статистической значимости параметров расчетные значения t - статистик необходимо сравнить с табличным значением. Заданному уровню значимости (0,05) в таблице нормального распределения соответствует t = 1,96. Поскольку 18,02, 10,84, т.е. , следует признать статистическую значимость полученных значений параметров, т.е. эти значения сформированы под влиянием не случайных факторов и отражают тенденцию связи между анализируемыми показателями.

Для оценки статистической значимости уравнения в целом обратимся к значению F-критерия Фишера (см. таблицу 7.1). Расчетное значение F-критерия = 117,51, табличное значение критерия, исходя из соответствующего числа степеней свободы (для факторной дисперсии d.f. =1, для остаточной дисперсииd.f. =77), равно 4,00 (см. приложение.....). Таким образом, , следовательно, уравнение регрессии в целом статистически значимо. В такой ситуации можно говорить и о статистической значимости величины коэффициента детерминации, т.е. вариация среднедушевых доходов населения в регионах России на 60 процентов может быть объяснена вариацией объемов валового регионального продукта на душу населения.

Проводя оценку статистической значимости уравнения регрессии и его параметров, можем получить различное сочетание результатов.

· Уравнение по F-критерию статистически значимо и все параметры уравнения по t-статистике тоже статистически значимы. Данное уравнение может быть использовано как для принятия управленческих решений (на какие факторы следует воздействовать, чтобы получить желаемый результат), так и для прогнозирования поведения признака-результата при тех или иных значениях факторов.

· По F-критерию уравнение статистически значимо, но незначимы параметры (параметр) уравнения. Уравнение может быть использовано для принятия управленческих решений (касающихся тех факторов, по которым получено подтверждение статистической значимости их влияния), но уравнение не может быть использовано для прогнозирования.

· Уравнение по F-критерию статистически незначимо. Уравнение не может быть использовано. Следует продолжить поиск значимых признаков-факторов или аналитической формы связи аргумента и отклика.

Если подтверждена статистическая значимость уравнения и его параметров, то может быть реализован, так называемый, точечный прогноз, т.е. получена оценка значения признака-результата (y) при тех или иных значениях фактора (x).

Совершенно очевидно, что прогнозное значение зависимой переменной, рассчитанное на основе уравнения связи, не будет совпадать с фактическим ее значением ().Графически эта ситуация подтверждается тем, что не все точки поля корреляции лежат на линии регрессии,лишь при функциональной связи линия регрессии пройдет через все точки диаграммы рассеивания. Наличие расхождений между фактическими и теоретическими значениями зависимой переменной связано, прежде всего, с самой сутью корреляционной зависимости:одновременно на результат воздействует множество факторов, из которых только часть может быть учтена в конкретном уравнении связи. Кроме того, может быть неверно выбрана форма связи результата и фактора (тип уравнения регрессии). В связи с этим возникает вопрос, насколько информативно построенное уравнение связи. На этот вопрос отвечают два показателя: коэффициент детерминации (о нем уже говорилось выше) и стандартная ошибка оценивания.

Разность между фактическими и теоретическими значениями зависимой переменной называют отклонениями или ошибками, или остатками . На основе этих величин рассчитывается остаточная дисперсия. Квадратный корень из остаточной дисперсии и является среднеквадратической (стандартной) ошибкой оценивания:

= (7.8)

Стандартная ошибка уравнения измеряется в тех же единицах, что и прогнозируемый показатель. Если ошибки уравнения подчиняются нормальному распределению (при больших объемах данных), то 95 процентов значений должны находиться от линии регрессии на расстоянии, не превышающем 2S (исходя из свойства нормального распределения - правила трех сигм). Величина стандартной ошибки оценивания используется при расчете доверительных интервалов при прогнозировании значения признака - результата для конкретной единицы совокупности.

В практических исследованиях часто возникает необходимость в прогнозе среднего значения признака - результата при том или ином значении признака - фактора. В этом случае в расчете доверительного интервала для среднего значения зависимой переменной()

учитывается величина средней ошибки:

(7.9)

Использование разных величин ошибок объясняется тем, что изменчивость уровней показателей у конкретных единиц совокупности гораздо выше, чем изменчивость среднего значения, следовательно, ошибка прогноза среднего значения меньше.

Доверительный интервал прогноза среднего значения зависимой переменной:

, (7.10)

где - предельная ошибка оценки (см. теорию выборки); t – коэффициент доверия, значение которого находится в соответствующей таблице, исходя из принятого исследователем уровня вероятности (числа степеней свободы) (см. теорию выборки).

Доверительный интервал для прогнозируемого значения признака-результата может быть рассчитан и с учетом поправки на смещение (сдвиг) линии регрессии. Величина поправочного коэффициента определяется:

(7.11)

где - значение признака-фактора, исходя из которого, прогнозируется значение признака-результата.

Отсюда следует, что чем больше значение отличается от среднего значения признака-фактора, тем больше величина корректирующего коэффициента, тем больше ошибка прогноза. С учетом данного коэффициента доверительный интервал прогноза будет рассчитываться:

На точность прогноза на основе уравнения регрессии могут влиять разные причины. Прежде всего, следует учитывать, что оценка качества уравнения и его параметров проводится, исходя из предположения о нормальном распределении случайных остатков. Нарушение этого допущения может быть связано с наличием резко отличающихся значений в данных, с неравномерной вариацией, с наличием нелинейной зависимости. В этом случае качество прогноза снижается. Второй момент, о котором следует помнить, - значения факторов, учитываемые при прогнозировании результата, не должны выходить за пределы размаха вариации данных, на основе которых построено уравнение.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08

После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

В этом случае:

а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется
-статистика
- характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения
-статистики в случае многомерной регрессии имеет вид:

где:
- объясненная дисперсия - часть дисперсии зависимой переменнойYкоторая объяснена уравнением регрессии;

-остаточная дисперсия - часть дисперсии зависимой переменнойYкоторая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

- число точек в выборке;

- число переменных в уравнении регрессии.

Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая
) число степеней свободы равно
. Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только
значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение
. По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии
).

В результате
-критерий для уравнения парной линейной регрессии определяется по формуле:

.

В теории вероятности доказано, что
-критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения
-критерия можно рассчитать вероятность его появления и наоборот, определить то значение
-критерия которое он не сможет превысить с заданной вероятностью.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости – это допустимая вероятность совершитьошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше
), тем вышеуровень надежности теста, равный
, т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершенияошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

Для выбранного уровня значимости по распределению Фишера определяется табличное значение
вероятность превышения, которого в выборке мощностью, полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости.
сравнивается с фактическим значением критерия для регрессионного уравнения.

Если выполняется условие
, то ошибочное обнаружение связи со значением
-критерия равным или большимпо выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

Если же оказывается
, то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос- ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения
-критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости
, значит уравнение статистически значимо, в противном случае нет.

После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента , определяемый по формулам:

и

где: , - значения критерия Стьюдента для коэффициентовисоответственно;

- остаточная дисперсия уравнения регрессии;

- число точек в выборке;

- число переменных в выборке, для парной линейной регрессии
.

Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями
, полученными из распределения Стьюдента. Если оказывается, что
, то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента
и сравнить с уровнем значимости
.

Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие
.

Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения
при известном
оценивают по формуле:

Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

В случае если требуется иная доверительная вероятность
, то для уровня значимости
необходимо найти критерий Стьюдента
идоверительный интервал для прогноза с уровнем надежности
будет равен
.

Прогнозирование многомерных и нелинейных зависимостей

В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

где:
- коэффициенты регрессии, описывающие влияние переменных
на прогнозируемую величину.

Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией . В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

то замена
позволяет преобразовать нелинейную задачу к многомерной линейной вида

Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения
и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

превращается в линейную вида

где:
,
и
.

Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

Проверка обоснованности применения метода наименьших квадратов

Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса -Маркова ):

1.

2.

3. значения не зависят друг от друга

4. значения не зависят от независимых переменных

Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков
в зависимости от, затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.

Для коэффициентов регрессионного уравнения проверка их уровня значимости осуществляется по t -критерию Стьюдента и по критерию F Фишера. Ниже мы рассмотрим оценку достоверности показателей регрессии только для линейных уравнений (12.1) и (12.2).

Y=a 0 + a 1 X (12.1)

Х= b 0 + b 1 Y (12.2)

Для это типа уравнений оценивают по t -критерию Стьюдента только величины коэффициентов а b 1с использованием вычисления величины Тф по следующим формулам:

Где r yx коэффициент корреляции, а величину а 1можно вычислить по формулам 12.5 или 12.7.

Формула (12.27) используется для вычисления величины Тф, а 1уравнения регрессии Y по X.

Величину b 1можно вычислить по формулам (12.6) или (12.8).

Формула (12.29) используется для вычисления величины Тф, которая позволяет оценить уровень значимости коэффициента b 1уравнения регрессии X по Y

Пример. Оценим уровень значимости коэффициентов регрессии а b 1уравнений (12.17), и (12.18), полученных при решении задачи 12.1. Воспользуемся для этого формулами (12.27), (12.28), (12.29) и (12.30).

Напомним вид полученных уравнений регрессии:

Y х = 3 + 0,06 X (12.17)

X y = 9+ 1 Y (12.19)

Величина а 1в уравнении (12.17) равна 0,06. Поэтому для расчета по формуле (12.27) нужно подсчитать величину Sb y х. Согласно условию задачи величина п = 8. Коэффициент корреляции также уже был подсчитан нами по формуле 12.9: r xy = √ 0,06 0,997 = 0,244 .

Осталось вычислить величины Σ (у ι - y ) 2 и Σ (х ι –x ) 2 , которые у нас не подсчитаны. Лучше всего эти расчеты проделать в таблице 12.2:

Таблица 12.2

№ испыту­емых п/п х ι у i х ι –x (х ι –x ) 2 у ι - y (у ι - y ) 2
-4,75 22,56 - 1,75 3,06
-4,75 22,56 -0,75 0,56
-2,75 7,56 0,25 0,06
-2,75 7,56 1,25 15,62
1,25 1,56 1,25 15,62
3,25 10,56 0,25 0,06
5,25 27,56 -0,75 0,56
5,25 27,56 0,25 0,06
Суммы 127,48 35,6
Средние 12,75 3,75

Подставляем полученные значения в формулу (12.28), получаем:

Теперь рассчитаем величину Тф по формуле (12.27):

Величина Тф проверяется на уровень значимости по таблице 16 Приложения 1 для t- критерия Стьюдента. Число степеней свободы в этом случае будет равно 8-2 = 6, поэтому критические значения равны соответственно для Р ≤ 0,05 t кр = 2,45 и для Р≤ 0,01 t кр =3,71. В принятой форме записи это выглядит так:

Строим «ось значимости»:

Полученная величина Тф Н о о том, что величина коэффициента регрессии уравнения (12.17) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.



Рассчитаем теперь уровень значимости коэффициента b 1. Для этого необходимо вычислить величину Sb xy по формуле (12.30), для которой уже расчитаны все необходимые величины:

Теперь рассчитаем величину Тф по формуле (12.27):

Мы можем сразу построить «ось значимости», поскольку все предварительные операции были проделаны выше:

Полученная величина Тф попала в зону незначимости, следовательно мы должны принять гипотезу H о о том, что величина коэффициента регрессии уравнения (12.19) неотличима от нуля. Иными словами, полученное уравнение регрессии неадекватно исходным экспериментальным данным.

Нелинейная регрессия

Полученный в предыдущем разделе результат несколько обескураживает: мы получили, что оба уравнения регрессии (12.15) и (12.17) неадекватны экспериментальным данным. Последнее произошло потому, что оба эти уравнения характеризуют линейную связь между признаками, а мы в разделе 11.9 показали, что между переменными X и Y имеется значимая криволинейная зависимость. Иными словами, между переменными Х и Y в этой задаче необходимо искать не линейные, а криволинейные связи. Проделаем это с использованием пакета «Стадия 6.0» (разработка А.П. Кулаичева, регистрационный номер 1205).

Задача 12.2 . Психолог хочет подобрать регрессионную модель, адекватную экспериментальным данным, полученным в задаче 11.9.

Решение. Эта задача решается простым перебором моделей криволинейной регрессии предлагаемых в статистическом пакете Стадия. Пакет организован таким образом, что в электронную таблицу, которая является исходной для дальнейшей работы, заносятся экспериментальные данные в виде первого столбца для переменной X и второго столбца для переменной Y. Затем в основном меню выбирается раздел Статистики, в нем подраздел - регрессионный анализ, в этом подразделе вновь подраздел - криволинейная регрессия. В последнем меню даны формулы (модели) различных видов криволинейной регрессии, согласно которым можно вычислять соответствующие регрессионные коэффициенты и сразу же проверять их на значимость. Ниже рассмотрим только несколько примеров работы с готовыми моделями (формулами) криволинейной регрессии.



1. Первая модель - экспонента . Ее формула такова:

При расчете с помощью статпакета получаем а 0 = 1 и а 1 = 0,022.

Расчет уровня значимости для а, дал величину Р = 0,535. Очевидно, что полученная величина незначима. Следовательно, данная регрессионная модель неадекватна экспериментальным данным.

2. Вторая модель - степенная . Ее формула такова:

При подсчете а о = - 5,29, а, = 7,02 и а 1 = 0,0987.

Уровень значимости для а 1 - Р = 7,02 и для а 2 - Р = 0,991. Очевидно, что ни один из коэффициентов не значим.

3. Третья модель - полином . Ее формула такова:

Y = а 0 + а 1 X + а 2 X 2 + а 3 X 3

При подсчете а 0 = - 29,8, а 1 = 7,28, а 2 = - 0,488 и а 3 = 0,0103. Уровень значимости для а, - Р = 0,143, для а 2 - Р = 0,2 и для а, - Р= 0,272

Вывод - данная модель неадекватна экспериментальным данным.

4. Четвертая модель - парабола .

Ее формула такова: Y= a o + a l -X 1 + а 2 Х 2

При подсчете а 0 = - 9,88, а, = 2,24 и а 1 = - 0,0839 Уровень значимости для а 1 - Р = 0,0186, для а 2 - Р = 0,0201. Оба регрессионных коэффициента оказались значимыми. Следовательно, задача решена - мы выявили форму криволинейной зависимости между успешностью решения третьего субтеста Векслера и уровнем знаний по алгебре - это зависимость параболического вида. Этот результат подтверждает вывод, полученный при решении задачи 11.9 о наличии криволинейной зависимости между переменными. Подчеркнем, что именно с помощью криволинейной регрессии был получен точный вид зависимости между изучаемыми переменными.


Глава 13 ФАКТОРНЫЙ АНАЛИЗ

Основные понятия факторного анализа

Факторный анализ - статистический метод, который используется при обработке больших массивов экспериментальных данных. Задачами факторного анализа являются: сокращение числа переменных (редукция данных) и определение структуры взаимосвязей между переменными, т.е. классификация переменных, поэтому факторный анализ используется как метод сокращения данных или как метод структурной классификации.

Важное отличие факторного анализа от всех описанных выше методов заключается в том, что его нельзя применять для обработки первичных, или, как говорят, «сырых», экспериментальных данных, т.е. полученных непосредственно при обследовании испытуемых. Материалом для факторного анализа служат корреляционные связи, а точнее - коэффициенты корреляции Пирсона, которые вычисляются между переменными (т.е. психологическими признаками), включенными в обследование. Иными словами, факторному анализу подвергают корреляционные матрицы, или, как их иначе называют, матрицы интеркорреляций. Наименования столбцов и строк в этих матрицах одинаковы, так как они представляют собой перечень переменных, включенных в анализ. По этой причине матрицы интеркорреляций всегда квадратные, т.е. число строк в них равно числу столбцов, и симметричные, т.е. на симметричных местах относительно главной диагонали стоят одни и те же коэффициенты корреляции.

Необходимо подчеркнуть, что исходная таблица данных, из которой получается корреляционная матрица, не обязательно должна быть квадратной. Например, психолог измерил три показателя интеллекта (вербальный, невербальный и общий) и школьные отметки по трем учебным предметам (литература, математика, физика) у 100 испытуемых - учащихся девятых классов. Исходная матрица данных будет иметь размер 100 × 6, а матрица интеркорреляций размер 6 × 6, поскольку в ней имеется только 6 переменных. При таком количестве переменных матрица интеркорреляций будет включать 15 коэффициентов и проанализировать ее не составит труда.

Однако представим, что произойдет, если психолог получит не 6, а 100 показателей от каждого испытуемого. В этом случае он должен будет анализировать 4950 коэффициентов корреляции. Число коэффициентов в матрице вычисляется по формуле n (n+1)/2 и в нашем случае равно соответственно (100×99)/2= 4950.

Очевидно, что провести визуальный анализ такой матрицы - задача труднореализуемая. Вместо этого психолог может выполнить математическую процедуру факторного анализа корреляционной матрицы размером 100 × 100 (100 испытуемых и 100 переменных) и таким путем получить более простой материал для интерпретации экспериментальных результатов.

Главное понятие факторного анализа - фактор. Это искусственный статистический показатель, возникающий в результате специальных преобразований таблицы коэффициентов корреляции между изучаемыми психологическими признаками, или матрицы интеркорреляций. Процедура извлечения факторов из матрицы интеркорреляций называется факторизацией матрицы. В результате факторизации из корреляционной матрицы может быть извлечено разное количество факторов вплоть до числа, равного количеству исходных переменных. Однако факторы, выделяемые в результате факторизации, как правило, неравноценны по своему значению.

Элементы факторной матрицы называются или весами»; и они представляют собой коэффициенты корреляции данного фактора со всеми показателями, использованными в исследовании. Факторная матрица очень важна, поскольку она показывает, как изучаемые показатели связаны с каждым выделенным фактором. При этом факторный вес демонстрирует меру, или тесноту, этой связи.

Поскольку каждый столбец факторной матрицы (фактор) является своего рода переменной величиной, то сами факторы также могут коррелировать между собой. Здесь возможны два случая: корреляция между факторами равна нулю, в таком случае факторы являются независимыми (ортогональными). Если корреляция между факторами больше нуля, то в таком случае факторы считаются зависимыми (облическими). Подчеркнем, что ортогональные факторы в отличие от облических дают более простые варианты взаимодействий внутри факторной матрицы.

В качестве иллюстрации ортогональных факторов часто приводят задачу Л. Терстоуна, который, взяв ряд коробок разных размеров и формы, измерил в каждой из них больше 20 различных показателей и вычислил корреляции между ними. Профакторизовав полученную матрицу интеркорреляций, он получил три фактора, корреляция между которыми была равна нулю. Этими факторами были «длина», «ширина» и «высота».

Для того чтобы лучше уловить сущность факторного анализа, разберем более подробно следующий пример.

Предположим, что психолог у случайной выборки студентов получает следующие данные:

V 1 - вес тела (в кг);

V 2 - количество посещений лекций и семинарских занятий по предмету;

V 3 - длина ноги (в см);

V 4 - количество прочитанных книг по предмету;

V 5 - длина руки (в см);

V 6 - экзаменационная оценка по предмету (V - от английского слова variable - переменная).

При анализе этих признаков не лишено оснований предположение о том, что переменные V 1 , К 3 и V 5 - будут связаны между собой, поскольку, чем больше человек, тем больше он весит и тем длиннее его конечности. Сказанное означает, что между этими переменными должны получиться статистически значимые коэффициенты корреляции, поскольку эти три переменные измеряют некоторое фундаментальное свойство индивидуумов в выборке, а именно: их размеры. Точно так же вероятно, что при вычислении корреляций между V 2 , V 4 и V 6 тоже будут получены достаточно высокие коэффициенты корреляции, поскольку посещение лекций и самостоятельные занятия будут способствовать получению более высоких оценок по изучаемому предмету.

Таким образом, из всего возможного массива коэффициентов, который получается путем перебора пар коррелируемых признаков V 1 и V 2 , V t и V 3 и т.д., предположительно выделятся два блока статистически значимых корреляций. Остальная часть корреляций - между признаками, входящими в разные блоки, вряд ли будет иметь статистически значимые коэффициенты, поскольку связи между такими признаками, как размер конечности и успеваемость по предмету, имеют, скорее всего, случайный характер. Итак, содержательный анализ 6 наших переменных показывает, что они, по сути дела, измеряют только две обобщенные характеристики, а именно: размеры тела и степень подготовленности по предмету.

К полученной матрице интеркорреляций, т.е. вычисленным попарно коэффициентам корреляций между всеми шестью переменными V 1 - V 6 , допустимо применить факторный анализ. Его можно проводить и вручную, с помощью калькулятора, однако процедура подобной статистической обработки очень трудоемка. По этой причине в настоящее время факторный анализ проводится на компьютерах, как правило, с помощью стандартных статистических пакетов. Во всех современных статистических пакетах есть программы для корреляционного и факторного анализов. Компьютерная программа по факторному анализу по существу пытается «объяснить» корреляции между переменными в терминах небольшого числа факторов (в нашем примере двух).

Предположим, что, используя компьютерную программу, мы получили матрицу интеркорреляций всех шести переменных и подвергли ее факторному анализу. В результате факторного анализа получилась таблица 13.1, которую называют «факторной матрицей», или «факторной структурной матрицей».

Таблица 13.1

Переменная Фактор 1 Фактор 2
V 1 0,91 0,01
V 2 0,20 0,96
V 3 0,94 -0,15
V 4 0,11 0,85
V 5 0,89 0,07
V 6 -0,13 0,93

По традиции факторы представляются в таблице в виде столбцов, а переменные в виде строк. Заголовки столбцов таблицы 13.1 соответствуют номерам выделенных факторов, но более точно было бы их называть «факторные нагрузки», или «веса», по фактору 1, то же самое по фактору 2. Как указывалось выше, факторные нагрузки, или веса, представляют собой корреляции между соответствующей переменной и данным фактором. Например, первое число 0,91 в первом факторе означает, что корреляция между первым фактором и переменной V 1 равна 0,91. Чем выше факторная нагрузка по абсолютной величине, тем больше ее связь с фактором.

Из таблицы 13.1 видно, что переменные V 1 V 3 и V 5 имеют большие корреляции с фактором 1 (фактически переменная 3 имеет корреляцию близкую к 1 с фактором 1). В то же время переменные V 2 , V 3 и У 5 имеют корреляции близкие к 0 с фактором 2. Подобно этому фактор 2 высоко коррелирует с переменными V 2 , V 4 и V 6 и фактически не коррелирует с переменными V 1 , V 3 и V 5

В данном примере, очевидно, что существуют две структуры корреляций, и, следовательно, вся информация таблицы 13.1 определяется двумя факторами. Теперь начинается заключительный этап работы - интерпретация полученных данных. Анализируя факторную матрицу, очень важно учитывать знаки факторных нагрузок в каждом факторе. Если в одном и том же факторе встречаются нагрузки с противоположными знаками, это означает, что между переменными, имеющими противоположные знаки, существует обратно пропорциональная зависимость.

Отметим, что при интерпретации фактора для удобства можно изменить знаки всех нагрузок по данному фактору на противоположные.

Факторная матрица показывает также, какие переменные образуют каждый фактор. Это связано, прежде всего, с уровнем значимости факторного веса. По традиции минимальный уровень значимости коэффициентов корреляции в факторном анализе берется равным 0,4 или даже 0,3 (по абсолютной величине), поскольку нет специальных таблиц, по которым можно было бы определить критические значения для уровня значимости в факторной матрице. Следовательно, самый простой способ увидеть какие переменные «принадлежат» фактору – это значит отметить те из них, которые имеют нагрузки выше, чем 0,4 (или меньше чем - 0,4). Укажем, что в компьютерных пакетах иногда уровень значимости факторного веса определяется самой программой и устанавливается на более высоком уровне, например 0,7.

Так, из таблицы 13.1, следует вывод, что фактор 1 - это сочетание переменных V 1 К 3 и V 5 (но не V 1 , K 4 и V 6 , поскольку их факторные нагрузки по модулю меньше чем 0,4). Подобно этому фактор 2 представляет собой сочетание переменных V 2 , V 4 и V 6 .

Выделенный в результате факторизации фактор представляет собой совокупность тех переменных из числа включенных в анализ, которые имеют значимые нагрузки. Нередко случается, однако, что в фактор входит только одна переменная со значимым факторным весом, а остальные имеют незначимую факторную нагрузку. В этом случае фактор будет определяться по названию единственной значимой переменной.

В сущности, фактор можно рассматривать как искусственную «единицу» группировки переменных (признаков) на основе имеющихся между ними связей. Эта единица является условной, потому что, изменив определенные условия процедуры факторизации матрицы интеркорреляций, можно получить иную факторную матрицу (структуру). В новой матрице может оказаться иным распределение переменных по факторам и их факторные нагрузки.

В связи с этим в факторном анализе существует понятие «простая структура». Простой называют структуру факторной матрицы, в которой каждая переменная имеет значимые нагрузки только по одному из факторов, а сами факторы ортогональны, т.е. не зависят друг от друга. В нашем примере два общих фактора независимы. Факторная матрица с простой структурой позволяет провести интерпретацию полученного результата и дать наименование каждому фактору. В нашем случае фактор первый - «размеры тела», фактор второй - «уровень подготовленности».

Сказанное выше не исчерпывает содержательных возможностей факторной матрицы. Из нее можно извлечь дополнительные характеристики, позволяющие более детально исследовать связи переменных и факторов. Эти характеристики называются «общность» и «собственное значение» фактора.

Однако, прежде чем представить их описание, укажем на одно принципиально важное свойство коэффициента корреляции, благодаря которому получают эти характеристики. Коэффициент корреляции, возведенный в квадрат (т.е. помноженный сам на себя), показывает, какая часть дисперсии (вариативности) признака является общей для двух переменных, или, говоря проще, насколько сильно эти переменные перекрываются. Так, например, две переменные с корреляцией 0,9 перекрываются со степенью 0,9 х 0,9 = 0,81. Это означает, что 81% дисперсии той и другой переменной являются общими, т.е. совпадают. Напомним, что факторные нагрузки в факторной матрице - это коэффициенты корреляции между факторами и переменными, поэтому, возведенная в квадрат факторная нагрузка характеризует степень общности (или перекрытия) дисперсий данной переменной и данного фактором.

Если полученные факторы не зависят друг от друга («ортогональное» решение), по весам факторной матрицы можно определить, какая часть дисперсии является общей для переменной и фактора. Вычислить, какая часть вариативности каждой переменной совпадает с вариативностью факторов, можно простым суммированием квадратов факторных нагрузок по всем факторам. Из таблицы 13.1, например, следует, что 0,91 × 0,91 + + 0,01 × 0,01 = 0,8282, т.е. около 82% вариативности первой переменной «объясняется» двумя первыми факторами. Полученная величина называется общностью переменной, в данном случае переменной V 1

Переменные могут иметь разную степень общности с факторами. Переменная с большей общностью имеет значительную степень перекрытия (большую долю дисперсии) с одним или несколькими факторами. Низкая общность подразумевает, что все корреляции между переменными и факторами невелики. Это означает, что ни один из факторов не имеет совпадающей доли вариативности с данной переменной. Низкая общность может свидетельствовать о том, что переменная измеряет нечто качественно отличающееся от других переменных, включенных в анализ. Например, одна переменная, связанная с оценкой мотивации среди заданий, оценивающих способности, будет иметь общность с факторами способностей близкую к нулю.

Малая общность может также означать, что определенное задание испытывает на себе сильное влияние ошибки измерения или крайне сложно для испытуемого. Возможно, напротив, также, что задание настолько просто, что каждый испытуемый дает на него правильный ответ, или задание настолько нечетко по содержанию, что испытуемый не понимает суть вопроса. Таким образом, низкая общность подразумевает, что данная переменная не совмещается с факторами по одной из причин: либо переменная измеряет другое понятие, либо переменная имеет большую ошибку измерения, либо существуют искажающие дисперсию признака различия между испытуемыми в вариантах ответа на это задание.

Наконец, с помощью такой характеристики, как собственное значение фактора, можно определить относительную значимость каждого из выделенных факторов. Для этого надо вычислить, какую часть дисперсии (вариативности) объясняет каждый фактор. Тот фактор, который объясняет 45% дисперсии (перекрытия) между переменными в исходной корреляционной матрице, очевидно, является более значимым, чем другой, который объясняет только 25% дисперсии. Эти рассуждения, однако, допустимы, если факторы ортогональны, иначе говоря, не зависят друг от друга.

Для того чтобы вычислить собственное значение фактора, нужно возвести в квадрат факторные нагрузки, и сложить их по столбцу. Используя данные таблицы 13.1 можно убедиться, что собственное значение фактора 1 составляет (0,91 × 0,91 + 0,20 × 0,20 + 0,94 × 0,94 + 0,11 × 0,11 + 0,84 × 0,84 + (- 0,13) ×

× (-0,13)) = 2,4863. Если собственное значение фактора разделить на число переменных (6 в нашем примере), то полученное число покажет, какая доля дисперсии объясняется данным фактором. В нашем случае получится 2,4863∙100%/6 = 41,4%. Иными словами, фактор 1 объясняет около 41% информации (дисперсии) в исходной корреляционной матрице. Аналогичный подсчет для второго фактора даст 41,5%. В сумме это будет составлять 82,9%.

Таким образом, два общих фактора, будучи объединены, объясняют только 82,9% дисперсии показателей исходной корреляционной матрицы. Что случилось с «оставшимися» 17,1%? Дело в том, что, рассматривая корреляции между 6 переменными, мы отмечали, что корреляции распадаются на два отдельных блока, и поэтому решили, что логично анализировать материал в понятиях двух факторов, а не 6, как и количество исходных переменных. Другими словами, число конструктов, необходимых, чтобы описать данные, уменьшилось с 6 (число переменных) до 2 (число общих факторов). В результате факторизации часть информации в исходной корреляционной матрице была принесена в жертву построению двухфакторной модели. Единственным условием, при котором информация не утрачивается, было бы рассмотрение шестифакторной модели.