Вспомните!

В чём особенность строения атома углерода?

Органические молекулы состоят из углерода. Благодаря небольшой величине атома и четырем валентным электронам он способен образовывать прочные ковалентные связи углеродных скелетов и других атомов. Эта дает возможность углеродным соединениям образовывать большие и сложные молекулы. Это и отличает их от неорганических веществ. Среди органических веществ различают небольшие по молекулярной массе молекулы и макромолекулы. Малые молекулы представляют собой соединения углерода с молекулярной массой от 100 до 100 и содержат до 30 углеродных атомов. Из таких молекул образуются более крупные макромолекулы, их молекулярные массы могут превышать 1000000.

Какую связь называют ковалентной?

Ковалентная связь (от лат. co - «совместно» и vales - «имеющий силу») - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Какие вещества называют органическими?

Класс химических соединений, в состав которых входит углерод как основной элемент, а также кислород, азот, водород и другие. Органические вещества входят в состав живых организмов.

Какие продукты питания содержат большое количество жира?

Насыщенные жиры остаются твердыми при комнатной температуре. Их в большом количестве содержат:

– маргарин;

– жирное мясо, особенно жареное;

– фаст-фуд;

– молочные продукты;

– шоколад;

– кокосовое и пальмовое масла;

– яйцо (желток).

Наиболее богаты ненасыщенными жирами:

– птица (кроме кожи);

– жирные сорта рыбы;

– орехи: кешью, арахис (мононенасыщенные), грецкие, миндаль (полиненасыщенные);

– растительные масла (подсолнечное, льняное, рапсовое, кукурузное (мононенасыщенные), оливковое, арахисовое (полиненасыщенные)), а также продукты, из которых их получают (арахис, оливки, подсолнечные семечки и прочее).

Вопросы для повторения и задания

1. Какие органические вещества входят в состав клетки?

Органические вещества - это сложные углеродсодержащие соединения. Органические вещества живой природы чрезвычайно разнообразны по своим размерам, строению и функциям. Поэтому создать единую классификацию, которая учитывала бы все характерные особенности каждого соединения, практически невозможно. Наиболее распространено деление всех органических соединений на низкомолекулярные (аминокислоты, липиды, органические кислоты и др.) и высокомолекулярные, или биополимеры. Полимеры - это молекулы, состоящие из повторяющихся структурных единиц - мономеров. В свою очередь, все биополимеры подразделяют на две группы: гомополимеры, построенные из мономеров одного типа (например, гликоген, крахмал и целлюлоза состоят из молекул глюкозы), и гетерополимеры, в состав которых входят отличающиеся друг от друга мономеры (например, белки состоят из 20 типов аминокислот, а нуклеиновые кислоты - из 8 типов нуклеотидов: ДНК - из 4 типов, РНК - из 4 типов.

2. Что такое липиды? Опишите их химический состав.

Среди низкомолекулярных органических соединений, входящих в состав живых организмов, важную роль играют липиды, к которым относят жиры, воски и разнообразные жироподобные вещества. Это гидрофобные соединения, нерастворимые в воде. Обычно общее содержание липидов в клетке колеблется в пределах 5-15% от массы сухого вещества. Широко распространены в природе нейтральные жиры, которые представляют собой соединения высокомолекулярных жирных кислот и трёхатомного спирта глицерина (рис. 14). В цитоплазме клеток нейтральные жиры откладываются в виде жировых капель.

3. Какова роль липидов в обеспечении жизнедеятельности организма?

Жиры являются источником энергии. При окислении 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии (при окислении 1 г глюкозы - всего 17 кДж). Жиры служат источником метаболической воды, из 1 г жира образуется 1,1 г воды. Используя свои жировые запасы, верблюды или впадающие в зимнюю спячку суслики могут обходиться без воды длительное время. Жиры в основном откладываются в клетках жировой ткани. Эта ткань служит энергетическим депо организма, предохраняет его от потери тепла и выполняет защитную функцию. В полости тела между внутренними органами у позвоночных животных формируются упругие жировые прокладки, которые защищают органы от повреждений, а подкожная жировая клетчатка создаёт теплоизоляционный слой.

4. В чём заключается биологическое значение жироподобных веществ?

Не менее важное значение в организме имеют жироподобные вещества. Представители этой группы - фосфолипиды - формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты. Важную роль в жизнедеятельности всех живых организмов, особенно животных, играет жироподобное вещество - холестерин. В корковом слое надпочечников, в половых железах и в плаценте из него образуются стероидные гормоны (кортикостероиды и половые гормоны). В клетках печени из холестерина синтезируются желчные кислоты, необходимые для нормального переваривания жиров. К жироподобным веществам относят также жирорастворимые витамины А, D, E, K, обладающие высокой биологической активностью.

Подумайте! Вспомните!

1. Какие вы знаете биологически активные вещества в организме человека, относящиеся к группе липидов? Каковы их функции?

Стероидные гормоны (steroid hormones) [греч. stereos - твердый и eidos - вид; греч. hormao - привожу в движение, побуждаю] - группа физиологически активных веществ (половые гормоны, кортикостероиды, гормональная форма витамина D), регулирующих процессы жизнедеятельности у животных и человека. У позвоночных стероидные гормоны синтезируются из холестерина) в коре надпочечников, клетках Лейдига семенников, в фолликулах и желтом теле яичников, а также в плаценте. Стероидные гормоны содержатся в составе липидных капель в цитоплазме в свободном виде. В связи с высокой липофильностью стероидные гормоны относительно легко диффундируют через плазматические мембраны в кровь, а затем проникают в клетки-мишени. В организме человека присутствуют шесть стероидных гормонов: прогестерон, кортизол, альдостерон, тестостерон, эстрадиол и кальцитриол (устаревшее название кальциферол). За исключением кальцитриола эти соединения имеют очень короткую боковую цепь из двух углеродных атомов или не имеют ее вовсе. Стероидные гормоны, выполняющие сигнальную функцию, встречаются также у растений.

2. Объясните, как восковой слой на поверхности листьев участвует в регуляции водного баланса растений.

Растения, произрастающие в засушливом климате, имеют множество приспособлений для выживания в неблагоприятных условиях. Это восковой налет на листовой пластинке некоторых видов растений. Блестящая поверхность крупных уплощенных листьев фикуса из семейства Тутовых имеет свойство отражать солнечный свет. Способствует сокращению потерь воды листьями в засушливых районах.

3. В организме может существовать запас витаминов. Подумайте, какие витамины - жирорастворимые или водорастворимые - могут депонироваться в тканях. Объясните свою точку зрения.

Ткани состоят из клеток, клетки на 80-90% состоят из воды, водорастворимые витамины легко растворяются в воде и депонироваться (накапливаться) не смогли бы, занчит витамины должны быть жирорастворимые.

Липиды - что это такое? В переводе с греческого, слово "липиды" означает "мелкие частички жира". Представляют они собой группы соединений природной органики обширного характера, включающие в себя непосредственно жиры, а также жироподобные вещества. Являются частью всех без исключения живых клеток и подразделяются на простые и сложные категории. В состав простых липидов входит спирт и жирные кислоты, а сложные содержат высокомолекулярные компоненты. И те и другие связаны с биологическими мембранами, оказывают действие на активные ферменты, а также участвуют в формировании нервных импульсов, стимулирующих мышечные сокращения.

Жиры и гидрофобия

Одной из является создание энергетического резерва организма и обеспечение водооталкивающих свойств кожного покрова вкупе с термоизоляционной защитой. Некоторые жиросодержащие вещества, не имеющие жирных кислот, также отнесены к липидам, к примеру, и терпены. Липиды не поддаются воздействию водной среды, но легко растворяются в органических жидкостях типа хлороформа, бензола, ацетона.

Липиды, презентация которых периодически проводится на международных семинарах в связи с новыми открытиями, являются неисчерпаемой темой для исследований и научных изысканий. Вопрос "Липиды - что это такое?" никогда не теряет своей актуальности. Тем не менее, научный прогресс не стоит на месте. В последнее время выявлено несколько новых жирных кислот, которые находятся в биосинтетическом родстве с липидами. Классификация органических соединений может быть затруднена из-за схожести по определенным характеристикам, но при существенном различии других параметров. Чаще всего создается отдельная группа, после чего восстанавливается общая картина гармоничного взаимодействия родственных веществ.

Клеточные мембраны

Липиды - что это такое с точки зрения функционального предназначения? Прежде всего, они являются важнейшим компонентом живых клеток и тканей позвоночных животных. Большинство процессов в организме происходит при участии липидов, формирование клеточных мембран, взаимосвязь и обмен сигналами в межклеточной среде не обходятся без жирных кислот.

Липиды - что это такое, если их рассматривать с позиции спонтанно возникающих стероидных гормонов, фосфоинозитидов и простагландинов? Это, прежде всего, присутствие в плазме крови которые, по определению, являются отдельными компонентами липидных структур. Из-за последних организм вынужден вырабатывать сложнейшие системы их транспортировки. Жирные кислоты липидов в основном переносятся в комплексе с альбуминами, а липопротеиды, растворимые в воде, транспортируются обычным порядком.

Классификация липидов

Распределение соединений, имеющих биологическую природу, по категориям - это процесс, связанный с некоторыми проблемами спорного характера. Липиды в связи с биохимическими и структурными свойствами могут быть отнесены в равной степени к разным категориям. Основные классы липидов включают в себя простые и сложные соединения.

К простым относятся:

  • Глицериды - эфиры глицеринового спирта и жирных кислот высшей категории.
  • Воски - эфир высшей жирной кислоты и 2-атомного спирта.

Сложные липиды:

  • Фосфолипидные соединения - с включением азотистых компонентов, глицерофосфолипиды, офинголипиды.
  • Гликолипиды - расположенные в наружных биологических слоях организма.
  • Стероиды - высокоактивные вещества животного спектра.
  • Сложные жиры - стеролы, липопротеины, сульфолипиды, аминолипиды, глицерол, углеводороды.

Функционирование

Липидные жиры выполняют роль материала для клеточных мембран. Участвуют в транспортировке различных веществ по периферии организма. Жировые прослойки на основе липидных структур помогают защитить тело от переохлаждения. Обладают функцией энергетического накопления "про запас".

Запасы жиров концентрируются в цитоплазме клеток в форме капель. Позвоночные животные, и человек в том числе, обладают специальными клетками - адипоцитами, которые способны содержать в себе достаточно много жира. Размещение жировых накоплений в адипоцитах происходит благодаря липоидным ферментам.

Биологические функции

Жир не только надежный источник энергии, он также обладает теплоизолирующими свойствами, чему способствует биология. Липиды при этом позволяют достичь нескольких полезных функций, таких как естественное охлаждение организма или, наоборот, его теплоизоляция. В северных регионах, отличающихся низкими температурами, все животные накапливают жир, который откладывается по всему телу равномерно, и таким образом создается естественная защитная прослойка, выполняющая функцию теплозащиты. Особенно важно это для крупных морских животных: китов, моржей, тюленей.

Животные, обитающие в жарких странах, тоже накапливают жировые отложения, но у них они не распределяются по всему телу, а сосредотачиваются в определенных местах. Например, у верблюдов жир собирается в горбах, у пустынных зверьков - в толстых, коротких хвостиках. Природа тщательно следит за правильным размещением и жира, и воды в живых организмах.

Структурная функция липидов

Все процессы, связанные с жизнедеятельностью организма, подчиняются определенным законам. Фосфолипиды являются основой биологического слоя мембран клеток, а холестерин регулирует текучесть этих мембран. Таким образом, большинство живых клеток находится в окружении плазматических мембран с двойным слоем липидов. Такая концентрация необходима для нормальной клеточной деятельности. В одной микрочастице биомембраны содержится более миллиона липидных молекул, которые обладают двойными характеристиками: они одновременно гидрофобные и гидрофильные. Как правило, эти взаимоисключающие свойства носят неравновесный характер, и поэтому их функциональное назначение выглядит вполне логично. Липиды в клетке - это эффективный природный регулятор. Гидрофобный слой обычно доминирует и защищает клеточную мембрану от проникновения вредоносных ионов.

Глицерофосфолипиды, фосфатидилэтаноламин, фосфатидилхолин, холестерол также способствуют непроницаемости клеток. В тканевых структурах располагаются другие мембранные липиды, это сфингомиелин и сфингогликолипид. Каждое вещество выполняет определенную функцию.

Липиды в диете человека

Триглицериды - характера, являются эффективным источником энергии. кислотами обладают мясо и молочные продукты. А кислоты жирные, но ненасыщенные, содержатся в орехах, подсолнечном и оливковом масле, семечках и зернах кукурузы. Чтобы в организме не повышался уровень холестерина, рекомендуется ежедневную норму животных жиров ограничить 10 процентами.

Липиды и углеводы

Многие организмы животного происхождения "укладывают" жиры в определенных точках, подкожной клетчатке, в складках кожного покрова, других местах. Окисление липидов таких жировых отложений происходит медленно, и поэтому процесс их перехода в углекислый газ и воду позволяет получить значительное количество энергии, почти в два раза больше, чем могут дать углеводы. Кроме того, гидрофобные свойства жиров избавляют от необходимости использования большого количества воды для стимулирования гидратации. Переход жиров в энергетическую фазу происходит "всухую". Вместе с тем жиры действуют гораздо медленнее в плане высвобождения энергии, и больше подходят для животных в состоянии спячки. Липиды и углеводы как бы дополняют друг друга в процессе жизнедеятельности организма.

Липиды объединяют большое количество жиров и жироподобных веществ растительного и животного происхождения, имеющих ряд общих признаков:

а) нерастворимость в воде (гидрофобность и хорошая растворимость в органических растворителях, бензине, диэтиловом эфире, хлороформе и др.);

б) наличие в их молекулах длинноцепочечных углеводородных радикалов и сложноэфирных

группировок ().

Большинство липидов не являются высокомолекулярными соединениями и состоят из нескольких, связанных одна с другой молекул. В состав липидов могут входить спирты и линейные цепи ряда карбоновых кислот. В некоторых случаях их отдельные блоки могут состоять из высокомолекулярных кислот, разнообразных остатков фосфорной кислоты, углеводов, азотистых оснований и других компонентов.

Липиды вместе с белками и углеводами составляют основную массу органических веществ, всех живых организмов, являясь обязательным компонентом каждой клетки.

  1. Простые и сложные липиды

При выделении липидов из масличного сырья, в масло переходит большая группа сопутствующих им жирорастворимых веществ: стероиды, пигменты, жирорастворимые витамины и некоторые другие соединения. Извлекаемая из природных объектов смесь, состоящая из липидов и растворимых в них соединений, получила название «сырого» жира.

Основные компоненты сырого жира

Вещества сопутствующие липидам играют большую роль в пищевой технологии, влияют на пищевую и физиологическую ценность полученных продуктов питания. Вегетативные части растений накапливают не более 5% липидов, главным образом в семенах и плодах. Например, содержание липидов в различных растительных продуктах составляет (г/100г): подсолнечник 33-57, какао (бобы) 49-57, соя 14-25, конопля 30-38, пшеница 1,9-2,9, арахис 54-61, рожь 2,1-2,8, лён 27-47, кукуруза 4,8-5,9, кокосовая пальма 65-72. Содержание в них липидов зависит не только от индивидуальных особенностей растений, но и от сорта, места, условий произрастания. Липиды играют важную роль в процессах жизнедеятельности организма.

Их функции весьма разнообразны: важна их роль в энергетических процессах, в защитных реакциях организма, в его созревании, старении и т.д.

Липиды входят в состав всех структурных элементов клетки и в первую очередь клеточных мембран, оказывая влияние на их проницаемость. Они участвуют в передаче нервного импульса, обеспечивают межклеточный контакт, активный перенос питательных веществ через мембраны, транспорт жиров в плазме крови, синтез белка и различные ферментативные процессы.

По своим функциям в организме условно делят на две группы: запасные и структурные. Запасные (в основном ацилглицерины) обладают высокой калорийностью, являются энергетическим резервом организма и используются им при недостатке питания и заболеваниях.

Запасные липиды являются запасными веществами, помогающими организму переносить неблагоприятные воздействия внешней среды. Большая часть растений (до 90%) содержит запасные липиды, главным образом в семенах. Они легко извлекаются из жиросодержащего материала (свободные липиды).

Структурные липиды (в первую очередь фосфолипиды) образуют сложные комплексы с белками и углеводами. Они участвуют в разнообразных сложных процессах, протекающих в клетке. По массе они составляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» липиды.

Природные жирные кислоты, входящие в состав липидов, животных и растений, имеют много общих свойств. Они содержат, как правило, четкое число углеродных атомов и имеют неразветвленную цепь. Условно жирные кислоты делят на три группы: насыщенные, мононенасыщенные и полиненасыщенные. Ненасыщенные жирные кислоты животных и человека обычно содержат двойную связь между девятым и десятым атомами углерода, остальные карбоновые кислоты, входящие в состав жиров следующие:

Большинство липидов имеют некоторые общие структурные особенности, однако строгой классификации липидов пока не существует. Один из подходов к вопросу классификации липидов химический, согласно которому к липидам относятся производные спиртов и высших жирных кислот.

Схема классификации липидов.

Простые липиды. Простые липиды представлены двухкомпанентными веществами, сложными эфирами жирных высших кислот с глицерином, высшими или полициклическими спиртами.

К ним относятся жиры и воски. Наиболее важными представителями простых липидов являются ацилглицериды (глицерины). Они составляют основную массу липидов (95-96%) и именно их называют маслами и жирами. В состав жров входят в основном триглицериды, но присутствуют моно− и диацилглицерины:

Свойства конкретных масел определяются составом жирных кислот, участвующих в построении их молекул и положением, которое занимают остатки этих кислот в молекулах масел и жиров.

В жирах и маслах обнаружено до 300 карбоновых кислот различного строения. Однако большинство из них присутствуют в небольшом количестве.

Стеариновые и пальмитиновые кислоты входят в состав практически всех природных масел и жиров. Эруковая кислота входит в состав рапсового масла. В состав большинства наиболее распространенных масел входят ненасыщенные кислоты, содержащие 1-3 двойные связи. Некоторые кислоты природных масел и жиров имеют, как правило, цис-конфигурацию, т.е. заместители распределены по одну сторону плоскости двойной связи.

Кислоты, имеющие разветвлённые углеводные цепи, содержащие окси, кето и другие группы, в липидах, как правило, содержатся в незначительном количестве. Исключение составляет рацинолевая кислота в касторовом масле. В природных растительных триацилглицеринах положения 1 и 3 заняты предпочтительно остатками насыщенных жирных кислот, а положение 2 ненасыщенными. В животных жирах картина обратная.

Положение остатков жирных кислот в триацилглицеринах существенно влияет на их физико-химические свойства.

Ацилглицерины − это жидкость или твердые вещества с низкими температурами плавления и довольно высокими температурами кипения, с повышенной вязкостью, без цвета и запаха, легче воды, нелетучи.

В воде жиры практически нерастворимы, но образуют с ней эмульсии.

Помимо обычных физических показателей жиры характеризуются рядом физико-химических констант. Эти константы для каждого вида жира и его сорта предусмотрены стандартом.

Кислотное число, или коэффициент кислотности, показывает сколько свободных жирных кислот содержится в жире. Оно выражается числом мг KOH, которое требуется для нейтрализации свободных жирных кисло в 1 г жира. Кислотное число служит показателем свежести жира. В среднем оно колеблется для разных сортов жира от 0,4 до 6.

Число омыления, или коэффициент омыления, определяет общее количество кислот, как свободных, так и связанных в триацилглицеринах, находящихся в 1 г жира. Жиры, содержащие остатки высокомолекулярных жирных кислот, имеют меньшее число омыления, чем жиры, образуемые низкомолекулярными кислотами.

Йодное число – показатель ненасыщенности жира. О определяется количеством граммов йода, присоединяющихся к 100 г жира. Чем выше йодное число, тем более ненасыщенным является жир.

Воски. Восками называют сложные эфиры высших жирных кислот и высокомолекулярных спиртов (18-30 атомов углерода). Жирные кислоты, входящие в состав восков такие же, как и для жиров, но есть и специфические, характерные только для восков.

Например: карнаубовая ;

церотиновая ;

монтановая .

Общая формула восков может быть записана так:

Воски широко распространены в природе, покрывая тонким слоем листья, стебли, плоды растений, они предохраняют их от смачивания водой, высыхания, действия микроорганизмов. Содержание воска в зерне и плодах невелико.

Сложные липиды. Сложные липиды имеют многокомпонентные молекулы, отдельные части которых соединены химическими связями различного типа. К ним относятся фосфолипиды, состоящие из остатков жирных кислот, глицерина и других многоатомных спиртов, фосфорной кислоты и азотистых оснований. В структуре гликолипидов наряду с многоатомными спиртами и высокомолекулярной жирной кислотой имеются также углеводы (обычно остатки галактозы, глюкозы, маннозы).

Имеются также две группы липидов в составе которых представлены и простые и сложные липиды. Это − диольные липиды, являющиеся простыми и сложными липидами двухатомных спиртов и высокомолекулярных жирных кислот, содержащих в ряде случаев фосфорную кислоту, азотистые основания.

Ормитинолипиды построены из остатков жирных кислот, аминокислоты ормитина или лизина и включающих в некоторых случаях двухатомные спирты. Наиболее важная и распространенная группа сложных липидов − фосфолипиды. Молекула их построена из остатков спиртов, высокомолекулярных жирных кислот, фосфорной кислоты, азотистых оснований, аминокислот и некоторых других соединений.

Общая формула фосфолипидов (фосфотидов) имеет следующий вид:

Следовательно молекуле фосфолипидов имеются группировки двух типов: гидрофильные и гидрофобные.

В качестве гидрофильных группировок выступают остатки фосфорной кислоты и азотистые основания, а в качестве гидрофобных группировок углеводородные радикалы.

Схема строения фосфолипидов

Рис. 11. Молекула фосфолипидов

Гидрофильная полярная головка − это остаток фосфорной кислоты и азотистого основания.

Гидрофобные хвосты − это углеводородные радикалы.

Фосфолипиды выделены в качестве побочных продуктов при получении масел. Являются поверхностно-активными веществами, улучшающими хлебопекарные достоинства пшеничной муки.

В качестве эмульгаторов они применяются также в кондитерской промышленности и при производстве маргариновой продукции. Они являются обязательным компонентом клеток.

Вместе с белками и углеводами они участвуют в построении мембран клеток и субклеточных структур, выполняющих функции несущих конструкции мембран. Они способствуют лучшему усвоению жиров и препятствуют ожирению печени, играя важную роль в профилактике атеросклероза.

      Превращение липидов и их влияние на качество продуктов при хранении и переработке:

а) гидролитический распад

б) гидрогенизация

в) переэтерификация

г) аутоокисление и ферментативное окисление (прогоркание).

Классификация липидов достаточно обширна. Подобные вещества могут иметь отличимое химическое строение. Каждому классу компонентов присуща разная растворимость в природной воде и других органических соединениях. Подобные компоненты обеспечивают и принимают активное участие в процессах жизненной активности организма человека.

Стоит заметить тот факт, что некоторые классы липидов являются основным структурным составляющим мембран. Композиты выполняют оптимизацию процессов протекания межклеточных контактов и протекание этапов отдачи нервных импульсов. Соединения обеспечивают нормализацию проницаемости мембран клеток. Они присутствуют в организме всех живых существ, но у млекопитающих занимают другие функции.

Как уже известно, подобные вещества имеют различный химический состав, следовательно, основная классификация подразумевает биение компонентов и разделение их на разные классы именно по этому признаку.

Составы, молекулы которых вмещают в себя остатки жирных соединений и спирта – простые липиды. К подобной группе композитов относят:

  • триглицериды;
  • нейтральные глицериды;
  • воски.

Строение липидов предопределяет тот факт, что триглицериды и нейтральные глицериды относятся к липидам.

К классу липидов сложного строения относятся такие элементы:

  • фосфолипиды – составляющие являются производными ортофосфорной кислоты;
  • гликолипиды – содержат сахара в остаточном количестве;
  • стериды;
  • стерины.

Все перечисленные компоненты относятся к липидам, но имеют различный химический состав и способ образования в биологическом материале конкретного индивида.

Важно знать! Определенный термин химическая фракция нельзя отделять в качестве структурной характеристики элемента.

Классификация липидов подразумевает то, что все составы, относящиеся по строению к данному классу, имеют сходные особенности. Такая обеспеченность обуславливается за счет биологических особенностей композитов и возможности к растворенности.

Общие сведения

В организме человека жировые композиты концентрируются в свободном состоянии и имеют особенность к обеспечению функции фундаментальных блоков, для каждого класса химических структур.

Внимание! Ткани и клетки существующих живых организмов позволяют получать более 70 наименований жировых составов.

Основы, встречающиеся в естественной среде можно вариативно распределить на 3 всеобъемлющие группы:

  • насыщенные;
  • мононенасыщенные;
  • полиненасыщенные.

Существует еще одна, менее распространенная группа – природные жирные компоненты.

Важно подчеркнуть тот факт, что все вещества имеют четное количество атомов и неразветвленную цепь (химическое строение). В микробных клетках вещества имеют двойную связь.

Показатели растворимости – низкие, композиты обладают особенностью образовывать мицеллы в процессе растворения, имеющие отрицательный заряд и обладающие способностью к отталкиванию.

Глицериды

Эфиры кислот и глицерины смежно подходят под общее понятие нейтральных жиров. Классификация липидов сообщает о том, что вещества могут концентрироваться в крови человека в качестве протоплазматического жира. Вещества также выступают в качестве структурного вещества клеток и являются естественными жирами.

Среди характерных особенностей компонента можно определить следующие:

  • компоненту присущ неизменный химический состав;
  • концентрируется в тканях и органах человеческого организма в неизменном виде;
  • концентрация смесей, в крови пациента не изменяется даже при избытке;
  • может изменяться количество резерва.

Наибольшую массу нейтральных жиров определяют триглицериды, жирные соединения в которых могут быть насыщенными и ненасыщенными, то есть составляющие могут обладать идентичной структурой, но при этом принимать разную плотность.

Интересно знать! В подкожном жире среднестатистической особи 70 % олеиновой кислоты. Компонент имеет особенность плавиться при температурных показателях свыше 15 градусов.

Глицериды обладают особенностью вступать в химические реакции. В течении этапа омыления происходит выделение жировых концентраций в распаде с глицерином.

Воски

Воски вмещают от 20 до 70 атомов углерода. Являются сложными эфирами жирных кислот и двухатомных и одноатомных спиртов. Воски могут быть включены в состав жира, покрывающего кожу.

Внимание! Водоплавающие птицы удерживаются на плаву именно за счет воска.

Важно знать и такую особенность – воски выступают в качестве естественных метаболитов многих микроорганизмов.

Глицефосфолипиды

Классификация подразумевает деление фосфолипидов на сфинголипиды и глицефосфодлипиды.

Последние являются естественной производной фосфатидной кислоты, в составе которой содержится жирная основа, азотистые соединения и жирный спирт. Молекулы элементов не любят воду, но есть являются гидрофобными.

Из перечня жирных кислот вмещающихся в состав глицефосфолипидов выводят насыщенные жирные и ненасыщенные соединения.

Сфинголипиды

Самыми распространенными представителями группы сфинголипиды выступают сфингомиелины. Чаще всего такие соединения обнаруживают в клеточных мембранах у млекопитающих и растительных микроорганизмов. В организме особей компоненты в массовой концентрации локализуются в клеточных тканях: печень, почки и другие органы.

В процессе гидролиза создается:

  • одна молекула азотистого основания;
  • одна молекула фосфорной кислоты;
  • одна молекула двухатомного ненасыщенного аминоспирта;
  • одна молекула жирных кислот.

Молекулы могут иметь положительный и отрицательный заряд одновременно. Оснащены двумя неполярными хвостами, имеют полярную головку.

Гликолипиды

Также относятся липиды, в их доле концентрируются углеводные группы. Вещества принимают активное участие в процессах работы биологических мембран в организме индивида.

Современная классификация подразумевает разделение на три главных вида:

  • цереброзиды;
  • сульфатиды;
  • ганглиозиды.

Концентраты локализуются в выраженных концентрациях в тканях головного мозга человека.

Холин и фосфорная кислота не вмещаются в составе цереброзида. В их доле имеется гексон, который связан с гидроксильными группами эфирной связью.

В молекулах сульфатида содержится малый объем серной кислоты. Содержимое концентрируется в клетках мозга многих млекопитающих.

В процессе гидролиза ганглиозидов реально классифицировать высшие жирные кислоты, Д-глюкозу и галактозу, а также сфингозин. наиболее простейшие представители данной группы выводятся методом простого преобразования из эритроцитов. Присутствуют исключительно в сером веществе головного мозга, а также в плазматических мембранах нервных окончаний.

Общая классификация подразумевает отделение стероидов как композитов в отдельную группу. Такое разделение происходит в зависимости от того, что все составляющие в отличие от стероидов являются омыляемыми, то есть сами по себе стероиды не обладают особенностью гидролизоваться с выделением жирных кислот.

Стероиды

Компоненты крайне часто встречаются в естественных условиях. К такой группе относят:

  • устрашающий пациентов жирный спирт, именуемый липопротеидами;
  • желчные кислоты;
  • гормоны человека.

Природу этого компонента имеют другие составляющие.

Наиболее весомую задачу в течении процессов в организме индивида выполняет именно холестерин. Вещество принимает непосредственное участие во многих процессах жизнедеятельности организма. Обеспечивает процесс создания мембран клеток, синтез витамина Д и процессы выделения гормонов, присутствующих в организме обеих полов.

На основании описанной информации следует сделать вывод о том, что липиды – сложные соединения, присутствующие в организме каждого человека. Такие компоненты обеспечивают процессы поддержания активности организма в процессе жизни и выполняют важные функции. Некоторые компоненты данной классовой группы были известны, некоторые наименования редко бывают на слуху, но все без исключения вещества являются незаменимыми.

) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений - к липидам относят жирные кислоты и их производные . В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы . Это определение позволяет включать сюда холестерин, который вряд ли можно считать производным жирной кислоты.

Суточная потребность взрослого человека в липидах - 70-140 граммов.

Описание

Липиды - один из важнейших классов сложных молекул , присутствующих в клетках и тканях животных . Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны , участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов , жёлчных кислот , простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты , мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды , холестерин , эфиры холестерина и фосфолипиды . Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином . Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов . Некоторые липиды используются для создания наночастиц, например, липосом . Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определенных условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического .

Классификация липидов

Классификация липидов, как и других соединений биологической природы, - весьма спорный и проблематичный процесс. Предлагаемая ниже классификация, хоть и широко распространена в липидологии, является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды

  • Предельные углеводороды с длинной алифатической цепочкой
  • Сфингозиновые основания

Сложные липиды

  • Полярные
    • Фосфогликолипиды
    • Мышьяколипиды
  • Нейтральные
    • Ацилглицериды
      • Триглицериды (Жиры)
      • Диглицериды
      • Моноглицериды
    • Эфиры стеринов
    • N-ацетилэтаноламиды

Оксилипиды

  • Оксилипиды липоксигеназного пути
  • Оксилипиды циклооксигеназного пути

Строение

Молекулы простых липидов состоят из спирта, жирных кислот, сложные - из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Строение липидов зависит в первую очередь от пути их биосинтеза . Для подробного ознакомления следует перейти по ссылкам, указанным в схеме классификации.

Биологические функции

Энергетическая (резервная) функция

Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4.1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

Функция теплоизоляции

Жир - хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков), в качестве резервных запасов воды, так как вода - один из продуктов окисления жиров.