Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении»

При равноускоренном движении график имеет вид прямой линии, уходящей вверх, так как его проекция ускорения больше нуля.

При равномерном прямолинейном движении площадь численно будет равна модулю проекции перемещения тела. Оказывается, этот факт можно обобщить для случая не только равномерного движения, но и для любого движения, то есть показать, что площадь под графиком численно равна модулю проекции перемещения. Это делается строго математически, но мы воспользуемся графическим способом.

Рис. 2. График зависимости скорости от времени при равноускоренном движении ()

Разобьем график проекции скорости от времени для равноускоренного движения на небольшие промежутки времени Δt. Предположим, что они так малы, что на их протяжении скорость практически не менялась, то есть график линейной зависимости на рисунке мы условно превратим в лесенку. На каждой ее ступеньке мы считаем, что скорость практически не поменялась. Представим, что промежутки времени Δt мы сделаем бесконечно малыми. В математике говорят: совершаем предельный переход. В этом случае площадь такой лесенки будет неограниченно близко совпадать с площадью трапеции, которую ограничивает график V x (t). А это значит, что и для случая равноускоренного движения можно сказать, что модуль проекции перемещения численно равен площади, ограниченной графиком V x (t): осями абсцисс и ординат и перпендикуляром, опущенным на ось абсцисс, то есть площади трапеции ОАВС, которую мы видим на рисунке 2.

Задача из физической превращается в математическую задачу - поиск площади трапеции. Это стандартная ситуация, когда ученые физики составляют модель, которая описывает то или иное явление, а затем в дело вступает математика, которая обогащает эту модель уравнениями, законами - тем, что превращает модель в теорию.

Находим площадь трапеции: трапеция является прямоугольной, так как угол между осями - 90 0 , разобьем трапецию на две фигуры - прямоугольник и треугольник. Очевидно, что общая площадь будет равна сумме площадей этих фигур (рис. 3). Найдем их площади: площадь прямоугольника равна произведению сторон, то есть V 0x · t, площадь прямоугольного треугольника будет равна половине произведения катетов - 1/2АD·BD, подставив значения проекций, получим: 1/2t·(V x - V 0x), а, вспомнив закон изменения скорости от времени при равноускоренном движении: V x (t) = V 0x + а х t, совершенно очевидно, что разность проекций скоростей равна произведению проекции ускорения а х на время t, то есть V x - V 0x = а х t.

Рис. 3. Определение площади трапеции (Источник)

Учитывая тот факт, что площадь трапеции численно равна модулю проекции перемещения, получим:

S х(t) = V 0 x t + а х t 2 /2

Мы с вами получили закон зависимости проекции перемещения от времени при равноускоренном движении в скалярной форме, в векторной форме он будет выглядеть так:

(t) = t + t 2 / 2

Выведем еще одну формулу для проекции перемещения, в которую не будет входить в качестве переменной время. Решим систему уравнений, исключив из нее время:

S x (t) = V 0 x + а х t 2 /2

V x (t) = V 0 x + а х t

Представим, что время нам неизвестно, тогда выразим время из второго уравнения:

t = V x - V 0x / а х

Подставим полученное значение в первое уравнение:

Получим такое громоздкое выражение, возведем в квадрат и приведем подобные:

Мы получили очень удобное выражение проекции перемещения для случая, когда нам неизвестно время движения.

Пусть у нас начальная скорость автомобиля, когда началось торможение, составляет V 0 = 72 км/ч, конечная скорость V = 0, ускорение а = 4 м/с 2 . Узнаем длину тормозного пути. Переведя километры в метры и подставив значения в формулу, получим, что тормозной путь составит:

S x = 0 - 400(м/с) 2 / -2 · 4 м/с 2 = 50 м

Проанализируем следующую формулу:

S x = (V 0 x + V x) / 2 · t

Проекция перемещения- это полусумма проекций начальной и конечной скоростей, умноженная на время движения. Вспомним формулу перемещения для средней скорости

S x = V ср · t

В случае равноускоренного движения средняя скорость будет:

V ср = (V 0 + V к) / 2

Мы вплотную подошли к решению главной задачи механики равноускоренного движения, то есть получению закона, по которому меняется координата со временем:

х(t) = х 0 + V 0 x t + а х t 2 /2

Для того чтобы научиться пользоваться этим законом, разберем типичную задачу.

Автомобиль, двигаясь из состояния покоя, приобретает ускорение 2 м/с 2 . Найти путь, который прошел автомобиль за 3 секунды и за третью секунду.

Дано: V 0 x = 0

Запишем закон, по которому меняется перемещение со временем при

равноускоренном движении: S х = V 0 x t + а х t 2 /2. 2 c < Δt 2 < 3.

Мы можем ответить на первый вопрос задачи, подставив данные:

t 1 = 3 c S 1х = а х t 2 /2 = 2· 3 2 / 2 = 9 (м) - это путь, который прошел

c автомобиль за 3 секунды.

Узнаем сколько он проехал за 2 секунды:

S х (2 с) = а х t 2 /2 = 2· 2 2 / 2 = 4 (м)

Итак, мы с вами знаем, что за две секунды автомобиль проехал 4 метра.

Теперь, зная два эти расстояния, мы можем найти путь, который он прошел за третью секунду:

S 2х = S 1х + S х (2 с) = 9 - 4 = 5 (м)

В учебниках и учебных пособиях (например, ) выводится формула для проекции прямолинейного равноускоренного движения (ПРУД) на частном примере графика скорости, когда проекции начальной скорости υ x > 0 и ускорения a x > 0, а направление оси X совпадает с направлением движения. При этом величина проекции перемещения считается равной площади трапеции. Однако не учитывается, что, например, при υ x > 0 и a x < 0 получается не трапеция, а два треугольника, расположенных по разные стороны оси времени.

Формулы, полученные для проекции перемещения при ПРУД, в не трансформируются в векторный вид. По-видимому, авторы понимают, что это приведёт к формулам, справедливым для любого (не обязательно прямолинейного) РУД. Привязка вывода формулы перемещения к ПРУД приводит к тому, что при анализе РУД с начальной скоростью, не коллинеарной ускорению, каждый раз приходится раскладывать движение на равномерное и прямолинейное равноускоренное (например, при анализе криволинейного движения тела под действием силы тяжести, криволинейного движения заряда в однородном электрическом поле).

Статья подготовлена при поддержке жилого комплекса «Родные берега». Если вы решили приобрести качественную и надежную квартиру, то оптимальным решением станет посетить сайт жилого комплекса «Родные берега». Перейдя по ссылке: «жилой комплекс в СПб », вы сможете, не отходя от экрана монитора, выбрать квартиру своей мечты по выгодной цене. Более подробную информацию о ценах и акциях действующих на данный момент вы сможете найти на сайте www.berega.spb.ru.

Во избежание этого мы предлагаем выводить векторную формулу, справедливую для перемещения при любом (а не только прямолинейном) РУД. Пусть тело совершает равноускоренное движение с начальной скоростью υ 0 и ускорением a . Это движение можно считать состоящим из равномерного движения со скоростью υ 0 и равноускоренного движения с начальной скоростью υ 0 = 0 и ускорением a .

Перемещение s при равномерном движении за время t равно υ 0 t . Перемещение при РУД с нулевой начальной скоростью может зависеть, очевидно, только от ускорения a и времени t , т.е. является некоторой функцией f(a , t) . Поэтому для суммы этих двух перемещений, можно записать:

s = υ 0 t + f(a , t) . (1)

За время t тело достигнет скорости υ = υ 0 + a t .

Чтобы определить функцию f(a , t) , допустим, что движение заснято на киноплёнку и демонстрируется в обратном порядке. В этом случае изображение тела за то же время t и с тем же ускорением a совершит перемещение s обр = –s с начальной скоростью υ обр = –υ = –(υ 0 + a t ).

Формула (1) пример вид: s обр = υ обр t + f(a , t) , а с учётом выражений для s обр, υ обр:

s = –(υ 0 + a t )t + f(a , t) s = υ 0 t + a t 2 – f(a , t) . (2)

Приравняем правые части выражений (1) и (2) для одной и той же величины s : υ 0 t + f(a , t) =υ 0 t + a t 2 – f(a , t) .

Решив это уравнение, получим f(a , t) = at 2 /2.

Теперь формулу (1) для равноускоренного движения можно записать так: s = υ 0 t + a t 2 /2.

Литература

  1. Кикоин И.К., Кикоин А.К. Физика-9. – М.: Просвещение, 1999.
  2. Кабардин О.Ф. Физика. – М.: АСТ-Пресс Школа, 2009.

В этой теме мы рассмотрим очень особенный вид неравномерного движения. Исходя из противопоставления равномерному движению , неравномерное движение - это движение с неодинаковой скоростью, по любой траектории . В чем особенность равноускоренного движения? Это неравномерное движение, но которое "равно ускоряется" . Ускорение у нас ассоциируется с увеличением скорости. Вспомним про слово "равно", получим равное увеличение скорости. А как понимать "равное увеличение скорости", как оценить скорость равно увеличивается или нет? Для этого нам потребуется засечь время, оценить скорость через один и тот же интервал времени. Например, машина начинает двигаться, за первые две секунды она развивает скорость до 10 м/с, за следующие две секунды 20 м/с, еще через две секунды она уже двигается со скоростью 30 м/с. Каждые две секунды скорость увеличивается и каждый раз на 10 м/с. Это и есть равноускоренное движение.


Физическая величина, характеризующая то, на сколько каждый раз увеличивается скорость называется ускорением.

Можно ли движение велосипедиста считать равноускоренным, если после остановки в первую минуту его скорость 7км/ч, во вторую - 9км/ч, в третью 12км/ч? Нельзя! Велосипедист ускоряется, но не одинаково, сначала ускорился на 7км/ч (7-0), потом на 2 км/ч (9-7), затем на 3 км/ч (12-9).

Обычно движение с возрастающей по модулю скоростью называют ускоренным движением. Движение же с убывающей скоростью - замедленным движением. Но физики любое движение с изменяющейся скоростью называют ускоренным движением. Трогается ли автомобиль с места (скорость растет!), или тормозит (скорость уменьшается!), в любом случае он движется с ускорением.

Равноускоренное движение - это такое движение тела, при котором его скорость за любые равные промежутки времени изменяется (может увеличиваться или уменьшаться) одинаково

Ускорение тела

Ускорение характеризует быстроту изменения скорости. Это число, на которое изменяется скорость за каждую секунду. Если ускорение тела по модулю велико, это значит, что тело быстро набирает скорость (когда оно разгоняется) или быстро теряет ее (при торможении). Ускорение - это физическая векторная величина , численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Определим ускорение в следующей задаче. В начальный момент времени скорость теплохода была 3 м/с, в конце первой секунды скорость теплохода стала 5 м/с, в конце второй - 7м/с, в конце третьей 9 м/с и т.д. Очевидно, . Но как мы определили? Мы рассматриваем разницу скоростей за одну секунду. В первую секунду 5-3=2, во вторую секунду 7-5=2, в третью 9-7=2. А как быть, если скорости даны не за каждую секунду? Такая задача: начальная скорость теплохода 3 м/с, в конце второй секунды - 7 м/с, в конце четвертой 11 м/с.В этом случае необходимо 11-7= 4, затем 4/2=2. Разницу скоростей мы делим на промежуток времени.


Эту формулу чаще всего при решении задач применяют в видоизмененном виде:

Формула записана не в векторном виде, поэтому знак "+" пишем, когда тело ускоряется, знак "-" - когда замедляется.

Направление вектора ускорения

Направление вектора ускорения изображено на рисунках


На этом рисунке машина движется в положительном направлении вдоль оси Ox, вектор скорости всегда совпадает с направлением движения (направлен вправо). Когда вектор ускорение совпадает с направлением скорости, это означает, что машина разгоняется. Ускорение положительное.

При разгоне направление ускорения совпадает с направлением скорости. Ускорение положительное.


На этом рисунке машина движется в положительном направлении по оси Ox, вектор скорости совпадает с направлением движения (направлен вправо), ускорение НЕ совпадает с направлением скорости, это означает, что машина тормозит. Ускорение отрицательное.

При торможении направление ускорения противоположно направлению скорости. Ускорение отрицательное.

Разберемся, почему при торможении ускорение отрицательное. Например, теплоход за первую секунду сбросил скорость с 9м/с до 7м/с, за вторую секунду до 5м/с, за третью до 3м/с. Скорость изменяется на "-2м/с". 3-5=-2; 5-7=-2; 7-9=-2м/с. Вот откуда появляется отрицательное значение ускорения.

При решении задач, если тело замедляется, ускорение в формулы подставляется со знаком "минус"!!!

Перемещение при равноускоренном движении

Дополнительная формула, которую называют безвременной

Формула в координатах


Связь со средней скоростью

При равноускоренном движении среднюю скорость можно рассчитывать как среднеарифметическое начальной и конечной скорости

Из этого правила следует формула, которую очень удобно использовать при решении многих задач

Соотношение путей

Если тело движется равноускоренно, начальная скорость нулевая, то пути, проходимые в последовательные равные промежутки времени, относятся как последовательный ряд нечетных чисел.

Главное запомнить

1) Что такое равноускоренное движение;
2) Что характеризует ускорение;
3) Ускорение - вектор. Если тело разгоняется ускорение положительное, если замедляется - ускорение отрицательное;
3) Направление вектора ускорения;
4) Формулы, единицы измерения в СИ

Упражнения

Два поезда идут навстречу друг другу: один - ускоренно на север, другой - замедленно на юг. Как направлены ускорения поездов?

Одинаково на север. Потому что у первого поезда ускорение совпадает по направлению с движением, а у второго - противоположное движению (он замедляется).

Теперь мы должны выяснить самое главное - как изменяется координата тела при его прямолинейном равноускоренном движении. Для этого, как мы знаем, нужно знать перемещение тела, потому что проекция вектора перемещения как раз и равна изменению координаты.

Формулу для вычисления перемещения проще всего получить графическим методом.

При равноускоренном движении тела вдоль оси X скорость изменяется со временем согласно формуле v x = v 0х + a x t Так как время в эту формулу входит в первой степени, то график для проекции скорости в зависимости от времени представляет собой прямую, как это показано на рисунке 39. Прямая 1 на этом рисунке соответствует движению с положительной проекцией ускорения (скорость растет), прямая 2 - движению с отрицательной проекцией ускорения (скорость убывает). Оба графика относятся к случаю, когда в момент времени t = О тело имеет некоторую начальную скорость v 0 .

Перемещение выражается площадью. Выделим на графике скорости равноускоренного движения (рис. 40) маленький участок ab и опустим из точек а и Ь перпендикуляры на ось t. Длина отрезка cd на оси t в выбранном масштабе равна тому малому промежутку времени, за который скорость изменилась от ее значения в точке а до ее значения в точке Ь. Под участком ab графика получилась узкая полоска abсd.

Если промежуток времени, соответствующий отрезку cd, достаточно мал, то в течение этого малого времени скорость не может заметно измениться - движение в течение этого малого промежутка времени можно считать равномерным. Полоска abсd поэтому мало отличается от прямоугольника, а ее площадь численно равна проекции перемещения за время, соответствующее отрезку cd (см. § 7).

Но на такие узкие полоски можно разбить всю площадь фигуры, расположенной под графиком скорости. Следовательно, перемещение за все время t численно равно площади трапеции ОАВС. Площадь же трапеции, как известно из геометрии, равна произведению полусуммы ее оснований на высоту. В нашем случае длина одного из оснований численно равна v ox , другого-v x (см. рис. 40). Высота же трапеции численно равна t. Отсюда следует, что проекция s x перемещения выражается формулой

3с 15.09

Если проекция v ox начальной скорости равна нулю (в начальный момент времени тело покоилось!), то формула (1) принимает вид:

График скорости такого движения показан на рисунке 41.

При пользовании формулами (1) и (2) НУЖНО ПОМНИТЬ, ЧТО S x , V ox и v x могут быть как положительным», так и отрицательными - ведь это проекции векторов s, v o и v на ось X.

Таким образом, мы видим, что при равноускоренном движении перемещение растет со временем не так, как при равномерном движении: теперь в формулу входит квадрат времени. Это значит, что перемещение со временем растет быстрее, чем при равномерном движении.



Как зависит от времени координата тела? Теперь легко получить и формулу для вычисления координаты х в любой момент времени для тела, движущегося равноускоренно.

проекция s x вектора перемещения равна изменению координаты х-х 0 . Поэтому можно записать

Из формулы (3) видно, что, для того чтобы вычислить координату х в любой момент времени t, нужно знать начальную координату, начальную скорость и ускорение.

Формула (3) описывает прямолинейное равноускоренное движение, подобно тому как формула (2) § 6 описывает прямолинейное равномерное движение.

Другая формула для перемещения. Для вычисления перемещения можно получить и другую полезную формулу, в которую время не входит.

Из выражения v x = v 0x + a x t. получим выражение для времени

t = (v x - v 0x): a x и подставим его в формулу для перемещения s x , приведенную выше. Тогда получаем:

Эти формулы позволяют найти перемещение тела, если известны ускорение, а также начальная и конечная скорости движения. Если начальная скорость v o равна нулю, формулы (4) принимают вид:

Скорость (v) - физическая величина, численно равна пути (s), пройденного телом за единицу времени (t).

Путь

Путь (S) - длина траектории, по которой двигалось тело, численно равен произведению скорости (v) тела на время (t) движения.

Время движения

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (v) движения.

Средняя скорость

Средняя скорость (vср) равна отношению суммы участков пути (s 1 s 2 , s 3 , ...), пройденного телом, к промежутку времени (t 1 + t 2 + t 3 + ...), за который этот путь пройден.

Средняя скорость - это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Средняя скорость при неравномерном движении по прямой: это отношение всего пути ко всему времени.

Два последовательных этапа с разными скоростями: где

При решении задач - сколько этапов движения столько будет составляющих:

Проекции вектора перемещения на оси координат

Проекция вектора перемещения на ось ОХ:

Проекция вектора перемещения на ось OY:

Проекция вектора на ось равна нулю, если вектор перпендикулярен оси.

Знаки проекций перемещения: проекцию считают положительной, если движение от проекции начала вектора к проекции конца происходит по направлению оси, и отрицательной, если против оси. В данном примере

Модуль перемещения - это длина вектора перемещения:

По теореме Пифагора:

Проекции перемещения и угол наклона

В данном примере:

Уравнение координаты (в общем виде):

Радиус-вектор - вектор, начало которого совпадает с началом координат, а конец - с положением тела в данный момент времени. Проекции радиус-вектора на оси координат определяют координаты тела в данный момент времени.

Радиус-вектор позволяет задать положение материальной точки в заданной системе отсчета :

Равномерное прямолинейное движение - определение

Равномерное прямолинейное движение - движение, при котором тело за любые равные промежутки времени, совершает равные перемещения.

Скорость при равномерном прямолинейном движении . Скорость - векторная физическая величина, которая показывает, какое перемещение совершает тело за единицу времени.

В векторном виде:

В проекциях на ось ОХ:

Дополнительные единицы измерения скорости:

1 км/ч = 1000 м/3600 с,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин =1 м/60 с.

Измерительный прибор - спидометр - показывает модуль скорости.

Знак проекции скорости зависит от направления вектора скорости и оси координат:

График проекции скорости представляет собой зависиость проекции скорости от времени:

График скорости при равномерном прямолинейном движении - прямая, параллельная оси времени (1, 2, 3).

Если график лежит над осью времени (.1), то тело движется по направлению оси ОХ. Если график расположен под осью времени, то тело движется против оси ОХ (2, 3).

Геометрический смысл перемещения.

При равномерном прямолинейном движении перемещение определяют по формуле . Такой же результат получим, если вычислим площадь фигуры под графиком скорости в осях. Значит, для определения пути и модуля перемещения при прямолинейном движении необходимо вычислять площадь фигуры под графиком скорости в осях:

График проекции перемещения - зависимость проекции перемещения от времени.

График проекции перемещения при равномерном прямолинейном движении - прямая, выходящая из начала координат (1, 2, 3).

Если прямая (1) лежит над осью времени, то тело движется по направлению оси ОХ, а если под осью (2, 3), то против оси ОХ.

Чем больше тангенс утла наклона (1) графика, тем больше модуль скорости.

График координаты - зависимость координаты тела от времени:

График координаты при равномерном прямолинейном движении - прямые (1, 2, 3).

Если с течением времени координата увеличивается (1, 2), то тело движется по направлению оси ОХ; если координата уменьшается (3), то тело движется против направления оси ОХ.

Чем больше тангенс угла наклона (1), тем больше модуль скорости.

Если графики координат двух тел пересекаются, то из точки пересечения следует опустить перпендикуляры на ось времени и ось координат.

Относительность механического движения

Под относительностью мы понимаем зависимость чего-либо от выбора системы отсчета. Например, покой относителен; движение относительно и положение тела относительно.

Правило сложения перемещений. Векторная сумма перемещений

где - перемещение тела относительно подвижной системы отсчета (ПСО); - перемещение ПСО относительно неподвижной системы отсчета (НСО); - перемещение тела относительно неподвижной системы отсчета (НСО).

Векторное сложение:

Сложение векторов, направленных вдоль одной прямой:

Сложение векторов, перпендикулярных друг другу

По теореме Пифагора