Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

    Рассмотрим классическую задачу оптимизации

    max (min) z=f(x) (7.20)

    Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

    Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

    Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

    (7.22)

    есть функция Лагранжа; - множители Лагранжа.

    Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

    Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

    1) составить функцию Лагранжа (7.23);

    2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

    3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



    Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

    Решение. Математическая модель задачи имеет следующий вид:


    Составляем функцию Лагранжа:

    .

    Находим частные производные функции Лагранжа и приравниваем их нулю:

    Решая эту систему уравнений, получаем:

    Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

    Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

    В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

    max (min) z =f (x 1 , х 2); (7.24)

    𝜑(x 1 , х 2)=b. (7.25)

    Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

    Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)

    an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = f(t)

    состоит в замене произвольных постоянных ck в общем решении

    z(t) = c1z1(t) + c2z2(t) + ...

    Cnzn(t)

    соответствующего однородного уравнения

    an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = 0

    на вспомогательные функции ck(t), производные которых удовлетворяют линейной алгебраической системе

    Определителем системы (1) служит вронскиан функций z1,z2,...,zn, что обеспечивает её однозначную разрешимость относительно .

    Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

    является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

    Метод Лагранжа (метод вариации произвольных постоянных)

    Метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

    Для линейного однородного дифференциального уравнения n-го порядка

    y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = 0,

    где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x) - известные, непрерывные, справедливо: 1) существуют n линейно независимых решений уравнения y1(x), y2(x), ..., yn(x); 2) при любых значениях констант c1, c2, ..., cn функция y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) является решением уравнения; 3) для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

    Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) называется общим решением линейного однородного дифференциального уравнения n-го порядка.

    Совокупность n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка y1(x), y2(x), ..., yn(x) называется фундаментальной системой решений уравнения.

    Для линейного однородного дифференциального уравнения с постоянными коэффициентами существует простой алгоритм построения фундаментальной системы решений. Будем искать решение уравнения в виде y(x) = exp(lx): exp(lx)(n) + a1exp(lx)(n-1) + ... + an-1exp(lx)" + anexp(lx)= = (ln + a1ln-1 + ... + an-1l + an)exp(lx) = 0, т.е. число l является корнем характеристического уравнения ln + a1ln-1 + ... + an-1l + an = 0. Левая часть характеристического уравнения называется характеристическим многочленом линейного дифференциального уравнения: P(l) = ln + a1ln-1 + ... + an-1l + an. Таким образом, задача о решении линейного однородного уравнения n -го порядка с постоянными коэффициентами сводится к решению алгебраического уравнения.

    Если характеристическое уравнение имеет n различных действительных корней l1№ l2 № ... № ln, то фундаментальная система решений состоит из функций y1(x) = exp(l1x), y2(x) = exp(l2x), ..., yn(x) = exp(lnx), и общее решение однородного уравнения имеет вид: y(x)= c1 exp(l1x) + c2 exp(l2x) + ... + cn exp(lnx).

    ундаментальная система решений и общее решение для случая простых действительных корней.

    Если какой-либо из действительных корней характеристического уравнения повторяется r раз (r-кратный корень), то в фундаментальной системе решений ему отвечают r функций; если lk=lk+1 = ... = lk+r-1, то в фундаментальную систему решений уравнения входят r функций: yk(x) = exp(lkx), yk+1(x) = xexp(lkx), yk+2(x) = x2exp(lkx), ..., yk+r-1(x) =xr-1 exp(lnx).

    ПРИМЕР 2. Фундаментальная система решений и общее решение для случая кратных действительных корней.

    Если характеристическое уравнение имеет комплексные корни, то каждой паре простых (имеющих кратность 1) комплексных корней lk,k+1=ak ± ibk в фундаментальной системе решений отвечает пара функций yk(x) = exp(akx)cos(bkx), yk+1(x) = exp(akx)sin(bkx).

    ПРИМЕР 4. Фундаментальная система решений и общее решение для случая простых комплексных корней. Мнимые корни.

    Если же комплексная пара корней имеет кратность r, то такой паре lk=lk+1 = ... = l2k+2r-1=ak ± ibk, в фундаментальной системе решений отвечают функции exp(akx)cos(bkx), exp(akx)sin(bkx), xexp(akx)cos(bkx), xexp(akx)sin(bkx), x2exp(akx)cos(bkx), x2exp(akx)sin(bkx), ................ xr-1exp(akx)cos(bkx), xr-1exp(akx)sin(bkx).

    ПРИМЕР 5. Фундаментальная система решений и общее решение для случая кратных комплексных корней.

    Таким образом, для отыскания общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами следует: записать характеристическое уравнение; найти все корни характеристического уравнения l1, l2, ... , ln; записать фундаментальную систему решений y1(x), y2(x), ..., yn(x); записать выражение для общего решения y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x). Для решения задачи Коши нужно подставить выражение для общего решения в начальные условия и определить значения постоянных c1,..., cn, которые являются решениями системы линейных алгебраических уравнений c1 y1(x0) + c2 y2(x0) + ... + cn yn(x0) = y0, c1 y"1(x0) + c2 y"2(x0) + ... + cn y"n(x0) =y0,1, ......... , c1 y1(n-1)(x0) + c2 y2(n-1)(x0) + ... + cn yn(n-1)(x0) = y0,n-1

    Для линейного неоднородного дифференциального уравнения n-го порядка

    y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = f(x),

    где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x), f(x) - известные, непрерывные, справедливо: 1) если y1(x) и y2(x) - два решения неоднородного уравнения, то функция y(x) = y1(x) - y2(x) - решение соответствующего однородного уравнения; 2) если y1(x) решение неоднородного уравнения, а y2(x) - решение соответствующего однородного уравнения, то функция y(x) = y1(x) + y2(x) - решение неоднородного уравнения; 3) если y1(x), y2(x), ..., yn(x) - n линейно независимых решений однородного уравнения, а yч(x) - произвольное решение неоднородного уравнения, то для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) + yч(x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

    Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) + yч(x) называется общим решением линейного неоднородного дифференциального уравнения n-го порядка.

    Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) - многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

    Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) - многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая - с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0), то резонансный сомножитель отсутствует.

    Подставив выражение для частного решения в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны.

    Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx) с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.