Найдите все значения параметра а, при которых система имеет ровно два решения.

Первое уравнение системы перепишем иначе, выделив квадраты двучленов:

Первое слагаемое есть расстояние между точками (x; y) до точки А(-1; 2).
Второе слагаемое есть расстояние между точками (x; y) до точки В(2; 6).
Сумма расстояний от точки (x; y) до двух других должна быть равна 5.

Расстояние между точками А и В легко вычислить, оно равно 5.

Точке (x; y) ничего не остаётся, как лежать на отрезке АВ. Это значит, что
первое уравнение системы задаёт отрезок АВ (отрезок - график уравнения).

Второе уравнение задаёт параболу. Она должна пересекать отрезок в двух точках.
При маленьких а пересечений нет. Первое пересечение возникнет в тот момент,
когда парабола пройдёт через точку А(-1; 2). Найдите это значение а (а = 1).

Если а капельку увеличить, пересечение останется единственным... до тех пор,
пока парабола не пройдёт через точку В(2; 6). Найдите это значение а (а = 2).

Сейчас и с этого момента пересечений ровно два. Но до тех пор, пока...
парабола не коснётся отрезка. Напишем сначала уравнение АВ.

Прямая y = kx + b проходит через А(-1; 2) и В(2; 6). Выполняется система:

Найдя из этой системы значения k и b, напишем уравнение прямой АВ:

Теперь потребуем, чтобы квадратное уравнение имело один корень:

Единственный корень при этом находится в пределах отрезка АВ.

При найденном значении параметра решение у начальной системы одно.
При а, больших найденного, пересечений у параболы с отрезком нет.

7

4

Adicionar a

  • Minha playlist
  • Assista mais tarde

Baixar vídeos

  • Carregando o link.....

2 anos atrás Visualizações 451

Найдите все значения а, при каждом из которых функция имеет ХОТЯ бы ОДНУ ТОЧКУ максимума. vk.com/video213138898_456239033 Определите, какое наибольшее количество общих членов может быть у двух арифметических прогрессий vk.com/video174629951_456239271 Алгоритм построения графика квадратичной функции. Решим ЕГЭ типа первый и второй насосы наполняют бассейн за 10 минут второй и третий. Набор основных текстовых задач для самостоятельного обучения методам Султанова. Имеется лом стали двух сортов, причём первый сорт содержит 10% никеля, а второй 30%. Ответ: в 2 раза больше надо взять второго сплава. Кусок сплава меди и цинка массой 36 кг содержит 45% меди. #matematika #ege
Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. Примеры решения логарифмов. Квадратное уравнение и решение полных и неполных квадратных уравнений. Симплексный метод решения задач линейного программирования. Логарифмы примеры решения. Найдите косинус угла между векторами a{2;4} и b{2;1}. Толя написал в тетради трёхзначное число, делящееся на 30. Катя должна угадать это число, записав три трёхзначных числа, делящихся на 30, а затем сравнив эти числа с числом, написанным Толей. Какова вероятность, что Катя угадает записанное Толей число. Найдите корень уравнения log. В равнобедренную трапецию вписана окружность. Найдите среднюю линию трапеции, если точка касания окружности делит боковую сторону трапеции на отрезки, равные 2 и 4. На рисунке приведен график у=F(x) одной из первообразных функции f (x). На графике отмечены шесть точек с абсциссами х1, х2, …, х6. В скольких из этих точек функция у=f(x) принимает отрицательные значения. Найдите объем многогранника, приведенного на рисунке. Все двугранные углы прямые. Вычислите значение выражения. Скорость автомобиля v, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением а км/ч2, вычисляется по формуле. Определите, с какой наименьшей скоростью будет двигаться автомобиль на расстоянии 400 метров от старта, если по конструктивным особенностям автомобиля приобретаемое им ускорение не меньше 8000 км/ч2. Ответ выразите в км/ч. Три каменщика разной квалификации выложили кирпичную стену, причем первый работал 6 ч, второй - 4 ч, а третий - 7 ч. Если бы первый каменщик работал 4 ч, второй - 2 ч и третий - 5 ч, то было бы выполнено 2/3 всей работы. За сколько часов каменщики закончили бы кладку, если бы они работали все вместе одно и то же время.

1. Системы линейных уравнений с параметром

Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

Пример 1.

Найти все значения для параметра а, при которых система уравнений не имеет решений.

{х + (а 2 – 3)у = а,
{х + у = 2.

Решение.

Рассмотрим несколько способов решения данного задания.

1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

1/1 = (а 2 – 3)/1 ≠ а/2 или систему

{а 2 – 3 = 1,
{а ≠ 2.

Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

Ответ: а = -2.

2 способ . Решаем методом подстановки.

{2 – у + (а 2 – 3)у = а,
{х = 2 – у,

{(а 2 – 3)у – у = а – 2,
{х = 2 – у.

После вынесения в первом уравнении общего множителя у за скобки, получим:

{(а 2 – 4)у = а – 2,
{х = 2 – у.

Система не имеет решений, если первое уравнение не будет иметь решений, то есть

{а 2 – 4 = 0,
{а – 2 ≠ 0.

Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

Ответ: а = -2.

Пример 2.

Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

{8х + ау = 2,
{ах + 2у = 1.

Решение.

По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

Ответ: а = 4.

2. Системы рациональных уравнений с параметром

Пример 3.

{3|х| + у = 2,
{|х| + 2у = a.

Решение.

Умножим первое уравнение системы на 2:

{6|х| + 2у = 4,
{|х| + 2у = a.

Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

Ответ: а = 4.

Пример 4.

Найти все значения параметра а, при которых система уравнений имеет единственное решение.

{х + у = а,
{у – х 2 = 1.

Решение.

Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

1,25 = 0,5 + а;

Ответ: а = 0,75.

Пример 5.

Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

{ах – у = а + 1,
{ах + (а + 2)у = 2.

Решение.

Из первого уравнения выразим у и подставим во второе:

{у = ах – а – 1,
{ах + (а + 2)(ах – а – 1) = 2.

Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

а 2 х + 3ах = 2 + а 2 + 3а + 2.

Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

(а + 2)(а + 1), а слева вынесем х за скобки:

(а 2 + 3а)х = 2 + (а + 2)(а + 1).

Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

Ответ: а ≠ 0; ≠ -3.

Пример 6.

Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

{х 2 + у 2 = 9,
{у – |х| = а.

Решение.

Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

Ответ: а = 3.

Остались вопросы? Не знаете, как решать системы уравнений?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.