Есть знаменитый анекдот, который поможет ответить на вопрос о том, как выиграть в лотерею "Русское лото".

Пришел человек в церковь просить у Бога помощи. Он умолял послать ему большой денежный выигрыш в лотерее или хорошие и дорогие призы. Бог услышал его призыв и долго молчал. После чего не выдержал и сказал ему: «Друг, может быть, сначала ты приобретешь лотерейный билет?!».

Так вот, чтобы играть в лото, необходимо сначала приобрести билет. Сделать это очень просто. За билетом можно пойти в специальный киоск или в отделение почтовой связи.

Итак, билет есть. А "Русское лото"? У каждого свои методы для выигрыша, рассмотрим самые распространенные.

Несколько методик получения больших денег при игре в лотерею:

1. В штатах живет один американец Даг Майрок, который на протяжении 17 лет играл в лотерею и выставлял одну и ту же комбинацию, в итоге выиграл 31,4 миллиона долларов. Не готовы так долго ждать? Тогда стоит изучить теорию вероятности и оптимизировать способ быстрого получения выигрыша. Если вам не по силам такие расчеты, придет на помощь компьютер. С помощью специальных программ можно составить комбинацию удачных чисел.

2. Нумерологический метод. Как выиграть в лотерею "Русское лото" при помощи даты своего рождения или имени? Есть специальная наука - нумерология, которая определяет благоприятные дни для каждого человека на основании его личных данных. Чтобы получить свое первое удачное число, необходимо сложить все числа вашей даты рождения. Второе число получается путем сложения букв в вашем имени, а именно «а-1», «б-2» и т. д. Третье счастливое число находится путем суммирования первых двух. Теперь у вас три которые обязательно должны присутствовать в лотерейном билете.

3. Кармически-познавательный метод. Некоторые любители лотерей считают: для того, чтобы сорвать свой куш, магия не нужна. Но зачастую мысли, возникающие в подсознании, помогают выиграть. Некоторые психологи советуют: для того чтобы победить, необходимо все время в это верить. Для достижения результата нужно взять листок с ручкой и изобразить на нем себя с большим мешком денег. Глядя на свое творчество, искренне верьте, что выиграете.

4. Фатальный метод. Некоторые уверены, что только случай решает исход выигрыша. Одни, к примеру, считают, что счастливая комбинация - это номер машины, заминированной накануне в какой-либо точке земного шара. Огромное количество ставок делают на 9 и 11 числа, после знаменитой катастрофы 11 сентября. И что самое странное - эти билеты выигрывали! Многие ищут подсказку в дне недели или числах месяца. Нередко они помогают им. Стоит оглядеться вокруг себя и выяснить, где прячется ваше счастливое число, которое позволит понять, как выиграть в лотерею "Русское лото".

5. Суеверный метод. Приобретение лотерейного билета - это ритуал, который необходимо проводить особенно. Во-первых, необходимо обратить внимание на внешний вид. Не надевайте вещи, в которых присутствует желтый и красный цвет. Лучше выбрать наряд темных тонов. Одежда в полоску или в клеточку также отпугнет удачу. И самое главное правило - не стоит надевать украшения из золота и серебра!

Получается, вероятность выигрыша в любой лотерее, будь то лото "Спорт", "Супер" или другая, зависит от поставленной цели и выбранного метода.

Можно ли выиграть в лотерею? Какие шансы угадать нужное количество чисел и получить джекпот или приз младшей категории? Вероятность выигрыша легко просчитывается, любой желающий может сделать это самостоятельно.

Как вообще считается вероятность выигрыша в лотерею?

Числовые лотереи проводятся по определенным формулам и шансы каждого события (выигрыша той или иной категории) рассчитываются математически. Причем эта вероятность вычисляется для любого нужного значения, будь то «5 из 36», «6 из 45», или «7 из 49» и она не меняется, так как зависит только от общего количества чисел (шаров, номеров) и того, сколько из них надо угадать.

Например, для лотереи «5 из 36» вероятности всегда следующие

  • угадать два числа — 1: 8
  • угадать три числа — 1: 81
  • угадать четыре числа — 1: 2 432
  • угадать пять чисел — 1: 376 992

Другими словами — если отметить в билете одну комбинацию (5 номеров), то шанс угадать «двойку» всего 1 из 8. А вот «пять» номеров поймать гораздо сложнее, это уже 1 шанс из 376 992. Именно такое (376 тысяч) количество всевозможных комбинаций существует в лотерее «5 из 36» и гарантированно в ней выиграть можно, если только заполнить их все. Правда, сумма выигрыша в этом случае не оправдает вложений: если билет стоит 80 рублей, то отметить все комбинации будет стоить 30 159 360 рублей. Джекпот обычно намного меньше.

В общем, все вероятности давно известны, всего и остается, что их найти или рассчитать самостоятельно, при помощи соответствующих формул.

Для тех, кому искать лень, приведем вероятности выигрыша для основных числовых лотерей Столото — они представлены в этой таблице

Сколько чисел надо угадать шансы в 5 из 36 шансы в 6 из 45 шансы в 7 из 49
2 1:8 1:7
3 1:81 1:45 1:22
4 1:2432 1:733 1:214
5 1:376 992 1:34 808 1:4751
6 1:8 145 060 1:292 179
7 1:85 900 584

Необходимые пояснения

Лото-виджет позволяет рассчитывать вероятности выигрыша для лотерей с одним лототроном (без бонусных шаров) или с двумя лототронами. Также можно просчитать вероятности развернутых ставок

Расчет вероятности для лотерей с одним лототроном (без бонусных шаров)

Используются только первые два поля, в которых числовая формула лотереи, например: — «5 из 36», «6 из 45», «7 из 49». В принципе, можно просчитать почти любую мировую лотерею. Есть только два ограничения: первое значение не должно превышать 30, а второе — 99.

Если в лотерее не используются дополнительные номера*, то после выбора числовой формулы остается нажать кнопку рассчитать и результат готов. Не важно, вероятность какого события вы хотите узнать – выигрыш джекпота, приз второй/третьей категории или просто выяснить, сложно ли угадать 2-3 номера из нужного количества – результат высчитывается почти моментально!

Пример расчета. Вероятность угадать 5 из 36 составляет 1 шанс из 376 992

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36» (Гослото, Россия) – 1:376 922
«6 из 45» (Гослото, Россия; Saturday Lotto, Австралия; Lotto, Австрия) — 1:8 145 060
«6 из 49» (Спортлото, Россия; La Primitiva, Испания; Lotto 6/49, Канада) — 1:13 983 816
«6 из 52» (Super Loto, Украина; Illinois Lotto, США; Mega TOTO, Малазия) — 1:20 358 520
«7 из 49» (Гослото, Россия; Lotto Max, Канада) — 1:85 900 584

Лотереи с двумя лототронами (+ бонусный шар)

Если в лотерее используется два лототрона, то для расчета необходимо заполнить все 4 поля. В первых двух – числовая формула лотереи (5 из 36, 6 из 45 и тд), в третьем и четвертом поле отмечается количество бонусных шаров (x из n). Важно: данный расчет можно использовать только для лотерей с двумя лототронами. Если бонусный шар достается из основного лототрона, то вероятность выигрыша именно этой категории считается по-другому.

* Так как при использовании двух лототронов шанс выигрыша высчитывается перемножением вероятностей друг на друга, то для корректного расчета лотерей с одним лототроном выбор дополнительного номера по умолчанию стоит как 1 из 1, то есть не учитывается .

Примеры. Вероятности выигрыша главного приза для лотерей:
«5 из 36 + 1 из 4» (Гослото, Россия) – 1:1 507 978
«4 из 20 + 4 из 20» (Гослото, Россия) – 1:23 474 025
«6 из 42 + 1 из 10» (Megalot, Украина) – 1:52 457 860
«5 из 50 + 2 из 10» (EuroJackpot) – 1:95 344 200
«5 из 69 + 1 из 26» (Powerball, США) — 1: 292 201 338

Пример расчет. Шанс угадать 4 из 20 дважды (в двух полях) составляет 1 к 23 474 025

Хорошей иллюстрацией сложности игры с двумя лототронами служит лотерея «Гослото «4 из 20». Вероятность угадать 4 числа из 20 в одном поле вполне щадящая, шанс этого — 1 из 4 845. Но, когда угадать надо выиграть оба поля… то вероятность рассчитывается их перемножением. То есть, в данном случае 4 845 умножаем на 4 845, что дает 23 474 025. Так что, простота этой лотереи обманчива, выиграть в ней главный приз сложнее, чем в «6 из 45» или «6 из 49»

Расчет вероятности (развернутые ставки)

В данном случае считается вероятность выигрыша при использовании развернутых ставок. Для примера – если в лотерее 6 из 45, отметить 8 чисел то вероятность выиграть главный приз (6 из 45) составит 1 шанс из 290 895. Пользоваться ли развернутыми ставками – решать вам. С учетом того, что стоимость их получается очень высокая (в данном случае 8 отмеченных чисел это 28 вариантов) стоит знать как это увеличивает шансы на выигрыш. Тем более, что сделать это теперь совсем просто!

Расчет вероятности выигрыша (6 из 45) на примере развернутой ставки (отмечено 8 чисел)

И другие возможности

При помощи нашего виджета можно просчитать вероятность выигрыша и в бинго-лотереях, например, в «Русское лото». Главное, что надо учитывать, это количество ходов, отведенных на наступление выигрыша. Чтобы было понятнее: долгое время в лотерее «Русское лото» джекпот можно было выиграть в том случае если 15 чисел (в одном поле ) закрывались за 15 ходов . Вероятность такого события совершенно фантастическая, 1 шанс из 45 795 673 964 460 800 (можете проверить и получить это значение самостоятельно). Именно поэтому, кстати, много лет в лотерее «Русское лото» никто не мог сорвать джекпот, и его распределяли принудительно.

20.03.2016 правила лотереи «Русское лото» были изменены. Джекпот теперь можно выиграть, если 15 чисел (из 30) закрывались за 15 ходов . Получается аналог развернутой ставки — ведь 15 чисел угадываются из 30 имеющихся! А это уже совсем другая вероятность:

Шанс выиграть джекпот (по новым правилам) в лотерее «Русское лото»

И в заключение приведем вероятность выигрыша в лотереях, использующих бонусный шар из основного лототрона (наш виджет такие значения не считает). Из самых известных

Спортлото «6 из 49» (Гослото, Россия), La Primitiva «6 из 49» (Испания)
Категория «5 + бонусный шар»: вероятность 1:2 330 636

SuperEnalotto «6 из 90» (Италия)
Категория «5 + бонусный шар»: вероятность 1:103 769 105

Oz Lotto «7 из 45» (Австралия)
Категория «6 + бонусный шар»: вероятность 1:3 241 401
«5 + 1» — вероятность 1:29 602
«3 +1» — вероятность 1:87

Lotto «6 из 59» (Великобритания)
Категория «5 + 1 бонусный шар»: вероятность 1:7 509 579

В связи с вступлением вчера, 30.06.2009, в силу Пункта 1 статьи 17, пункта 1 статьи 18 и статьи 19
ФЕДЕРАЛЬНОГО ЗАКОНА от 29.12.2006 N 244-ФЗ «О ГОСУДАРСТВЕННОМ РЕГУЛИРОВАНИИ ДЕЯТЕЛЬНОСТИ ПО ОРГАНИЗАЦИИ И ПРОВЕДЕНИЮ АЗАРТНЫХ ИГР И О ВНЕСЕНИИ ИЗМЕНЕНИЙ В НЕКОТОРЫЕ ЗАКОНОДАТЕЛЬНЫЕ АКТЫ РОССИЙСКОЙ ФЕДЕРАЦИИ» (принятого ГД ФС РФ 20.12.2006), http://nalog.consultant.ru/doc64924.html

ПАРАДОКС ЛОТЕРЕИ И ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

Возможность – благоприятный случай получить разочарование

(«Афоризмы, цитаты, и крылатые слова»,
http://aphorism-list.com/t.php?page=vozmojnost)

Твои шансы выиграть в лотерею возрастут,
если ты купишь билет

Уинстон Грум (из «Правил Форреста Гампа»)
(«Афоризмы об играх»,
http://letter.com.ua/aphorism/game1.php)

«Парадокс лотереи

Вполне ожидаемо (и философски проверяемо [англ.]), что данный конкретный билет не выиграет, но нельзя ожидать, что никакой билет не выиграет» («Академика», Список парадоксов, http://dic.academic.ru/dic.nsf/ruwiki/165304).

«Парадокс лотереи (типа спортлото)

Большинство участников лотерей (в которых выигрыш распределяется между всеми победителями, как в спортлото) обычно не ставят на "слишком симметричные" комбинации, хотя все комбинации равновозможны. Причина этого проста. Игроки по опыту знают, что, как правило, выигрывают не симметричные комбинации. В действительности выгоднее ставить на наиболее симметричные комбинации именно потому, что…. Почему?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

РЕШЕНИЕ

Все в жизни играли в какие-либо игры, необязательно в азартные, которые, так или иначе, связаны с вероятностью. А если кто-то и не играл, то наверняка подбрасывал пару раз в жизни монетку. Просто так, для развлечения или решая какой-либо вопрос, на который самому делать выбор оказывалось непосильным или невозможным. И я проделывал в детстве то же самое. Но уже тогда в голове закрадывалось какое-то сомнение в правильности обоснования своего выбора решений даже пустяковых вопросов подбрасыванием монетки. Видимо, уже тогда не хотелось передоверять собственное право выбора слепому случаю. Но не столько из-за того, что я и сам могу выбрать лучший вариант именно сейчас и именно для себя, а больше из-за того, что такой выбор не будет справедливым. Справедливым настолько, что я без всяких дальнейших раздумий и внутренних колебаний смог бы его принять и действовать сообразно этому выбору. А затем я и вовсе прекратил дальнейшие попытки принятия решений таким нехитрым способом, когда мои опасения подтвердились во время просмотра одного из популярных индийских фильмов, проходивших у нас в 80-х годах. Если не ошибаюсь, это был фильм «Месть и закон». В нём один из главных героев, делая выбор чего-либо, с серьёзным видом подбрасывал монетку. И всё было бы ничего, да только когда его подстрелили всё-таки, и он подарил свою «счастливую монетку», то оказалось, что она была с двумя одинаковыми сторонами. Видимо, этот герой хорошо усвоил первое правило успеха: если хочешь выиграть в казино, стань его владельцем.

На вопрос задачи, приведённой Секеем в своей книге, о том, почему ВЫГОДНЕЕ выбирать именно симметричные варианты геометрического расположения номеров на поле карточки, ответ не так уж и сложен. Вывод следует, исходя из трёх условий:

1) все варианты: и симметричные, и несимметричные – равновероятны;

2) большинство игроков выбирают несимметричные варианты;

3) получаемая сумма выигрыша зависит от количества: а) участников, б) выигравших (по категориям выигрыша, конечно);

Следовательно, с точки зрения выгоды, то есть увеличения возможной прибыли при угадывании, симметричные варианты угадает намного меньшее количество игроков при том же самом количестве участвующих в лотерее, и сумма выигрыша будет делиться между намного меньшим количеством победителей.

Но с другой стороны, если бы всё так было просто, то и не возникало бы никаких сложностей с определением вероятности тех или иных событий. А парадоксов и разнообразных парадоксальных задач по теории вероятности существует не меньше, а то и гораздо больше, чем в других отраслях науки (в тех же математике, логике, физике). Например, такая задача.

«Парадокс игры в кости

Правильная игральная кость при бросании с равными шансами падает на любую из граней 1,2,3,4,5 или 6. (Сумма очков на противоположных гранях равна 7, т.е. падение на 1 означает выпадение 6 и т.д.).

В случае бросания 2-х костей сума выпавших чисел заключена между 2 и 12. Как 9, так и 10 можно получить двумя разными способами: 9 = 3 + 6 = 4 + 5 и 10= 4 + 6 = 5 + 5. В задаче с тремя костями и 9 и 10 получаются шестью способами. Почему тогда 9 появляется чаще, когда бросают две кости, а 10, когда бросают три?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html)».

В этой задаче нет никакого парадокса. Парадоксальность, а точнее уловка, скрыта в неполной информации: количество вариантов возможных комбинаций больше указанного. Потому что указаны лишь типы вариантов, способы составления, которые нужно распределить на количество костей.

Ответ прост: 9 появляется чаще, когда бросают две кости, а 10, когда бросают три, потому что вероятность выпадения суммы, равной 9, при двух костях больше, чем вероятность выпадения суммы, равной 10, при трёх костях, что отражает соотношение количества вариантов составления этих сумм.

Количество вариантов составления сумм:

А. 9 на двух кубиках: 3+6 (2 возможных варианта, то есть на первом 3 на втором 6 и наоборот) и 4+5 (2 вар.). Итого: 4 варианта

10 на двух кубиках: 4+6 (2 вар.) и 5+5 (1 вар.). Итого: 3 варианта

Соотношение вероятности в пользу суммы 9.

Б. 9 на трёх кубиках: 1+2+6 (6 вар.), 1+3+5 (6 вар.), 1+4+4 (3 вар.), 2+2+5 (3 вар.), 2+3+4 (6 вар.), 3+3+3 (1 вар.). Итого: 25 вариантов

10 на трёх кубиках: 1+3+6 (6 вар.), 1+4+5 (6 вар.), 2+2+6 (3 вар.), 2+3+5 (6 вар.), 2+4+4 (3 вар.), 3+3+4 (3 вар.), 4+4+2 (3 вар.) Итого: 30 вариантов

Соотношение вероятности в пользу суммы 10.

Почему же вероятность событий порождает столько противоречий?

Возможно, я ошибаюсь, но, по моему мнению, даже математики, не говоря уж о тех, кто вовсе не знаком с теорией вероятности, находятся в плену одной ложной исходной посылки о распределении вероятности. Это представление о том, что события происходят только в зависимости от их вероятности, без учёта распределения вероятности во времени. Жизнь не всегда идёт по рассчитанным схемам и именно так, как её описывают математически. Отражение этой двуликости: математического расчёта и в то же самое время не совпадение с ним – приводится в следующем парадоксе.

ПАРАДОКС ЗАКОНА БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ

«Отношение выпадений герба или решки к общему числу попыток при большом числе бросаний стремится к 1/2. Некоторые игроки уверены, что при серии выпадений орлов увеличивается вероятность выпадения решки. И в то же время у монет нет памяти, они не знают предыдущие броски и каждый раз вероятность выпадения орла или решки равна 1/2. Даже если перед этим выпадали 1000 гербов подряд. Не противоречит ли это закону Бернулли?» (выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

Закон больших чисел Бернулли

«Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причём вероятность наступления этого события одна и та же при каждом испытании и равна р. Если событие А фактически произошло m раз в n испытаниях, то отношение m/n называют, как мы знаем, частотой появления события А. Частота есть случайная величина, причем вероятность того, что частота принимает значение m/n, выражается по формуле Бернулли …

Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью, сколь угодно близкой к единице, можно утверждать, что при достаточно большом числе опытов частота появления события А как угодно мало отличается от его вероятности, т. е…

…иными словами, при неограниченном увеличении числа n опытов частота m/n события А сходится по вероятности к Р(А)» (Теория вероятности, §5. 3. Закон больших чисел Бернулли. , http://www.toehelp.ru/theory/ter_ver/5_3)

Таким образом, из противоречий, заключённых в этих парадоксах, можно сформулировать общую проблему.

Противоречия:

1. Парадокса лотереи – вероятность выигрыша конкретного билета ничтожна, но вероятность выигрыша какого-либо билета равна 1, то есть 100 процентам;

2. Парадокса закона больших чисел Бернулли – вероятность выпадения любого варианта равнозначна, но в действительности она должна меняться при большем выпадении одних вариантов для приведения вероятности к балансу.

Проблема, на мой взгляд, содержится в непонимании неравномерного распределения вероятности на количество вариантов или, другими словами, в зависимости вероятности одного варианта события от другого во временном контексте.

Никто не будет спорить, что сумма вероятностей вариантов события равна единице. Но почему все считают, что распределение по вариантам равномерно? Такой подход полностью игнорирует изменчивость мира в течение времени. И те же выпадения сторон монетки должны тогда строго чередоваться по очереди: орёл, решка, орёл, решка. Тогда распределение вероятности, рассчитанное по формуле, будет полностью совпадать с действительным ЗА ЛЮБОЙ КОНКРЕТНЫЙ ПЕРИОД ВРЕМЕНИ. Потому что в пределах этого временного периода, количество выпадающих разных вариантов будет одинаковым. Но в действительности это не так. Внутри отдельных периодов вероятность каждого варианта события меняется от 0 до 1 (от нуля до ста процентов). Например, когда из десяти раз все десять раз выпадет орёл (или красное, если это рулетка в казино). Мне известен случай, когда в рулетку выпало 15 раз подряд чёрное. Это с точки расчета вероятности вообще невозможно, если брать за единицу, то есть сумму всех возможных вариантов, к примеру, 20 выпадений, в которые входят эти пятнадцать. И это, кстати, продолжая мысль, почему-то не привело к следующим пятнадцати выпадениям красного цвета. Такие выпадения подряд игроки называют сериями. Серии наблюдаются и в спорте, да вообще везде.

Вы скажете, что закон Бернулли описывает периоды с большими, «неограниченными количествами опытов» и в этих пределах он верен? Тогда почему бы той же монетке не выпасть сначала 1000 раз одной стороной подряд, а затем тысячу раз другой? Ведь закон в этом случае не нарушается ни на каплю? В действительности этого не происходит. В действительности любые длинные ряды выпадений двух возможных вариантов событий (А и Б, что можно заменить, например, на «орёл» и «решка») будут близко соответствовать схеме выпадений:

А, Б, А, Б, ААА, Б, АА, ББ, АА, ББББББ, АА, БББ, А, ББББББ, ААА, Б, АА, ББ, А, Б, АААА, Б, АА, БББ, АААА, Б, А, Б, А… (по 30 А и Б, всего 60).

Как видно, в рамках каждого конкретного отрезка (периоды выпадений или периоды времени) наблюдаются неравномерности. И длительность «серий» выпадений одного варианта а) подряд и б) в рамках периода (например, 10 выпадений) может колебаться. Теоретически амплитуда таких колебаний ничем не ограничена, но практически не ограниченных по длительности серий не существует. То есть существует некий предел, до которого возрастает длительность «серий», её «длина». Этими двумя ограничениями и регулируется баланс вероятности вариантов события: во-первых, переменчивостью вариантов в рамках произвольного периода (времени), другими словами, переменой «длины» серий от 1 до нескольких повторов подряд, а во-вторых, ограничением длины и частоты серий в рамках произвольного периода (времени). Этим достигается разнообразие событий, вариативность.

Такое распределение вероятности и отмечают игроки, которые выбирают несимметричные варианты расположения номеров на лотерейной карточке. Они исходят не из равного распределения вероятности на количество номеров, то есть их равновозможного выпадения, а, как раз, из неравномерного распределения вероятности по номерам. Почему-то ещё до сих пор не выпадало тех же самых номеров не то, что два тиража подряд, но и в массе всех тиражей. Это я могу говорить с уверенностью на основе изучения лотереи «Спортлото 5 из 36», проводимой в течение десятков лет. Подряд два тиража выпадет максимум 1 номер предыдущего тиража (достаточно часто – около четверти тиражей), 2 (в единичных случаях), 3 (в более редких случаях). Согласно теории вероятности когда-нибудь и все пять номеров выпали бы одинаковыми два тиража подряд. Но на это ушли бы тысячи лет, даже если бы тиражи проводились каждый день, а не раз в неделю. Это следует, если исходить из того, что общее количество возможных вариантов в лотерее «Спортлото 5 из 36» (36 * 35 * 34 * 33 * 32 / 1 * 2 * 3 * 4 * 5) = 376. 992, а повтор пяти номеров предыдущего тиража произойдёт не раньше, чем выпадут все возможные варианты хотя бы раз, что произойдёт при проведении 1 тиража в день, с учётом високосных годов за: 376. 992 / (365 * 4 + 1) * 4 = 1032,1478 ~ 1032 года. Но даже и после полного перебора всех возможных вариантов подряд два одинаковых тиража могут не выпасть ещё несколько тысяч лет, а возможно, и никогда.

Поэтому я абсолютно согласен с игроками, выбирающими наиболее часто выпадающие, несимметричные варианты. Потому что дождаться выпадения варианта, например, из фильма «Спортлото - 82» с М. Пуговкиным и М. Кокшеновым – 1,2,3,4,5,6 просто не-ре-аль-но. С таким же успехом можно дожидаться дождя на Марсе.
Добавлю, что, зафиксировав распределение вероятности определённым способом, я увидел, что типы вариантов, подобные приведённому из фильма, составляют ничтожные доли процента от всех выпадающих других типов, классов вариантов, а по теории вероятности они равновозможны.

Парадокс лотереи возникает из-за того, что вероятность выигрыша каждого конкретного билета в отдельности, то есть любого, ничтожна мала, стремиться к нулю, но вероятность выигрыша какого-то одного конкретного билета равна ста процентам. Потому что вероятность выпадения конкретных номеров в конкретном тираже распределена между всеми вариантами не-рав-но-мер-но. Грубо говоря, сто процентов вероятности делится не на всю массу билетов, а на две части – все выигравшие (то есть один, для упрощения) и все проигравшие (все остальные). Таким образом, шанс выиграть есть и у каждого, и ни у кого. Потому что невозможно узнать, КАКОЙ ИМЕННО билет выиграет, но что КАКОЙ-ТО ОДИН билет выиграет, мы знаем заранее (не вдаваясь в детали количества выигравших и условий выигрыша).
В этом месте, как это ни смешно, становится очевидной правота «женской логики», которая утверждает, что вероятность падения метеорита на Красную площадь равна не один к нескольким миллионам, а пятьдесят на пятьдесят – или упадёт или нет.
Видимо, подобного моему мнения придерживался и такой известный математик, как Пуанкаре. «Пуанкаре как-то заметил с сарказмом, что все верят в универсальность нормального распределения: физики верят, потому что думают, что математики доказали его логическую необходимость, а математики верят, так как считают, что физики проверили это лабораторными экспериментами» (Парадокс де Муавра, выдержки из книги: Г. Секей. Парадоксы в теории вероятностей и математической статистике. М.: Мир. – 1990, http://arbuz.uz/t_paradox.html).

То есть парадокс лотереи возникает из-за неправильной исходной посылки – распределение вероятности не равномерно в рамках отдельного периода, а изменчиво. И если принять за отдельный период один тираж, то в нём НЕ МОГУТ выпасть ВСЕ возможные варианты, а выпадет только ОДИН. Поэтому противоречивое понимание вероятности исчезает: вероятность выпадения абсолютного большинства вариантов будет равна нулю, и лишь вероятность одного варианта будет равна единице.

В парадоксе лотереи нет противоречивых условий:

1) только один вариант выпадает в конкретном тираже из всех возможных (выигрывает один билет);

2) возможных вариантов намного больше одного.

Следовательно, вероятность ожидания выигрыша только ОДНОГО из всех возможных вариантов (билетов) стремиться к единице, а вероятность ожидания выигрыша ВСЕХ ОСТАВШИХСЯ ОТ ОДНОГО вариантов (билетов) стремиться к нулю.

В парадоксе больших чисел Бернулли тоже нет противоречия:

1) вероятность выпадения одного из возможных вариантов равна половине – 0,5;

2) ожидание изменения вероятности выпадения второго из возможных вариантов после серии выпадений первого меняется.

Следовательно, вероятность события в целом не меняется, то есть сумма вероятностей вариантов остаётся прежней, но в рамках отдельного периода, тем более, если он несравнимо мал по отношению к сумме всех возможных периодов выпадений, вероятность меняется, что и отражается в ожиданиях игроков.

Попробуйте доказать выигравшему крупную сумму, что вероятность этого была бесконечно мала. Тем более, попробуйте это доказать нескольким или тысячам таких людей. Вероятность даже родиться для некоторых была абсолютно мизерной, но, тем не менее, это произошло.
Невозможность выигрыша многие сравнивают с возможностью падения на голову метеорита или удара молнии. Попробуйте доказать, что это невозможно, потому что вероятность этого бесконечна мала, пострадавшим от них. Как, например, женщине, исцелившейся от удара молнии: «Уникальный случай был зафиксирован в сербском городе Сливовица, сообщает портал DELFI. Молния попала в 51-летннюю Наду Акимович, ранее страдавшую аритмией. Однако в результате воздействия мощного разряда электрического тока болезнь прошла» (Удар молнии исцелил женщину/Дни.ру, 23:23 / 10.07.2009, http://www.dni.ru/incidents/2009/7/10/170321.html) – или мальчику из Германии: «…Шанс получить удар метеоритом составляет 1 к ста миллионам… "Сначала я увидел большой огненный шар, а потом неожиданно почувствовал боль в руке".» (В немецкого мальчика попал метеорит/MIGnews.com, 14.06.2009, 02:42,

Таким образом, В ПАРАДОКСЕ ЛОТЕРЕИ НЕТ ПРОТИВОРЕЧИЯ, КАК И В ПАРАДОКСЕ БОЛЬШИХ ЧИСЕЛ БЕРНУЛЛИ.

01.07.2009 03:00 – 6.30

Фото - Гослото, http://www.gosloto.ru/index.php?id=93

PS: вероятность появления другой статьи вместо этой была близка к 100 процентам, именно сегодня или в ближайшие дни. Однако этого не произошло. А появление этой статьи в ближайшие недели было вообще близко к нулю. Однако это произошло.

Рецензии

"Шанс получить удар метеоритом составляет 1 к ста миллионам… В немецкого мальчика попал метеорит." Пример не идентичен выигрышу в лотерею, поскольку вообще не понятно откуда отношение "1 к ста миллионам".

Если говорить о лотереи, то, скажем для Израиля выиграть в первый приз составляет 1 к 18 млн. Человек, который выиграл знает, что его шанс был ничтожно мал, но он же видит, что люди выигрывают хоты бы раз в месяц или в два, и поэтому даже "зная", он не осознает "малость" своего шанса. Загвоздка в том, что шанс мал лишь для конкретного человека, а для страны в целом, с населением 6 млн очень даже логично выигрывать одну из 10-20 игр (играют не все, но и каждый игрок может заполнить более одной формы).
Классический расклад, как и в парадоксе дней рождения.

Насчёт цифр - не ко мне, я взял цитату. Да и не так важно, по идее, что цифры могут быть не совсем точны, главное, что иллюстрируют мысль - даже очень редкие события происходили, происходят и всегда будут происходить. Поэтому пример, ещё как идентичен, считаю.

Да Вы и сами порадовали цифрами, Дмитрий. Говоря об Израиле, чисто по-еврейски, немного, эдак на пару миллионов уменьшили численность страны:) И потом с чего Вы решили, что главный приз выигрывают "раз-два в месяц". Это с потолка, уж извините. И не думайте, что люди, прям, все глупы, что не понимают ничтожность шанса. Понимают! Но затраты по сравнению с прибылью ничтожны настолько же, насколько ничтожен шанс выигрыша. Так что здесь, можно сказать, баланс. А некоторые люди вообще всю жизнь выигрывают! Недавно прочитал о женщине, которая после несчастья со здоровьем начала играть во все доступные викторины и лотереи. Так у неё вся квартира завалена разными призами. Дядька часто выигрывал в Русское лото с 1-2 билетиков, когда другие и с пачки-двух не получали ничего. Сам участвовал в лотерее на презентации, где 1-й главный приз -компьютер- выиграла женщина, купившая компьютер, то ест имевшая всего 1 билет-чек. А второй приз -монитор-выиграл парень, купивший монитор, тоже с 1м билетом-чеком. Людей было сотня-две. Впрочем, здесь возможна и подтасовка, что у нас не редкость.

Ну так парадокса-то и нет. Для одного человека вероятность выигрыша стремится к нулю, а для страны -к ста процентам. Это и есть мой вывод. Про дни рождения пробегал, но он совсем неадекватен данному, насколько помню. Достаточно вспомнить, как набирают в учебные классы.

"эдак на пару миллионов уменьшили численность страны... с чего Вы решили, что главный приз выигрывают "раз-два в месяц". Это с потолка, уж извините..." - про численность верно, по своей оплошности я оперировал данными за 2000 год, а вот на счет "с потолка" - это вы зря. Так уж получилось, что почти 5 лет я проработал главой компьютерного отдела израильской лотереи и вся статистика проходила через управляемую мной базу данных. Количество известных пользователей обновляется раз в 10 лет (поэтому данные за 2000 год), но выигрыш и количество победителей с их суммами (даже если это лишь 10 шек.) фиксируется дважды в неделю. Так что это не предположение, а утверждение.

"И не думайте, что люди, прям, все глупы, что не понимают ничтожность шанса" - я так не говорил. Моя цитата: "даже "зная", он не осознает "малость" своего шанса". Очень большие или очень маленькие цифры человек не способен осознать, т.е. ему важно пройти 10 км или 20 км, однако расстояние до луны 380 тыс или 400 тыс значения не имеет - он просто не способен осознать это, поскольку сам лично не оперирует такими расстояниями.
Шанс легко сократить с 18 млн. к 1 до 9 млн. к 1, всего лишь купив два билета. Человек представляет себе это невероятным продвижением. И речь не в глупости, а в осознании. На моей памяти редко... ОЧЕНЬ РЕДКО человек покупает ВСЕГО ОДНУ колонку в лото, именно по этой причине: повысить шанс вдвое-втрое-...-в 10 раз. Хотя по сути это не имеет значения.

Ааа.. так это Вы Системаизм и ещё там кто-то, значит-с? ок:) Кстати, Вы не ответили на одну мою старую рецензию, да и бог сней. Уж и сам забыл.

АС: дочитав до слов «почти 5 лет я проработал главой компьютерного отдела израильской…», читатель автоматически добавил «разведки» и, не то икнув, не то хихикнув, судорожно сглотнул...#:-0))

Насчёт повышения шансов: если брать 1-2 билета, то повышение считайте ноль. Если начать реально повышать, то игра будет в убыток, потому что нет гарантии, что в итоге всё окупится.

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Кокорин Артем, ученик МАОУ СОШ №11

В работе исследованы выигрышные ситуации лотерей:

· Лотерея «5 из 36».

· Лотерея «5 из 40».

· Лотерея «6 из 49 ».

Работа получила диплом на краевой конференции исследовательских работ.

Скачать:

Предварительный просмотр:

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №11»

Вероятность выигрыша в числовых лотереях

Кокорин Артем,

учащийся 10 класса
МОУ СОШ №11 г.Чайковский

Батуева Любовь Николаевна,

учитель математики высшее категории

МОУ СОШ №11 г.Чайковский

г. Чайковский

  1. Введение.
  2. Цели и задачи.
  3. История возникновения лотерей.
  4. Объект исследования.
  5. Лотерея «5 из 36».
  6. Лотерея «5 из 40».
  7. Лотерея «6 из 49».
  8. Аналитическая часть.
  9. Область применения полученных результатов.
  10. Вывод и рекомендации.

Введение.

Лотерея (от итал. lotteria ) - организованная игра на удачу, при которой распределение выгод и убытков зависит от случайного извлечения того или иного билета или номера

Актуальность проблемы.

Моя тема актуальна, так как математика соприкасается с обыденной жизнью гораздо теснее, чем этому учат традиционно в школе. У. Уивер пишет: «Теория вероятностей и статистика – две важные области, неразрывно связанные с нашей повседневной деятельностью. Мир промышленности, страховые компании в большей степени являются должниками вероятностных законов. Сама физика имеет существенно вероятностную природу; такова же в основе своей и биология. Между тем, несмотря на эту важность, универсальный характер теории вероятностей и статистики всё ещё не стал общепринятым. Лотереи, азартные игры, выборные компании, страховые компании и т. п. Как предсказать результат?.. Какую позицию выбрать?.. Для ответа на эти вопросы я и решил заняться этим исследованием.

Гипотеза : большинство считают, что предугадать результата чиловой лотереи, в которой властвует случай, невозможно. Это не так. Математическое ожидание выигрыша - величина, которая поможет нам определить, справедлива ли та или иная игра, и выгодно ли нам в неё играть.Объектом моего исследования являются различные азартные игры, на основе которых вводятся основные понятия теории вероятностей.

Предмет исследования: числовые лотереи

  1. «6» из «49»
  2. «5» из «36»
  3. «5» из «40»
  4. «6» из «45»

Начиная исследование, я ставил для себя основную цель – провести вероятностный анализ числовых лотерей,что используя формулы теории вероятности,которые помогут нам определить, справедлива ли та или иная лотерея, и выгодно ли нам в неё играть. Из этой цели вытекают 4 главные задачи, к выполнению которых я стремился по ходу исследования:

  1. Изучить правила проведения числовых лотерей и рассмотреть методы их исследования, с помощью формул теории вероятности.
  2. Провести эксперимент
  3. Проанализировать полученные данные

4.Создать мини-пособие, содержащее полезную информацию о числовых лотереях

Для выполнения поставленных задач я пользовался такими методами исследования, как сравнение, индукция, дедукция, аналогия, эксперимент и опрос.

История возникновения.

Многие поклонники спортивно-числовых лотерей, в том числе и "Спортлото" возможно не знают, что ее прототипом была лотерея, с числовой формулой "5 из 90", организованная в 1530 году в итальянском городе Генуе. Дело в том, что в Генуэзской республике выборы в главный орган самоуправления - Великий Совет - проводились по жеребьевке. После многоступенчатого отбора к последнему туру голосования допускались 90 кандидатов, из которых надлежало выбрать всего пять человек. Выборы происходили так: каждому кандидату в члены Совета присваивался порядковый номер с первого, по девяностый. Затем в специальную урну закладывали 90 пронумерованных шаров. После тщательного перемешивания из нее доставали только 5 шаров. Случай делал свой выбор. Номера на вынутых шарах называли членов Великого Совета Генуи!
Такой лотерейный принцип выбора получил в Италии всеобщее признание и, перешагнув государственные границы, стал распространяться по другим странам Европы.
В настоящее время в разных странах имеется несколько разновидностей числовых лотерей. Я не ставил своей целью рассказать здесь о каждой из них .

Математическое обоснование числовых лотерей

Каждая числовая лотерея с любой числовой формулой имеет свое математическое обоснование. Оно необходимо для того, чтобы знать, сколько классов выигрышей должно быть в лотерее, и какова вероятность выигрыша каждого класса.
Математическое обоснование числовой лотереи рассчитывается с применением теории вероятностей и теории чисел . Интуитивно вероятность некоторого события воспринимается как характеристика возможности его появления. Оказывается, что при многократном повторении опыта частота события принимает значения, близкие к некоторому постоянному числу.. Рассчитав вероятное число выигрышей каждого класса, можно узнать, какой процент от общей суммы доходов должен пойти на выигрыши каждого класса и какова должна быть сумма каждого выигрыша.
Общее количество комбинаций в числовой лотерее рассчитывается при помощи формулы:

Лотерея 6 из 49

. Чтобы получить большой выигрыш, надо было угадать 6 чисел из 49. Выигрывали карточки и с совпадением 5 и даже 4 номеров. А сколько карточек нужно было бы купить и заполнить, чтобы на них оказались все комбинации по 6 номеров из 49 возможных, т. е. чтобы выиграть наверняка? Количество карточек равно числу сочетаний из 49 элементов по 6, т.е.

49! = 44∙45∙46∙47∙48∙49 = 13 983 816

6!∙43! 1∙2∙3∙4∙5∙6

Для реализации подобной идеи нужно было быть миллионером! Да и разбогатеть в этом случае было бы трудно, поскольку выигрыш был не фиксирован, и в каждом тираже на призовой фонд отводилась лишь часть собранной от продажи билетов суммы. Но ведь кто-то же выигрывал! Я провел несколько экспериментов в своем классе. Я попросил зачеркнуть в карточке 6 номеров из 49.

По результатам экспериментов я составил таблицы и диаграммы .Абсолютная частота показывает, сколько раз в серии экспериментов наблюдалось данное событие. Относительная частота (которую иногда называют просто частотой) показывает, какая доля экспериментов завершилась наступлением данного события.

1 эксперимент

Ни одного выигрыша! Три числа угадали только 2 раза! Но эта лотерея не предусматривает выигрыша, если угадано 3 числа.

Тогда я решил найти вероятность выигрыша, используя классическое определение вероятности. Вероятностью случайного события А называется дробь , то есть где п – число всех возможных исходов эксперимента, m – число исходов, благоприятных для события А.

Обозначила через Р 6, Р 5, Р 4, Р 3, Р 2, Р 1, Р 0 вероятность того, что 6 , 5 , 4, 3, 2, 1 или 0 отмеченных игроком чисел оказались выигрышными..Число всех исходов эксперимента равно = 13 983 816, - количество выборов 6 чисел, не совпадающих с данными 6 числами. Согласно теории вероятности, вероятность угадать n (от 0 до 5) номеров из 36 можно выразить формулой: Согласно теории вероятности, вероятность угадать n из m можно выразить формулой:

43! = 38∙39∙40∙41∙42∙43 = 6 096 454

6!∙37! 1∙2∙3∙4∙5∙6

Р 0 ≈ 0,435965

· - количество выборов 1 числа из 6 данных чисел и 5 чисел не совпадающих с данными 6 числами

· =

Р 1 ≈ 0,413019

· - количество выборов 2 чисел из 6 данных чисел и 4 чисел не совпадающих с данными 6 числами

· =

Р 2 ≈ 0,132378

· - количество выборов 3 чисел из 6 данных чисел и 3 чисел не совпадающих с данными 6 числами

· =

Р 3 ≈ 0,0176504

· - количество выборов 4 чисел из 6 данных чисел и 2 чисел не совпадающих с данными 6 числами

· =

С 6 · С 43 = 6! · 43! = 5 · 6 · 42 · 43 = 13545

4! · 2! · 2! · 41! 2 · 2

Р 4 ≈ 0,000969

· - количество выборов 5 чисел из 6 данных чисел и 1 числа не совпадающего с данными 6 числами

С 6 · С 43 = 6! · 43! = 6 · 43 = 258

5! · 42!

Р 5 ≈ 0, 000184

Отсюда следует, что вероятность проигрыша равна

Р 3 + Р 2 + Р 1 + Р 0 ≈ 0,999012

Вероятность самого крупного выигрыша равна Р 6 ≈ 0,0000000715 = 0, 7115 · 10 -7

Вероятность самого маленького выигрыша Р 4 =0,000969

Номер эксперимента

Относительная частота исхода 0

0,54

0,75

0,47

0,72

0,54

Среднее значение относительной частоты того, что игрок не угадает ни одного числа 0,514757143

А по вычислениям вероятность того, что игрок не угадает ни одного числа 0, 413019.

Разница не очень большая 0, 101738 и может быть связана и с количеством экспериментов и с количеством участников в каждом эксперименте.

Номер эксперимента

0,31

0,14

0,35

0,52

0,18

Среднее значение относительной частоты того, что игрок угадает 1число равно 0,366342857 .А по вычислениям вероятность того, что игрок угадает 1 число равно 0,413019.Разница между вычислениями и данными полученными, с помощью эксперимента равна 0,0466761 .

Номер эксперимента

0,13

0,045

0,045

Среднее значение относительной частоты того, что игрок угадает 2 числа равно 0,114021 . А по вычислениям вероятность равна 0,132378.Разница между вычислениями и данными полученными, с помощью эксперимента равна 0,018357 .

Номер эксперимента

0,045

0,045

Среднее значение относительной частоты того, что игрок угадает 3 числа равно 0,01 . А по вычислениям вероятность равна 0,0176504. азница между вычислениями и данными полученными, с помощью эксперимента равна 0,007654 . Получается, что данные экспериментов не на много отличаются от данных, полученных с помощью вычислений.

(6)
(6)

(43)
(0)

6 х 5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5 х 6

1 выигрыш

(6)
(5)

(43)
(1)

6 х 5 х 4 х 3 х 2
1 х 2 х 3 х 4 х 5

43
1

258 выигрышей

(6)
(4)

(43)
(2)

6 х 5 х 4 х 3
1 х 2 х 3 х 4

43 х 42
1 х 2

13.545 выигрышей

Всего в лотерее "6 из 49", таким образом, содержится 13.804 выигрыша, т. е. 1 выигрыш приходится на 1.013 комбинаций.

13.983.816
13.545

1 на 1.032 комбинации

Лотерея 5 из 36

Для выигрыша надо угадать 5 номеров из 35 . Я провел эксперименты и с этой лотереей. Каждый учащийся, принимавший участие в эксперименте получал карточку.

5 из 35

Вычислим вероятность того, что игрок не угадает ни одного числа.

5!∙30! 1∙2∙3∙4∙5

5!∙25! 2∙3∙4∙5

Р 0 ≈ 0,438977.

Номер эксперимента

Относительная частота исхода 1

0,34

0,34

0,375

0,38

4! · 4! · 26! 2 · 3 · 4

Р 1 ≈ 0,422093

Номер эксперимента

Относительная частота исхода 2

0,13

0,17

0,13

0,17

0,125

0,09

Р 2 ≈ 0,284900

Номер эксперимента

Относительная частота исхода 3

0,04

0,04

3! · 2! · 2! · 28! 2 · 2

Р 3 ≈ 0,030525

Р 5 ≈ 0,00000308041

Это в 5729,9 раза меньше, чем вероятность получения самого маленького выигрыша в лотереи СПОРТЛОТО, и в 43,1 раза больше, чем вероятность самого большого выигрыша в этой же лотерее. Но ни одного выигрыша в экспериментах не получилось.

Вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:

(5)
(5)

(31)
(0)

5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5

1 выигрыш

(5)
(4)

(31)
(1)

5 х 4 х 3 х 2
1 х 2 х 3 х 4

31
1

155 выигрышей

(5)
(3)

(31)
(2)

5 х 4 х 3
1 х 2 х 3

31 х 30
1 х 2

4.650 выигрышей

Всего в лотерее "5 из 36", таким образом, содержится 4.806 выигрышей, т. е. 1 выигрыш приходится на 78 комбинаций.
Вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:

376 992
4.650

1 на 81 комбинацию

исходы

Абсолютная частота

Относительная частота

12/23

8/23

3/23

исходы

Абсолютная частота

Относительная частота

10/23

7/23

4/23

1/23

исходы

Абсолютная частота

Относительная частота

11/22

9/22

3/22

исходы

Абсолютная частота

Относительная частота

10/23

8/23

4/23

исходы

Абсолютная частота

Относительная частота

11/24

9/24

3/24

1/24

исходы

Абсолютная частота

Относительная частота

10/24

8/21

2/21

1/21

Лотерея 5 из 40

5 из 40

Среднее значение относительной частоты того, что игрок не угадает ни одного числа равно 0,4865875.

С 35 = 35! = 31∙32∙33∙34∙35 = 324 632

5!∙30! 1∙2∙3∙4∙5

С 30 = 30! = 26∙27∙28∙29∙30 = 142 506

5!∙25! 2∙3∙4∙5

Р 0 ≈ 0,438977.

Разница значения полученного с помощью экспериментов и вычислений получилась 0,0476105.

Номер эксперимента

Относительная частота исхода 1

0,52

0,47

0,38

0,23

0,38

0,23

Среднее значение относительной частоты того, что игрок угадает 1 число равно 0,3865875.Вычислим вероятность того, что игрок угадает 1 число.

С 5 · С 30 = 5! · 30! = 5 · 27 · 28 · 29 · 30 = 137025

4! · 4! · 26! 2 · 3 · 4

Р 1 ≈ 0,422093

Разница значений полученных с помощью экспериментов и вычислений получилась 0,0355055.

Номер эксперимента

Относительная частота исхода 2

0,04

0,14

0,23

0,14

0,09

Среднее значение относительной частоты того, что игрок угадает 2 числа равно 0,151475.

Вычислим вероятность того, что игрок угадает 2 числа. 2 3

С 5 · С 30 = 5! · 30! = 4 ·5 · 28 · 29 · 30 = 40600

2! · 3! · 3! · 27! 2 · 2 · 3

Р 2 ≈ 0,284900

Разница значений полученных с помощью экспериментов и вычислений получилась равной 0,133425 .

Номер эксперимента

Относительная частота исхода 3

0,04

0,04

0,04

Среднее значение относительной частоты того, что игрок угадает 3 числа равно 0,0225.

Вычислим вероятность того, что игрок угадает 3 одного числа.

С 5 · С 30 = 5! · 30! = 4 · 5 · 29 · 30 = 4350

3! · 2! · 2! · 28! 2 · 2

Р 3 ≈ 0,030525

Разница значения полученного с помощью экспериментов и вычислений получилась равной 0,008025.Вероятность выигрыша в этой лотерее равна

Р 5 ≈ 0,00000308041

Вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:
Выигрыши 1 класса (за 5 угаданных номеров):

(5)
(5)

(35)
(0)

5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5

1 выигрыш

Выигрыши 2 класса (за 4 угаданных номера):

(5)
(4)

(35)
(1)

5 х 4 х 3 х 2
1 х 2 х 3 х 4

35
1

175 выигрышей

Выигрыши 3 класса (за 3 угаданных номера):

(5)
(3)

(35)
(2)

5 х 4 х 3
1 х 2 х 3

35 х 34
1 х 2

5.950 выигрышей

Всего в лотерее "5 из 40", таким образом, содержится 6.126 выигрышей, т.е. 1 выигрыш приходится на 107 комбинаций.
Вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:
Выигрыш 1 класса (за 5 угаданных номеров):

Выигрыш 3 класса (за 3 угаданных номера):

658.008
5.950

1 на 110 комбинаций

исходы

Абсолютная частота

Относительная частота

9/21

11/21

1/21

исходы

Абсолютная частота

Относительная частота

8/21

10/21

3/21

исходы

Абсолютная частота

Относительная частота

8/21

8/21

5/21

исходы

Абсолютная частота

Относительная частота

12/21

5/21

3/21

1/21

исходы

Абсолютная частота

Относительная частота

10/21

8/21

2/21

1/21

исходы

Абсолютная частота

Относительная частота

15/21

5/21

1/21

исходы

Абсолютная частота

Относительная частота

12/22

7/22

3/22

исходы

Абсолютная частота

Относительная частота

15/20

3/20

2/20

0

исходы

Абсолютная частота

Относительная частота

0

14

14/22

1

7

7/22

2

0

0

3

1

1/22

4

0

0

5

0

0

6

0

0

исходы

Абсолютная частота

Относительная частота

0

11

11/23

1

12

12/23

2

0

0

3

0

0

4

0

0

5

0

0

6

0

0

исходы

Абсолютная частота

Относительная частота

0

16

16/22

1

4

4/22

2

1

1/22

3

1

1/22

4

0

0

5

0

0

6

0

0

исходы

Абсолютная частота

Относительная частота

0

12

12/22

1

9

9/22

2

1

1/22

3

0

0

4

0

0

5

0

0

6

0

0

Лотерея 6 из 45

Для выигрыша надо угадать 5 номеров из 40. Я провел эксперименты и с этой лотереей. Каждый учащийся, принимавший участие в эксперименте получал карточку.

6 из 45

1

6

11

16

21

26

31

36

41

2

7

12

17

22

27

32

37

42

3

8

13

18

23

28

33

38

43

4

9

14

19

24

29

34

39

44

5

10

15

20

25

30

35

40

45

Среднее значение относительной частоты того, что игрок не угадает ни одного числа равно 0,4865875.

Вычислим вероятность того, что игрок не угадает ни одного числа. 5

С 35 = 35! = 31∙32∙33∙34∙35 = 324 632

5!∙30! 1∙2∙3∙4∙5

5

С 30 = 30! = 26∙27∙28∙29∙30 = 142 506

5!∙25! 2∙3∙4∙5

Р 0 ≈ 0,438977.

Разница значения полученного с помощью экспериментов и вычислений получилась 0,0476105.

Номер эксперимента

Относительная частота исхода 1

1

0,42

2

0,33

3

0,38

4

0,28

5

0,42

6

0,47

Среднее значение относительной частоты того, что игрок угадает 1 число равно 0,3865875.Вычислим вероятность того, что игрок угадает 1 число.

1 4

С 5 · С 30 = 5! · 30! = 5 · 27 · 28 · 29 · 30 = 137025

4! · 4! · 26! 2 · 3 · 4

Р 1 ≈ 0,422093

Разница значений полученных с помощью экспериментов и вычислений получилась 0,0355055.

Номер эксперимента

Относительная частота исхода 2

1

0,14

2

0,23

3

0,14

4

0,33

5

0,19

6

0,14

Среднее значение относительной частоты того, что игрок угадает 2 числа равно 0,151475.

Вычислим вероятность того, что игрок угадает 2 числа. 2 3

С 5 · С 30 = 5! · 30! = 4 ·5 · 28 · 29 · 30 = 40600

2! · 3! · 3! · 27! 2 · 2 · 3

Р 2 ≈ 0,284900

Разница значений полученных с помощью экспериментов и вычислений получилась равной 0,133425 .

Номер эксперимента

Относительная частота исхода 3

1

0,04

2

0,04

3

0,04

4

0,04

5

0

6

0

Среднее значение относительной частоты того, что игрок угадает 3 числа равно 0,0225.

Вычислим вероятность того, что игрок угадает 3 одного числа.

3 2

С 5 · С 30 = 5! · 30! = 4 · 5 · 29 · 30 = 4350

3! · 2! · 2! · 28! 2 · 2

Р 3 ≈ 0,030525

Разница значения полученного с помощью экспериментов и вычислений получилась равной 0,008025.Вероятность выигрыша в этой лотерее равна

Р 5 ≈ 0,00000308041

. Ни одного выигрыша в экспериментах не получилось

исходы

Абсолютная частота

Относительная частота

8/21

9/21

3/21

1/21

исходы

Абсолютная частота

Относительная частота

8/21

7/21

5/21

1/21

исходы

Абсолютная частота

Относительная частота

9/21

8/21

3/21

1/21

исходы

Абсолютная частота

Относительная частота

7/21

6/21

7/21

1/21

исходы

Абсолютная частота

Относительная частота

8/21

9/21

4/21

исходы

Абсолютная частота

Относительная частота

8/21

10/21

3/21

Вероятное число выигрышей каждого класса определяется с учетом коэффициента вероятности каждого выигрыша следующим образом:
Выигрыши 1 класса (за 6 угаданных номеров):

(6)
(6)

(39)
(0)

6 х 5 х 4 х 3 х 2 х 1
1 х 2 х 3 х 4 х 5 х 6

1 выигрыш

Выигрыши 2 класса (за 5 угаданных номеров):

(6)
(5)

(39)
(1)

6 х 5 х 4 х 3 х 2
1 х 2 х 3 х 4 х 5

39
1

234 выигрыша

Выигрыши 3 класса (за 4 угаданных номера):

(6)
(4)

(39)
(2)

=

6 х 5 х 4 х 3
1 х 2 х 3 х 4

39 х 38
1 х 2

11.115 выигрышей

Всего в лотерее "6 из 45", таким образом, содержится 11.350 выигрышей, т. е. 1 выигрыш приходится на 718 комбинаций.
Вероятность появления выигрыша каждого класса определяется отношением вероятного числа выигрышей к общему числу случаев выигрышей, равному общему количеству комбинаций в лотерее:
Выигрыш 1 класса (за 6 угаданных номеров):

Выигрыш 3 класса (за 4 угаданных номера):

8.145.060
11.115

1 на 733 комбинации

Вывод:

Все поставленные задачи были выполнены, гипотеза о том, что с помощью вероятность выигрыша в числовых лотереях была доказана. Мне хотелось бы, чтоб моя работа помогла людям не совершать ошибки, которые они допускают, играя в различные лотереи, и я надеюсь, что моим трудом воспользуются многие люди. В обоснование своей гипотезы о том, что многие считают, что результаты лотерей, в которых властвует случай, предугадать невозможно, я привожу результаты моего опроса среди девятиклассников на тему «Можно ли предугадать результат игры, в которой властвует случай?».

Вот его результаты, представленные в виде диаграммы:

Как Вы видите, это подтверждает мою гипотезу о неверном представлении учащихся о возможностях теории вероятности.

Литература.

  1. Энциклопедия для детей. Математика. Том 11. Москва, Акванта + , 2001
  2. Я познаю мир. Математика. Москва, Аст, 1998
  3. М.Ф. Рушайло Элементы теории вероятностей и математической статистики. Москва, 2004
  4. Е.А. Бунимович, В.А. Булычев Вероятность и статистика 5 – 9 классы. Дрофа, Москва, 2002

Примеры лотерейных билетов.


Подписи к слайдам:

Вероятность выигрыша в числовых лотереях Работу выполнил: ученик 10 «А» класса МОУ СОШ №11 Кокорин Артём

Лотерея. Лотерея (от итал. lotteria) - организованная игра на удачу, при которой распределение выгод и убытков зависит от случайного извлечения того или иного билета или номера

Актуальность проблемы. Гипотеза. Моя тема актуальна, так как математика соприкасается с обыденной жизнью гораздо теснее, чем этому учат традиционно в школе. Большинство считает, что предугадать результата числовой лотереи, в которой властвует случай, невозможно. Это не так. Вероятность выигрыша - величина, которая поможет нам определить, справедлива ли та или иная игра, и выгодно ли нам в неё играть

Цели. Изучить правила проведения числовых лотерей и рассмотреть методы их исследования, с помощью формул теории вероятности. Провести эксперимент Проанализировать полученные данные Создать мини-пособие, содержащее полезную информацию о числовых лотереях

История создания лотерей. Многие поклонники спортивно-числовых лотерей, в том числе и «Спортлото» возможно не знают, что ее прототипом была лотерея, с числовой формулой «5 из 90», организованная в 1530 году в итальянском городе Генуе. Дело в том, что в Генуэзской республике выборы в главный орган самоуправления - Великий Совет - проводились по жеребьевке. После многоступенчатого отбора к последнему туру голосования допускались 90 кандидатов, из которых надлежало выбрать всего пять человек. Выборы происходили так: каждому кандидату в члены Совета присваивался порядковый номер с первого, по девяностый. Затем в специальную урну закладывали 90 пронумерованных шаров. После тщательного перемешивания из нее доставали только 5 шаров. Случай делал свой выбор. Номера на вынутых шарах называли членов Великого Совета Генуи! Такой лотерейный принцип выбора получил в Италии всеобщее признание и, перешагнув государственные границы, стал распространяться по другим странам Европы. В настоящее время в разных странах имеется несколько разновидностей числовых лотерей.

Предмет исследования. Ч исловые лотереи: «6 из 49» « 5 из 36» «5 из 40»

Ч исловая лотерея «6 из 49» Правила: Чтобы получить большой выигрыш, надо было угадать 6 чисел из 49. Выигрывали карточки и с совпадением 5 и даже 4 номеров

Список литературы: Энциклопедия для детей. Математика. Том 11. Москва, Акванта + , 2001 Я познаю мир. Математика. Москва, Аст, 1998 М.Ф. Рушайло Элементы теории вероятностей и математической статистики. Москва, 2004 Е.А. Бунимович, В.А. Булычев Вероятность и статистика 5 – 9 классы. Дрофа, Москва, 2002

Нет сомнения, что хотя бы раз в жизни каждый задавал себе вопрос: как выиграть в лотерее 6 из 45? Действительно, ведь выигрышный билет - это реальный шанс поправить свое материальное положение и исполнить заветные желания, и при этом вложить в него как можно меньше. Но практика показывает: счастливчиков, выигравших крупные суммы денег, крайне мало. Интересно, от чего это зависит? Есть ли какая-то закономерность или это дело счастливого случая?

Какие шансы на выигрыш существуют?

Наверняка каждый из нас при покупке очередного лотерейного билета надеется на то, что он непременно окажется выигрышным. Стоит только задуматься о том, что в лотерее 6 из 45 огромное количество комбинаций и только лишь одна из них способна в одночасье превратить обычного человека в мультимиллионера.

Итак, с помощью математической формулы было установлено, что количество возможных комбинаций в лотерее 6 из 45 равно 8 145 060. Стоит только вдуматься: шанс на выигрыш ничтожно мал. Но, несмотря на это, в истории есть немало случаев выигрышей крупных денежных призов. Опираясь на них, можно прийти к выводу, 6 из 45.

Как угадать числа?

Принцип лотереи заключается в том, что игрок должен выбрать 6 чисел из 45 на игровом поле. Тот, кто угадает комбинацию полностью, получит суперприз. Как правило, он исчисляется не одним миллионом рублей в России. Кто-то ставит числа «наугад», другие использую какую-либо стратегию, третьи от раза к разу используют одну и ту же комбинацию, в надежде что рано или поздно она окажется выигрышной. В общем, способ, как выиграть в лотерее 6 из 45, у каждого свой.

Также есть методы определения выигрышных чисел с помощью магических атрибутов. Один из таких способов называется "лозоходство". Итак, как выиграть в лотерею 6 из 45 при помощи маятника? На самом деле метод довольно простой и доступный, не требующий особых знаний и навыков. Для ритуала понадобится лист бумаги, на котором нужно написать все 45 цифр. Далее нужно взять какую-либо подвеску и поочередно держать ее над каждым числом, если над одним или над несколькими из них она станет раскачиваться, то возможно стоит именно эту цифру отметить. Способ, конечно, на первый взгляд не внушает доверия, но маятниками часто пользуются ясновидящие, а значит, его также можно рассматривать для данной цели.

Статистика

В каждой игре организаторы ведут статистику, в данном случае речь идет о частоте выпадения тех или иных чисел. Данная информация находится в широком доступе для игроков, и посмотреть ее можно на официальном сайте лотереи, если он конечно есть. Данный способ постоянные покупатели лотерейных билетов используют для игры, а другие, кстати, наоборот, ставят на те цифры, которые выпадают по статистике реже.

Также многие игроки полагают, что организаторы лотерей заранее просчитывают комбинации, для того чтобы было как можно меньше выигрышных билетов. На самом деле сделать это крайне сложно, если речь, конечно, не идет об игре в режиме онлайн, и выигрышные номера автоматически выбирает компьютерная программа.

Итак, один из методов определение «счастливой» комбинации - это определить систему выпадения тех или иных чисел, то есть вести статистику. Но это, естественно, не дает никаких гарантий, как, впрочем, и остальные методы. И однозначно ответить, как выиграть в лотерее 6 из 45 с помощью статистики, тоже не представляется возможным.

О чем говорят игроки, которым удалось получить денежные призы в лотерее 6 из 45:

  1. Не нужно делать ставки на числа, которые связаны с какими-либо событиями, лучше ставить наугад.
  2. В одной игре не выпадают либо четные, либо поэтому стоит в одном билете сочетать выбор и тех и других.
  3. Числа нужно распределять равномерно по всему игровому полю, потому что редко все цитры расположены в одной части.
  4. Нужно посчитать общую сумму выбранных чисел, она не должна быть меньше 106 и более 179.
  5. Опытные игроки свидетельствуют о том, что не стоит играть на одну ставку, лучше потратиться и приобрести несколько билетов и увеличить шанс на выигрыш.

Это несколько простых советов, как выиграть в лотерею 6 из 45. Отзывы опытных игроков свидетельствуют о том, что, для того чтобы выиграть, нужно, в первую очередь, играть. Потому что многие из тех, кто получал хорошие денежные призы, говорили, что играли годами и регулярно, и в конце концов удача им улыбнулась.

Как выиграть в лотерею?

Судя по всему, в нашей стране достаточно много азартных игроков. И даже несмотря на то что существует много советов, рекомендаций, секретов по поводу того, как выиграть в лотерею 6 из 45 суперприз, везет далеко не каждому. Отсюда можно сделать вывод, что надеяться особо на них не стоит, скорее всего, победа действительно во многом зависит от удачи.

Некоторые участвуют в розыгрыше только потому, что получают удовольствие от самого процесса. Другие постоянно тешатся надеждой на крупный денежный выигрыш. А кто-то совершенно неожиданно становится миллионером. В общем, вывод однозначный - нужно прислушиваться к своей интуиции и верить в удачу.